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Abstract

We present rule-based morphological parsers in the Tigrinya and Oromo languages, based on a parser-combinator rather than finite-state
paradigm. This paradigm allows rapid development and ease of integration with other systems, although at the cost of non-optimal
theoretical efficiency. These parsers produce multiple output representations simultaneously, including lemmatization, morphological
segmentation, and an English word-for-word gloss, and we evaluate these representations as input for entity detection and linking and
humanitarian need detection.
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1. Introduction
In this paper, we experiment with using parser combi-
nators (Hutton and Meijer, 1988; Frost and Launchbury,
1989) for the rapid development of practical morphological
parsers, as an alternative or supplement to the typical finite-
state transducers (Karttunen and Beesley, 1992; Karttunen,
1993). This paradigm offered some practical advantages
over a finite-state system, allowing parsers to be written
very rapidly in a familiar programming language, although
at a cost of runtime efficiency.
We present morphological parsers for two Afroasiatic lan-
guages, the Tigrinya language of Eritrea and Ethiopia
(§4.1.), and the Oromo language of Ethiopia and Kenya
(§4.2.).1 These parsers were designed during the
LoReHLT17 “surprise-language” evaluation (Strassel and
Tracey, 2016) (§3.) to support machine translation, en-
tity detection and linking, and humanitarian need detection
(Strassel et al., 2017). These parsers were operable within
about 36 hours of learning the identity of the languages, al-
though they underwent further development during the next
two weeks of evaluation.

2. Parser combinators
2.1. Introduction
The “parser combinator” paradigm (Burge, 1975; Wadler,
1985; Hutton and Meijer, 1988; Frost and Launchbury,
1989) is a kind of declarative programming that simultane-
ously defines the grammar being parsed and the executable
code that parses it. This paradigm involves defining parser
functions with a particular semantics, using a general-
purpose programming language (in our case, Python), as
well as defining higher-order “combinators” that take one or
more component parsing functions as arguments and return
a complex parsing function (for example, the composition
of the two functions).2 The resulting grammar is itself an

1github.com/littell/ethi_morph
2The usage of “combinator” here comes not from combina-

toric logic but from the “combinator pattern” (wiki.haskell.
org/Combinator_pattern) of software design.

executable function, that parses text as a recursive-descent
parser, but one in which every component has access to
all the capabilities and libraries of the general-purpose pro-
gramming language (e.g. regular expression libraries, file
I/O, etc.).
The basic building block of a parser-combinator grammar
is the atomic parser. An atomic parser can do something
as simple as recognize a single letter—in our examples, a
parser defined as Tex("d") would recognize a single char-
acter "d" at the edge of the input’s Text representation. By
default, our parsers consume input from the right edge of a
word because of most languages’ tendency towards suffixa-
tion, but this is configurable. Parsers return a set of ⟨output,
remnant⟩ ordered pairs, where remnant is what is left over
from the input (e.g., the string without "d"), and output is
any arbitrary Python object, typically somemanner of struc-
tured or augmented representation of what was parsed. The
return value of a parser is defined as a set, rather than a
single ordered pair, because there may be, at any particular
stage of the parse, multiple competing hypotheses regarding
what the output representation should be and what remains
to be parsed.
In our implementations, we typically define one atomic
function to parse one morph, rather than define atomic
parsers for individual characters. We also make signifi-
cant use of generators, trivial atomic parsers that consume
no input, but put a textual representation (such as a gloss)
into one of several output channels. The concatenation of
parsers with generators achieves the transduction between
multiple different types of representation.
The other kind of parsers in this paradigm are parser combi-
nators, functions that take one or more parsers as input and
return a parser as output. The two prototypical parser com-
binators are concatenation and disjunction (implemented in
our system by overloading Python’s + and | operators, re-
spectively). A concatenation A+B is defined as applying the
parser A to each remnant produced by B and concatenat-
ing the output representations3; a disjunction A|B is simply

