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Abstract
We present an open-source library (FonBund) that provides a way of mapping sequences of arbitrary phonetic segments in International
Phonetic Alphabet (IPA) into multiple articulatory feature representations. The library interfaces with several existing linguistic typology
resources providing phonological segment inventories and their corresponding articulatory feature systems. Our first goal was to facili-
tate the derivation of articulatory features without giving a special preference to any particular phonological segment inventory provided
by freely available linguistic typology resources. The second goal was to build a very light-weight library that can be easily modified to
support new phonological segment inventories. In order to support IPA segments that do not occur in the freely available resources, the
library provides a simple configuration language for performing segment rewrites and adding custom segments with the corresponding
feature structures. In addition to introducing the library and the corresponding linguistic resources, we also describe some of the
practical uses of this library (multilingual speech synthesis) in the hope that this software will help facilitate multilingual speech research.
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1. Introduction
Speech and language technology is currently only avail-
able for a tiny fraction of the world’s languages. There
has been a growing awareness of the importance of ad-
dressing this disparity, especially in recent years. One of
the outcomes of this realization is the appearance of sev-
eral linguistic typology resources (Forkel, 2014) that aim
to organize the world’s languages according to their struc-
tural and functional features (O’Horan et al., 2016). One
typical example is URIEL (Littell et al., 2017), a resource
(and the corresponding software) that collates various fea-
tures from various existing databases (Hammarström et al.,
2015; Dryer and Haspelmath, 2013; Moran et al., 2014)
that describe languages in terms of their phonological, lex-
ical, morphosyntactic, phylogenetic and geographic distri-
bution properties.
Linguistic typology resources have been used in several
ways to address the data scarcity problem for under-
resourced languages. The first approach is multilingual
joint learning where one hopes that training multiple lan-
guages jointly will help with pooling the resources across
languages and boost the performance on under-resourced
language. Another popular approach is language trans-
fer, where a resource-rich language is used to improve
the performance of a resource-scarce language via model
and data transfer (O’Horan et al., 2016). These ap-
proaches were successfully used in several recent speech
and language tasks such as grapheme-to-phoneme conver-
sion (Deri and Knight, 2016; Peters et al., 2017), multi-
lingual language modeling (Tsvetkov et al., 2016), text-to-
speech (Tsvetkov, 2016), predicting missing language rep-
resentation features (Malaviya et al., 2017) and name tag-
ging (Zhang et al., 2017), among others (O’Horan et al.,
2016).
The focus of our work is on the linguistic resources that
offer typology features describing the phonological struc-
ture of the world’s languages. Such resources are extremely
useful in multilingual speech research. Consider a multilin-

gual joint training approach to text-to-speech. In this sce-
nario the training set contains diverse corpora from many
sources representing many languages and dialects follow-
ing different phonological transcription conventions. In or-
der to train an acoustic model on such data, each phoneme
inventory ideally needs to be transformed into a uniform
canonical representation. In our work we use a representa-
tion based on the International Phonetic Alphabet (2015),
or IPA, which is also used by all phonological segment in-
ventories described in this study.
The conversion process may be quite involved because
it requires linguistic expertise for constructing the map-
pings into IPA for languages employing custom represen-
tations. Additional difficulties arise when these mappings
disagree due to differences between transcribers, diverging
transcription conventions, or the lack of native speakers to
guide the design. For example, a decision to represent many
Nepali diphthongs as atomic members of the phoneme in-
ventory may not be the most optimal choice. This pro-
cess can be facilitated by the use of linguistic typology re-
sources. The PHOIBLE (Moran et al., 2014) database, for
example, can provide guidance on which IPA segments are
more likely out of a list of candidates for the mapping. Pan-
Phon (Mortensen et al., 2016) can help establish whether
the candidate constitutes a well-formed IPA segment.
An even bigger issue we have encountered is that for certain
under-resourced languages it may be difficult to establish
a faithful phoneme inventory due to the lack of linguistic
resources and/or expertise. In such case, a linguistic typol-
ogy resource, such as PHOIBLE, may help to establish the
initial phoneme inventory for the language (at the time of
writing PHOIBLE supports 2,155 phoneme inventories for
1672 distinct languages).
Once the multilingual corpus is transformed into a uniform
representation, the next important step is to decide on a
representation of phonological segment structure in terms
of articulatory features and to derive this structure from
the IPA segments provided by the multilingual corpus. In
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this paper we present an open-source library called Fon-
Bund1 that was developed to facilitate this step. FonBund
wraps phonological segment inventories (and their corre-
sponding unique feature systems). At present, PHOIBLE,
PanPhon and PhonClassCounts (Dediu and Moisik, 2015)
databases are supported and tested but the library is flex-
ible enough to support other representations. Our design
goal was to make the library agnostic to a particular choice
of phoneme inventory because several phoneme invento-
ries for any given language may be devised based on dif-
ferent linguistic sources. The library provides a simple in-
terface that rewrites any sequence of IPA segments into the
desired articulatory feature representation (or combinations
thereof, if multiple representations are requested) that can
be used as discrete features in machine learning algorithms.
This paper is organized as follows: A brief overview of
phonological segment databases that FonBund currently
supports is provided in Section 2. An overview of the core
library design is given in Section 3. One of the possible ap-
plications of this library, namely speech synthesis for lan-
guages not in the training data, is described in Section 4.
Paper is concluded in Section 5.

