
The ACoLi CoNLL Libraries: Beyond Tab-Separated Values

Christian Chiarcos, Niko Schenk
Applied Computational Linguistics (ACoLi) Lab

Goethe University Frankfurt, Germany
{chiarcos,nschenk}@em.uni-frankfurt.de

Abstract
We introduce the ACoLi CoNLL libraries, a set of Java archives to facilitate advanced manipulations of corpora annotated in TSV
formats, including all members of the CoNLL format family. In particular, we provide means for (i) rule-based re-write operations, (ii)
visualization and manual annotation, (iii) merging CoNLL files, and (iv) data base support.
The ACoLi CoNLL libraries provide command-line interface to these functionalities. The following aspects are technologically
innovative and exceed beyond the state of the art: We support every OWPL (one word per line) corpus format with tab-separated
columns, whereas most existing tools are specific to one particular CoNLL dialect. We employ established W3C standards for rule-based
graph rewriting operations on CoNLL sentences. We provide means for the heuristic, but fully automated merging of CoNLL annotations
of the same textual content, in particular for resolving conflicting tokenizations. We demonstrate the usefulness and practicability of our
proposed CoNLL libraries on well-established data sets of the Universal Dependency corpus and the Penn Treebank.

Keywords: CoNLL data format, CoNLL-RDF, merging conflicting tokenization, interoperability

1. Background & Motivation
Since 1999, the Conference on Natural Language Learn-
ing (CoNLL)1 has established a strong tradition of annually
organized shared tasks within the NLP community. The
addressed linguistic phenomena exhibit great diversity and
included (but were not limited to) lexical semantics, seman-
tic role labeling, dependency and discourse parsing, and
coreference resolution. With their continuous progression
in terms of linguistic complexity, the shared tasks reflect
the maturation of statistical NLP, the dominating paradigm
of computational linguistics in the 2000s. In many cases,
successful participants established reference tools, and—as
it allowed for comparative evaluation—the underlying for-
mats (for training and test data) continued to be supported
by succeeding NLP tools. This in fact has reinforced the
global importance of the CoNLL format family and, as a
result, the CoNLL format has ultimately become a de-facto
standard within the language processing community.
CoNLL and other tab separated value (TSV)-based formats
are widely used, and individual dialects come with consid-
erable tool support, e.g., CoNLL-X, CoNLL-U or the for-
mats of corpus tools like CWB (Evert and Hardie, 2011)
or Sketch Engine (Kilgarriff et al., 2014). At the moment,
however, there are considerable limitations with respect to
semantics: off-the-shelf database support is limited to
CoNLL dialects with invariable number of columns, thus
excluding semantic role labelling (since 2004) and dis-
course semantics (since 2015) in CoNLL,
syntax: while parsing CoNLL into an array is trivial, graph
traversal and transformation on top of this requires consid-
erable programming efforts,
tokenization: CoNLL presupposes one token (word) per
line, if tokenization diverges, annotations can no longer be
compared, and
interoperability: most tools are specific to one particular
CoNLL dialect, positing constraints on columns and/or ad-

1http:/www.signll.org/conll

ditional metadata as provided in comments.
We introduce the ACoLi CoNLL libraries in order to ad-
dress these issues: They are applicable to every CoNLL
TSV dialect, they provide flexible graph traversal and graph
rewriting using existing W3C standards, they allow export
into and import from off-the-shelf RDF triple stores, and
support the automated merging of conflicting tokenizations.
As shown in Fig. 1, the ACoLi CoNLL libraries can be used
in different types of NLP architectures to complement ex-
isting NLP modules with an advanced level of interoper-
ability: The CoNLL Merge package transforms and inte-
grates conflicting tokenizations in CoNLL TSV, it merges
CoNLL files by aggregating all (retokenized) columns of
the source files, the CoNLL-RDF package yields an iso-
morphic rendering of CoNLL in RDF, thereby enabling
advanced manipulation of annotations (graph rewriting)
by SPARQL Update, off-the-shelf database support by
RDF Triple/Quad Stores, and access with a W3C standard-
ized query language (SPARQL). Both packages are imple-
mented in Java and available under Apache 2.0 license.2

Figure 1: Using the ACoLi CoNLL libraries in different
NLP architectures

2 https://github.com/acoli-repo/conll-rdf,
https://github.com/acoli-repo/conll

571

http:/www.signll.org/conll
https://github.com/acoli-repo/conll-rdf
https://github.com/acoli-repo/conll

2. Manipulating TSV data
The original data model of CoNLL TSV formats is a se-
quence of variable-width tables, each representing a sen-
tence, with rows in a fixed (sequential) order. Differ-
ent CoNLL dialects differ in the choice and definition of
columns, however, all are characterized by putting one
word per line (OWPL), with annotations of these words
stored in the respective rows. While basic manipulations
such as reordering, merging, and dropping columns are
simple and can be accomplished with off-the-shelf tools
such as sed, advanced NLP problems often require manip-
ulating rows: All CoNLL formats come with the limitation
of imposing one single segmentation level on the text, but
in complex NLP architectures, different modules may pro-
duce, require or produce files with deviating segmentations.
Yet, tokenization strategies generally differ with respect
to the research question, tokenizations can drastically dis-
agree, so that multiple linguistic annotations on top of con-
current tokenizations of the same text usually require in-
tense efforts for harmonization, as in the following phrase
from the Penn Treebank (Marcus et al., 1999), resp.
OntoNotes (Hovy et al., 2006):

a DT

19-month JJ

cease-fire NN

a DT
19 CD
- HYPH
month NN
cease NN
- HYPH
fire NN (wsj0655)

Problems multiply if an annotation inserts empty elements,
e.g., the OntoNotes syntax in opposition to the OntoNotes
NER. With the CoNLLAlign class in the CoNLL Merge
package, we provide a fully automated solution for merging
CoNLL files with concurrent tokenizations in three differ-
ent modes:

default adopt the first tokenization as gold tokenization,
lossless (for mismatches, add a new line after the
mismatch, and mark it as an ‘empty’ non-word by
RETOK)

-f force the first tokenization as gold tokenization (for mis-
matches, attach the annotations of the mismatched
word to the annotations of the last line, using + as con-
catenator)

-split split tokens into longest common substrings, lossless
(for mismatches, split annotations using the I[O]BE[S]
scheme)

Figure 2 illustrates these strategies. We recommend the
default option for the quantification and inspection of to-
kenization mismatches in preparation of NLP experiments
or corpus conversion; -f for NLP pipelines, as this permits
flexible retokenization against a target tokenization (at the
price of information loss); -split for the fast integration
of corpus data: annotations are anchored in the primary data
(no artificial ‘empty’ elements), and the original annotation
is recoverable.
CoNLL Merge builds on Myer’s Diff (Myers, 1986), ap-
plied to the WORD (FORM) column, and is thus capable

of tolerating spelling differences, e.g., for escaped special
characters like brackets or quotes. With -split, it iter-
ates on non-aligned sequences with a character-level diff,
with sequences of matching characters pairs are merged
into substrings.

Figure 2: Merging concurrent tokenizations with -split
(a), -f (b) and default options (c)

To our best knowledge, CoNLL Merge is the first publicly
available tool for the fully automated, domain-independent
merging of linguistic annotations of the same text with con-
current tokenizations. It does build on earlier work by
Chiarcos et al. (2012), but while their implementation was
specific to a complex XML standoff format with limited
technological support from the wider community, we now
provide an open source implementation for a popular de-
facto standard for linguistic annotations in NLP.

3. Beyond Tab-Separated Values
Off-the-shelf database support for CoNLL TSV is currently
limited to dialects with constant number of columns. How-
ever, this cannot be taken for granted, at least for seman-
tic annotations, as the CoNLL representation of SRL, for
example,3 introduces an additional column per frame in-
stance, i.e., sentences vary in the number of columns.
To facilitate CoNLL processing and querying, the CoNLL-
RDF package provides a mapping from OWPL corpus for-
mats to an isomorphic, and lossless representation in RDF
(Chiarcos and Fäth, 2017). In order to provide a generic
converter of CoNLL data, we must not rely on a fixed set or
order of columns, but instead, expect user-provided labels.
CoNLL-RDF provides a trivial of mapping comparable to
CSV2RDF (Tandy et al., 2015), yet, a number of CoNLL-
specific extensions are required (marked by * below):

• (*)Preserve CoNLL comments as comments, but do
not interpret them.