2. Phonological Segment Inventories
This section briefly describes the three databases and the re-
spective feature systems that our library currently supports.
Our primary focus is on the global segment inventories that
contain a list of all the unique phonetic segments (or seg-
ment types) encountered for all the languages along with
their corresponding articulatory feature representations.

2.1. PHOIBLE
PHOIBLE (Moran, 2012) is a freely available database con-
taining cross-linguistic phonological data compiled from
many linguistic sources. The online 2014 edition (Moran
et al., 2014) includes 2155 phoneme inventories with 2160
segment types found in 1672 distinct languages. We pri-
marily investigated the current PHOIBLE online segment
inventory2, but also looked at a slightly older version from
the CLLD collection3.
According to its documentation (Moran et al., 2014), the
feature system in PHOIBLE is “loosely based on Hayes
(2009) and Moisik and Esling (2011), but goes beyond
both of these sources to be descriptively adequate cross-
linguistically” and is likely to change as new languages are
added. Overall the feature system consists of 37 “binary”
features (such as [±labiodental] and [±spreadGlottis]) that
for the simple segments take the ternary values: present
(+), absent (−) and not applicable (0). For complex seg-
ments, such as diphthongs, tuples of the above values are
used. For example, the value of a vowel feature [±syllabic]
for diphthong /Ew/ is a pair (+,−).

2.2. PanPhon
PanPhon is resource consisting of a database that relates
over 5,000 IPA segments (simple and complex) to their

1
https://github.com/googlei18n/language-resources/

tree/fonbund/fonbund
2
https://github.com/phoible/dev/tree/master/raw-data/

FEATURES
3
https://github.com/clld/phoible/data

definitions in terms of about 23 articulatory features and
a Python package to manipulate the segments and their
feature representations (Mortensen et al., 2016). Unlike
PHOIBLE, which documents the actual snapshot of con-
temporary phonological knowledge of the world’s lan-
guages from the standpoint of linguistic theory, PanPhon’s
mission is to develop a methodologically solid resource to
facilitate research in NLP. One of the nice features of Pan-
Phon is its great flexibility, which is achieved as follows:
The resource contains a core set of approximately 146 core
segments represented in IPA and their corresponding fea-
tures. This core set is then extended by application of rules
written in a user-editable YAML syntax (Ben-Kiki et al.,
2009). The rules describe the application of diacritics and
modifiers, the feature specifications that provide the nec-
essary context for the modification and articulatory feature
changes required if the diacritic or modifier is applied. Over
5,000 segments are compiled from the core set using the
above procedure4. This set can be easily extended further
to cover non-trivial segments by writing new rules.
Similar to PHOIBLE, a ternary system is used to represent
each of the (evolving set of) 23 articulatory features loosely
based on well-established phonological classes: major
([±syllable], [±sonorant], [±consonantal], [±continuant]),
laryngeal ([±voice], [±spread glottis], [±constricted glot-
tis]), major place ([±anterior], [±coronal], [±labial],
[±velaric], [±distributed]), minor place ([±high], [±low],
[±back]), manner ([±nasal], [±lateral], [±delayed re-
lease], [±strident]) and minor manner ([±round] [±tense],
[±long]).

2.3. PhonClassCounts
Dediu and Moisik (2016) note that segment-level
databases, such as PHOIBLE, cannot be used directly for
generalizations over classes of segments that share the-
oretically interesting features, such as “retroflex stops”.
They introduce a method for defining a set of “atomic”
(more phonetic) features that help deriving interesting sets
of classes generalizing over the existing segment invento-
ries. We denote the resulting resource and the correspond-
ing software that they released (Dediu and Moisik, 2015)
as PhonClassCounts.
Of particular interest to us is the Fonetikode feature sys-
tem (Dediu and Moisik, 2016) provided by PhonClass-
Counts resource. Inspired by IPA, Fonetikode is a feature
system consisting of 13 phonetically inspired multivalued
features. For example, the [initiation] feature can take val-
ues from the set (pulmonic egressive, glottal ingressive,
glottal egressive, velaric ingressive). An encoding of the
PHOIBLE segment inventory using the Fonetikode repre-
sentation is available as part of the PhonClassCounts re-
source5.
The Fonetikode encoding of the segment database collected
and curated by Merritt Ruhlen and released by Creanza et
al. (2015) is also available as part of PhonClassCounts but
has not been investigated in this work because it has sig-

4
https://github.com/dmort27/panphon/blob/master/

panphon/data/ipa_all.csv
5
https://github.com/ddediu/phon-class-counts/blob/

master/input/phoible_Features_Fonetikode.csv
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nificantly smaller coverage than PHOIBLE and serves a
different purpose (the corpus indicates availability of 728
phonemes in 2028 distinct languages).

3. Overview of Library Design
FonBund parses a stream of phonetic segments (in IPA) and
outputs articulatory features collected from several phone-
mic databases into a single output file in protocol buffer for-
mat (Google, 2008). The message defined by the protocol
buffer (DistinctiveFeatures6) contains a list of ar-
ticulatory features for a given input IPA segment. The size
of articulatory feature list depends on the number of phono-
logical segment databases configured. The message format
supports both binary (PHOIBLE, PanPhon) and multival-
ued (Fonetikode) features. For example, if both PHOIBLE
and PanPhon representations for a segment /t„/ are re-
quested, the resulting articulatory feature list will consists
of 60 features (37 for PHOIBLE and 23 for PanPhon).
This unified format can be consumed directly or easily
transformed for use by machine-learning frameworks such
as TensorFlow (Abadi et al., 2016). A schematic represen-
tation of FonBund’s operation on a possible broad phonetic
transcription of the Danish word mørk (/m œ5

“
g/) is shown

in Figure 1. The algorithm produces three distinct artic-
ulatory feature representations for each of the three input
segments.
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Figure 1: FonBund flow for a simple input.

Some segments have complex structure and may not neces-
sarily have a one-to-one mapping to the segments in the
databases. This applies to classes of segments such as
diphthongs and in general to any segments describing non-
trivial multiple articulations. We currently do not provide
an algorithm for automatic decomposition of segments such
as /œ5

“
/. Instead, FonBund requires such segments to be

decomposed prior to calling the library, so the above seg-
ment should be rewritten using the provided delimiter +
as /œ+5

“
/. The library still treats such a decomposition as

a single segment returning articulatory feature representa-
tions for each of the components in decomposition.
The library is implemented in Python and affords sig-
nificant flexibility in setting up additional phonological
segment inventories. We are using the Bazel build sys-
tem (Google, 2017) to configure the phonetic inventory

6
https://github.com/googlei18n/language-resources/

blob/fonbund/fonbund/distinctive_features.proto

Code Description Language Family Train Test

bn-BD Bangla (Bangladesh) Indo-Aryan X ×
bn-IN West Bengali (India) Indo-Aryan X X
en-IN Indian English Germanic × X
hi-IN Hindi (India) Indo-Aryan X ×
ml-IN Malayalam (India) Dravidian X ×
mr-IN Marathi (India) Indo-Aryan × X
si-LK Sinhala (Sri-Lanka) Indo-Aryan X ×
ta-IN Tamil (India) Dravidian × X
te-IN Telugu (India) Dravidian × X

Table 1: Languages for training and testing.