• Assign every non-empty row a unique URI (‘primary
key’) based on a user-provided base URI for the
document, the sentence number and the word ID (or
position): In the resource https://github.com/
UniversalDependencies/UD_German/
blob/master/de-ud-dev.conllu, the
second word in the first sentence will re-
ceive the URI https://github.com/

3 Similar problems exist with the representation of discourse
relations for the 2015-2016 shared tasks.

572

https://github.com/UniversalDependencies/UD_German/blob/master/de-ud-dev.conllu
https://github.com/UniversalDependencies/UD_German/blob/master/de-ud-dev.conllu
https://github.com/UniversalDependencies/UD_German/blob/master/de-ud-dev.conllu
https://github.com/UniversalDependencies/UD_German/blob/master/de-ud-dev.conllu#s1.2
https://github.com/UniversalDependencies/UD_German/blob/master/de-ud-dev.conllu#s1.2
https://github.com/UniversalDependencies/UD_German/blob/master/de-ud-dev.conllu#s1.2
https://github.com/UniversalDependencies/UD_German/blob/master/de-ud-dev.conllu#s1.2

UniversalDependencies/UD_German/
blob/master/de-ud-dev.conllu#s1.2,4

resp., :s1.2 in short.

• (*)Define every row as a word, and connect it to its
successor using the NIF vocabulary (Hellmann et al.,
2013)5: :s1.2 a nif:Word; nif:nextWord
:s1.3 .

• Given a user-provided list of column labels (say,
LEMMA for the second column in UD), we cre-
ate datatype properties in the conll: names-
pace, and assign the word its corresponding annota-
tion as a literal value, e.g., :s1.2 conll:LEMMA
‘‘sein’’.

• As an exception, the HEAD column is mapped
to an object property (‘foreign key’): :s1.2
conll:HEAD :s1.5 . This convention enables
special handling of intra-sentential cross-references
and is suitable for—but not restricted to—dependency
syntax.

• (*)Special treatment for the user-provided label
X-ARGs: If there is a column X , say, PRED, then
assume that every word with a non-empty value for
PRED introduces an additional column PRED-ARGi
for its arguments. For every word w that has a non-
empty annotation a in PRED-ARGi, and the word pi
that has the ith non-empty value in PRED, define w
as argument of pi: pi conll:a w., e.g., :s1.2
conll:A1 :s1.1 .

In consequence, we obtain an isomorphic representation of
the original CoNLL data structure in RDF which is seman-
tically shallow,6 but can be effectively queried, manipulated
and serialized back into CoNLL using off-the-shelf RDF
technology. In particular, this includes a rich infrastructure
of databases, webservices, APIs, models for resource pub-
lication and linking (Chiarcos et al., 2013).
Even though it lacks formal semantics (by design), the
CoNLL RDF model can also serve as a basis to transform
CoNLL data into semantically well-defined formalisms
such as POWLA (Chiarcos, 2012) or full-fledged NIF
(Hellmann et al., 2013).
For the en-bloc conversion of CoNLL data to CoNLL-RDF,
we provide the JAVA class CoNLL2RDF. Fig. 3 illustrates
CoNLL-RDF sample data for the first sentence of the Ger-
man UD development set, together with its rendering in
CoNLL and other derived representations.

4. Advanced Graph Operations
A key advantage of an RDF representation is that a W3C-
standardized query language for the flexible querying and

4 The UD sent id is currently not used, because it only appears
in a comment. However, future support for UD-specifics is possi-
ble.

5http://persistence.uni-leipzig.org/
nlp2rdf/ontologies/nif-core

6 Note that the conll: namespace used here is not connected
with any ontology, but populated by properties as defined by the
user (column labels) or in the data (values for X-ARGs columns).

manipulation of this data can be employed (Buil Aranda
et al., 2013, SPARQL). As an example, consider querying
paths in a dependency tree. SPARQL 1.1 property paths
provide convenient means for complex path configurations
in labeled graphs, supporting logical operations, reversal of
direction and iterations of edges. While, after conversion
from CoNLL TSV, dependency labels are stored as literal
values of conll:EDGE, it is easy to transform them into
object properties using a simple SPARQL Update state-
ment:

INSERT {
?dep ?prop ?head .

} WHERE {
?dep conll:HEAD ?head .
?dep conll:EDGE ?edge .
BIND(IRI(CONCAT(

’http://universaldependencies.org/u/dep/’,
?edge) AS ?prop))
}

As the example also illustrates, RDF resources can be de-
fined in a way that their IRIs/URIs resolve against exter-
nal resources, e.g., the dependency label nsubj yields
the URL http://universaldependencies.org/
u/dep/nsubj and thus a human-readable definition. For
resources other than UD, one can thus directly link to
machine-readable information and use this in a feder-
ated search, e.g., regarding linguistic annotations,7 lexical
entries from Wiktionary,8 semantic frames,9 multilingual
word sense information,10 or general concept knowledge.11

After this transformation, it is now possible, for example, to
retrieve all nominal subject of verbs, including those nested
in conjunctions:

PREFIX ud:
<http://universaldependencies.org/u/dep/>

SELECT ?verb ?nsubj
WHERE {

?verb conll:UPOS "VERB".
?verb ud:nsubj/ud:conj? ?nsubj.
?nsubj conll:UPOS "NOUN".