Configuration Segment ID PHOIBLE PanPhon PhonClassCounts

B X × × ×
PH × X × ×
PP × × X ×
PC × × × X
B+PH X X × ×
B+PP X × X ×
B+PC X × × X
B+PH+PP X X X ×
B+PH+PP+PC X X X X

Table 2: Input features for acoustic models.

databases (in comma or whitespace-separated format) as
remote build resources. In addition, we maintain a configu-
ration file in protocol buffer format that describes, for each
database, the necessary information on how to parse it: the
database-specific basic segment normalization details, the
type of the feature system (binary versus multivalued), the
number of features and so on. The parsing logic is imple-
mented by the SegmentRepositoryReader interface.
In addition, we provide simple utilities for dis-
playing the raw contents of supported databases
(show segments.py) and for converting broad
phonetic transcriptions to articulatory feature represen-
tations using any combination of supported databases
(features for segments.py).

4. Experiments
In what follows we describe one of the obvious applica-
tions of the FonBund library: multilingual text-to-speech
synthesis. We are particularly interested in synthesizing
speech for languages that are not encountered in the train-
ing data. The main goal of the experiments is to answer the
question whether articulatory features derived from cross-
lingual phonological segment databases can boost the per-
formance of a multilingual text-to-speech system by pro-
viding richer structure than plain phonetic segment iden-
tities when training the multiple languages jointly. The
second question is which representation out of the three
databases currently supported by FonBund is more suitable
for our application.

4.1. Experimental Setup
The multilingual corpus consists of nine speech databases
of South Asian languages (English, Hindi, Malay-
alam, Marathi, Sinhala, Tamil, Telugu, and Indian and
Bangladeshi dialects of Bengali) from both the Indo-Aryan
and the Dravidian language family, shown in Table 1, where
a language is identified by its BCP-47 language and region
tag (Phillips and Davis, 2009). The region tags help us dis-
tinguish the Bengali dialect spoken in India from the Ben-
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Code B PH PP PC B+PH B+PP B+PC B+PH+PP B+PH+PP+PC

bn-IN 3.40±0.09 3.16±0.11 3.28±0.11 3.22±0.11 3.37±0.12 3.30±0.09 3.24±0.12 3.12±0.09 3.49±0.12
en-IN 2.93±0.11 3.50±0.09 3.39±0.12 3.18±0.11 3.42±0.10 3.36±0.10 3.24±0.12 3.45±0.11 3.42±0.13
mr-IN 3.35±0.11 3.43±0.10 3.39±0.11 3.36±0.09 3.27±0.12 3.39±0.11 3.27±0.09 3.38±0.12 3.31±0.09
ta-IN 2.08±0.09 2.56±0.08 2.62±0.08 2.67±0.09 2.53±0.07 2.58±0.09 2.68±0.08 2.68±0.07 2.66±0.09
te-IN 3.16±0.13 3.70±0.12 3.41±0.11 3.82±0.10 3.52±0.11 3.42±0.12 3.85±0.11 3.62±0.12 3.80±0.10

Table 3: Subjective Mean Opinion Scores (MOS) (along with 95% confidence intervals) for languages synthesized with
various acoustic model configurations. Best scores are underlined. Statistically significant improvements shown in bold.