}

An interesting feature here is that complex graph config-
urations can be expressed and retrieved in a compact and
human-readable way: here, an optional transition along a
ud:conj edge is permitted, but not required.
SPARQL Update can not only be used for querying, but
also for manipulating annotations. To facilitate process-
ing data streams, the class CoNLLStreamExtractor in
the CoNLL RDF package reads CoNLL from stdin, ap-
plies CoNLL2RDF sentence by sentence and returns valid
CoNLL-RDF. In addition to this mere conversion function-
ality, the CoNLLStreamExtractor supports data ma-
nipulation by means of SPARQL Update: It takes as addi-
tional arguments a list of files containing SPARQL Update

7http://purl.org/olia
8http://kaiko.getalp.org/about-dbnary/
9http://premon.fbk.eu/

10http://babelnet.org/
11http://dbpedia.org/

573

https://github.com/UniversalDependencies/UD_German/blob/master/de-ud-dev.conllu#s1.2
https://github.com/UniversalDependencies/UD_German/blob/master/de-ud-dev.conllu#s1.2
http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core
http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core
http://universaldependencies.org/u/dep/nsubj
http://universaldependencies.org/u/dep/nsubj
http://purl.org/olia
http://kaiko.getalp.org/about-dbnary/
http://premon.fbk.eu/
http://babelnet.org/
http://dbpedia.org/

Figure 3: German sample sentence from UD, its CoNLL-RDF representation, and different serializations/visualizations

statements, introduced by the flag -u. Every individual file
represents a module, which can be stacked to form a pro-
cessing pipeline. Successively, these SPARQL Updates are
applied to the individual sentences, thereby rewriting the
RDF graph. We also support iterated applications, marked
by an integer that can follow the respective SPARQL file in
curly brackets.
In essence, the use of SPARQL 1.1 allows unconstrained
graph rewriting and enrichment, and sample pipelines for
different tasks have been developed, including, but not lim-
ited to

• combining conll:HEAD and dependency labels
(conll:EDGE) into object properties,

• converting PCFG parses to dependency parses,

• transforming dependency annotations to produce UD-
conformant ‘semantic’ dependencies,

• reducing various span annotations to the respective
heads in the dependency annotation,

• stemming (using BIND and SPARQL string opera-
tions),

• chunking,

• rule-based dependency parsing (using a modified
shift-reduce scheme), and

• supersense inference (by consulting RDF editions of
VerbNet and WordNet).

5. Serializing CoNLL-RDF
CoNLL-RDF is an extensible RDF data model that
can be serialized in any RDF format. The class
CoNLLRDFFormatter in the CoNLL RDF package
generates different serializations of CoNLL RDF data. It
reads CoNLL-RDF in blocks of sentences from stdin,
and, depending on its parameters, produces CoNLL TSV

(-conll), a human-readable representation for depen-
dency annotations (-grammar), canonically formatted
CoNLL-RDF (default, -rdf), or canonically formatted
CoNLL-RDF with syntax highlighting (on Un*x shells
with color support, -debug), see Fig. 3.
Canonically formatted CoNLL-RDF has been designed as
a compromise between Semantic Web standards and the
low-level processability of CoNLL TSV: It is a highly con-
strained subset of Turtle that emulates OWPL formats.

• Sentences are separated by empty lines.

• Following eventual prefix declarations, first line de-
fines the sentence as a nif:Sentence. For all ex-
cept the first sentence of a corpus, the first line is pre-
ceded by a nif:nextSentence statement marking
its position.

• The second line holds the first content word, defines
it as a nif:Word, followed by its conll:WORD and
other annotations, as well as a nif:nextWord state-
ment pointing to the next word in the sentence. If
the current word has no dependency annotation or is
a root, its conll:HEAD is the sentence.

• CoNLL-RDF uses the Turtle separator ”;” to enu-
merate the annotations assigned to a particular
nif:Word, and ”,” to enumerate multiple values for
the same annotation. CoNLL-RDF follows CoNLL in
that all triples referring to one nif:Word are written
in one line, concluded with ”.”.

The resulting format adopts many basic CoNLL conven-
tions (comments starting with #, sentences separated by
empty lines, one token per line, strictly ordered fields) and
others modified (annotations separated by ; and identified
by property names rather than position). Most importantly,
canonically formatted CoNLL-RDF can be as easily pro-
cessed with low-level string manipulations as the original
CoNLL format, albeit not with an array as primary data

574

Figure 4: CoNLLRDFAnnotator: annotating arguments
with PropBank roles (English UD corpus).

structure, but with a dictionary/hashmap. Yet, it is also
possible to process canonically CoNLL-RDF with off-the-
shelf RDF technology. The canonical format can be easily
restored using the CoNLLRDFFormatter.
For NLP applications, the CoNLLStreamExtractor
and CoNLLRDFFormatter can be connected in a
pipeline, so that CoNLL TSV data is read from stdin,
manipulated using SPARQL Update, and transformed back
into CoNLL TSV for further processing with off-the-shelf
NLP tools.
We also provide rudimentary support for manual annota-
tion on Un*x shells with color coding: As an extension
of our serialization routines, the CoNLLRDFAnnotator
reads and writes CoNLL-RDF sentence by sentence, it vi-
sualizes it using the human-readable representation shown
above, and, for every word in the sentence, it allows to
overwrite every conll:-property with a new value. With
user-provided macros (replacement rules), multiple fea-
tures can be overwritten, e.g., with a pre-defined macro that
allows to set conll:HEAD and conll:EDGE at the same
time: The operation 3 4 nsubj:A0(fire.01) in Fig.
4 means that the third word in the current sentence should
point to the fourth as its head, with a dependency label that
combines the UD dependency label with information about
its PropBank frame.

6. Summary
In this paper, we introduce the ACoLi CoNLL libraries, a
set of Java archives to facilitate advanced manipulations of
corpora annotated in TSV formats, including all members
of the CoNLL format family. These are based on our earlier
research on corpus representation (Chiarcos, 2012; Chiar-
cos and Fäth, 2017) and structural interoperability (Chiar-
cos et al., 2012) with a focus on the popular CoNLL format
family.
The primary goal of this effort is to facilitate interoperabil-
ity between existing components in complex NLP architec-
tures. The CoNLL Merge package provides a fully auto-
mated solution to the problem of concurrent tokenizations
and leverages concurrent tokenizations of the same text by
supporting fully automatized retokenization of annotated
texts. The CoNLL-RDF package provides a transformation

of CoNLL TSV into (and from) an isomorphic, but shal-
low RDF representation of CoNLL data, which facilitates
database support and querying, and enables advanced ma-
nipulations of annotations CoNLL data by means of graph
rewriting. We provide stream processing capabilities for
these operations, by processing CoNLL and CoNLL-RDF
data streams sentence by sentence, and export in different
serializations, including CoNLL TSV, canonically format-
ted CoNLL-RDF with optional syntax highlighting, and a
human-readable view for dependency annotations. In addi-
tion, a rudimentary annotation functionality is provided.
The ACoLi CoNLL libraries are designed as minimal soft-
ware components that provide a layer of interoperability for
glueing together heterogeneous modules and existing soft-
ware components in complex NLP systems. CoNLL Merge
allows to leverage tokenization differences and CoNLL-
RDF permits a full rewrite of existing annotations. Beyond
this, CoNLL-RDF can actually be used to implement rule-
based NLP components, using SPARQL property paths and
SPARQL Update for graph rewriting. As standalone appli-
cation, they only provide a command-line interface to their
functionalities.
With SPARQL Update, CoNLL-RDF provides a powerful,
and W3C-standardized graph rewriting formalism which
allows us to separate the transformation logic (SPARQL
Update) from the conversion between different CoNLL
dialects (CoNLLStreamExtractor, CoNLLRDFFormatter).
Example transformations are provided with the release,
more complete pipelines as well as rule-based NLP com-
ponents developed in SPARQL Update will be subject to
subsequet publications.
CoNLL Merge and CoNLL-RDF are designed to be appli-
cable to every OWPL corpus format and thus depend on
user input regarding the labels and types of columns. They
impose minimal terminological constraints:

• Merging and visualization: The user has to identify
the column that contains the primary data (we follow
the original terminology in naming this WORD rather
than FORM).

• RDF conversion: If a column ID is provided, it will be
used to generate URIs. Columns with labels HEAD or
X-ARGs are rendered as object properties (‘foreign
key’) rather than string annotations.