gali of Bangladesh. Each database (apart from Hindi) con-
tains recordings from multiple speakers and genders.
Given the multilingual corpus we generate nine different
training data configurations. Each configuration corre-
sponds to a particular type and combination of the input
features and is shown in Table 2. The baseline (B) corre-
sponds to the input features consisting solely of phonetic
segment identities (e.g., /Ew/). The remaining eight con-
figurations correspond to either replacing the segment iden-
tity features with the articulatory features from one of the
segment databases or using the segment identity features
in conjunction with articulatory feature combinations from
multiple segment inventories. For example, the features in
configuration B+PH+PP consist of segment identities and
articulatory features from PHOIBLE and PanPhon. No
other input features apart from the ones described are used,
in order to keep the experiment pure.
For each of the nine configuration we trained an LSTM-
RNN acoustic model, the details of which are described
in Gutkin and Sproat (2017). Each model was evaluated on
five South Asian languages from Table 1. Out of five lan-
guages tested, Marathi, Tamil and Telugu are completely
unseen during training. Indian English is less challenging
since some of our Hindi database contains English prompts.
Finally, West Bengali is an in-domain language for this test.
The motivation behind selecting this particular group of
South Asian languages is to investigate how the presence
or absence of articulatory features from various sources af-
fects the synthesis of languages for which we have no train-
ing data (Tamil, Telugu and Marathi) vs. the languages for
which some data is available (Bengali and Indian English).
Each configuration was evaluated using subjective Mean
Opinion Score (MOS) listening tests. For each test we used
100 sentences not included in the training data for evalua-
tion. Each rater was a native speaker of the language and
was asked to evaluate a maximum of 100 stimuli. Each
item was required to have at least 8 ratings. The raters used
headphones. After listening to a stimulus, the raters were
asked to rate the naturalness of the stimulus on a 5-point
scale (1: Bad, 2: Poor, 3: Fair, 4: Good, 5: Excellent).
Each participant had one minute to rate each stimulus. The
rater pool for each language included at least 8 raters. For
each language, all configurations were evaluated in a single
experiment.

4.2. Evaluation Results and Discussion
Table 3 shows the results of subjective listening tests for
five languages where, for each language, nine acoustic
model configurations described in the previous section
were tested. Each mean opinion score is shown along
with the corresponding confidence interval statistics at 95%

confidence level (Wonnacott and Wonnacott, 1990) com-
puted using the recommendations in ITU-T P.1401 (2012).
The highest scores are underlined. The best configurations
which exhibit no overlap in confidence intervals are deemed
statistically significant and shown in bold.
For all five languages, using some combination of articu-
latory features results in improvements over the baseline
configuration. For three languages (Indian English, Tamil
and Telugu) these improvements are large, while for West
Bengali and Marathi the improvements are not statistically
significant. We hypothesize that for these two languages,
the slightly disappointing results are not due to the use of
cross-lingual segment repositories per se, but rather due to
the suboptimal design of our phoneme inventories.
It is interesting to note that for Indian English and Marathi
one can safely replace the segment identity features with
the articulatory features derived from PHOIBLE, while
improving upon the baseline. As can be seen from Ta-
ble 3, this result cannot be replicated for PanPhon or
PhonClassCounts inventories. In addition, we note that
there is no clear “winning” feature representation out
of PHOIBLE (PH), PanPhon (PP) and PhonClassCounts
(PC). Combining them individually with the segment iden-
tity features leads to big improvements for Telugu (B+PC),
while more complex combinations strongly improve Tamil
(B+PH+PP).

5. Conclusion and Future Work
This paper introduced an open-source library for mapping
sequences of arbitrary IPA segments to multiple articula-
tory feature representations currently based on three pop-
ular cross-language phonological databases. The library is
flexible and can be extended to support additional phono-
logical databases. Applying the library to the domain of
multilingual text-to-speech synthesis confirms the hypoth-
esis that articulatory features derived from cross-language
databases are very useful and in certain situations can re-
place the original phonological segment identity features
altogether.
While at present the library is restricted to phonological in-
formation, we are planning to extend it to other represen-
tations, such as the morphosyntactic representation offered
by WALS (Dryer and Haspelmath, 2013) and phylogenetic
and geographical representations from Glottolog (Ham-
marström et al., 2015). We are also planning to apply the
library to other speech and language tasks.
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