• Visualization: For dependency relations and their la-
bels, we expect the column labels HEAD and EDGE.

• RDF to TSV conversion: We export properties from
the conll: namespace in the user-defined order.

• CoNLL RDF properties and IDs must conform to
IRI conventions, i.e., the following characters are re-
served: : / ? # [] @ $ & ’ () * + , ; =

No additional a priori naming conventions apply within the
CoNLL-RDF core infrastructure. User- or usecase-specific
SPARQL Update scripts do impose naming conventions.
CoNLL Merge and CoNLL-RDF, together with sample
data and sample scripts, are released under the Apache
license 2.0 via our public Github repository https://
github.com/acoli-repo.

575

https://github.com/acoli-repo
https://github.com/acoli-repo

Acknowledgments
Our research at Goethe University Frankfurt was supported
by the project ‘Linked Open Dictionaries (LiODi, 2015-
2020)’, funded by the German Ministry for Education and
Research (BMBF).

7. References
Buil Aranda, C., Corby, O., Das, S., Feigenbaum, L.,

Gearon, P., Glimm, B., Harris, S., Hawke, S., Herman,
I., Humfrey, N., Michaelis, N., Ogbuji, C., Perry, M.,
Passant, A., Polleres, A., Prud’hommeaux, E., Seaborne,
A., and Williams, G. (2013). SPARQL 1.1 overview.
Technical report, W3C Recommendation.

Chiarcos, C. and Fäth, C. (2017). Conll-rdf: Linked cor-
pora done in an nlp-friendly way. In Jorge Gracia, et al.,
editors, Language, Data, and Knowledge: First Inter-
national Conference, LDK 2017, Galway, Ireland, June
19-20, 2017, Proceedings, pages 74–88. Springer Inter-
national Publishing, Cham.

Chiarcos, C., Ritz, J., and Stede, M. (2012). By all these
lovely tokens... merging conflicting tokenizations. Lan-
guage resources and evaluation, 46(1):53–74.

Chiarcos, C., McCrae, J., Cimiano, P., and Fellbaum, C.
(2013). Towards open data for linguistics: Linguistic
linked data. In Alessandro Oltramari, et al., editors, New
Trends of Research in Ontologies and Lexical Resources:
Ideas, Projects, Systems, pages 7–25. Springer Berlin
Heidelberg, Berlin, Heidelberg.

Chiarcos, C. (2012). A generic formalism to represent lin-
guistic corpora in rdf and owl/dl. In Nicoletta Calzo-
lari (Conference Chair), et al., editors, Proceedings of the
Eight International Conference on Language Resources
and Evaluation (LREC’12), Istanbul, Turkey, may. Euro-
pean Language Resources Association (ELRA).

Evert, S. and Hardie, A. (2011). Twenty-first century Cor-
pus Workbench: Updating a query architecture for the
new millennium. In Proceedings of the Corpus Linguis-
tics 2011 conference, Birmingham. University of Birm-
ingham.

Hellmann, S., Lehmann, J., Auer, S., and Brümmer, M.
(2013). Integrating NLP using linked data. In Proc. of
the 12th International Semantic Web Conference (ISWC-
2013), pages 98–113, Sydney, Australia, Oct. Springer.

Hovy, E., Marcus, M., Palmer, M., Ramshaw, L., and
Weischedel, R. (2006). OntoNotes: The 90% solution.
In Proceedings of the human language technology con-
ference of the NAACL, Companion Volume: Short Pa-
pers, pages 57–60. Association for Computational Lin-
guistics.

Kilgarriff, A., Baisa, V., Bušta, J., Jakubı́ček, M., Kovář, V.,
Michelfeit, J., Rychlý, P., and Suchomel, V. (2014). The
sketch engine: ten years on. Lexicography, 1(1):7–36,
Jul.

Marcus, M. P., Santorini, B., Marcinkiewicz, M. A., and
Taylor, A. (1999). Treebank-3. LDC Catalog No.:
LDC99T42, ISBN, 1-58563-163-9.

Myers, E. W. (1986). Ano(nd) difference algorithm and its
variations. Algorithmica, 1(1):251–266.

Tandy, J., Herman, I., and Kellogg, G. (2015). Generat-
ing RDF from tabular data on the web. Technical report,
W3C Recommendation.

576

	Background & Motivation
	Manipulating TSV data
	Beyond Tab-Separated Values
	Advanced Graph Operations
	Serializing CoNLL-RDF
	Summary
	References