3As noted above, our parsers default to right-to-left parsing,
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> ROOT = Tex("jump") | Tex("talk") | Tex("think")
> SUFFIX = Tex("ed") | Tex("ing") | Tex("s") | NULL
> WORD = ROOT + SUFFIX
> WORD.parse("jumping") != [] # Does the parser return any results?
True
> WORD.parse("talker") != []
False

Figure 1: A simple English parser for twelve inflected verb forms, illustrating how concatenation and disjunction combina-
tors allow the executable definition of a parser to resemble a familiar BNF-like grammar specification. Note that in a real
grammar, we would not list every root or stem (e.g., “jump”) as a literal expression in the code; rather, we would typically
define a “lookup” parser that loads in one or more dictionary files from disk.

> ROOT = Tex/Mor/Lem("ugaandaa") + Glo/Nat("Uganda")
> SUFFIX = Tex/Mor("tti") + Glo("LOC") + Nat("in (.*)")
> WORD = ROOT + SUFFIX
> WORD.parse("ugaandaatti")
[{"breakdown":"ugaandaa-tti", "lemma":"ugaandaa", "gloss":"Uganda-LOC", "natural":"in Uganda"}]

Figure 2: A simple Oromo example parser with multiple output representations: a morphological breakdown, a lemma, a
glossed breakdown, and a more naturalistic English-like gloss.

defined as the union of the results.
By overloading + and | in this way, we can express the code
that executes as if it were the grammar that it is parsing.
That is to say, a formal representation of the grammar is also
the actual code that executes to parse this grammar; Figure
1 illustrates this for a few English verbs.

2.2. Example
The parsers described in this paper use a combination of
parser function objects (which consume input strings) and
generator function objects (parsers that trivially succeed
without consuming input, while outputting additional repre-
sentations) to convert one representation into others. Types
of representation are conceptualized in this system as “chan-
nels”, from which the parsers consume or output text repre-
sentations. For example, in Figure 2, there are five chan-
nels, an input channel Tex (text) and four output chan-
nels: Mor (morphological breakdowns), Lem (lemmas), Glo
(glossed breakdowns), and Nat (naturalistic English-like
glosses).
A textual representation (like the suffix "tti") is turned
into a parser or generator by associating it with a specific
channel: Tex(X) defines a parser that consumes X from the
Tex input channel, while Mor(X) defines a generator that
consumes no input but outputs X into the Mor output chan-
nel. Where the representations happen to be identical, as
they are in this example for the suffix "tti", this can be
abbreviated as Tex/Mor(X); this is just syntactic sugar for
Tex(X) + Mor(X).
In this Oromo example, the surface form ugaandaatti (‘in
Uganda’) is broken down and transformed by a concatena-
tion of parsers (the Tex components) and generators (the

soB is evaluated first unless the programmer specifies otherwise.
Also, what “concatenation” means depends on the type of output
representation; often, it is just a string concatenation of the output
strings with a delimiter.

Mor, Lem, Glo, and Nat components). The Tex parsers con-
sume the suffix "tti" and the root "ugaandaa" in turn;
while the Mor generators consume no input but put "tti"
and "ugaandaa" into the appropriate output channel (with
the formatting appropriate for that channel, in this case a
hyphen). The nature of concatenation is such that if any
of these components fails to produce an ⟨output,remnant⟩
pair, the whole will fail to produce any output, so the Mor-
channel generation only survives if the Tex-channel parsing
succeeds.
Meanwhile, the Glo components generate "LOC"
and "Uganda", the Lem component only generates
"ugaandaa", and the Nat components produce a naturalis-
tic gloss by generating "Uganda" and also inserting it into
a particular template ("in (.*)").
Since these parsers can return multiple outputs, the outputs
were ranked heuristically by adding penalties for generating
lemmas that were not found in any of the available dictio-
naries, for parses found in the dictionary but with unlikely
(according to an English language model) definitions, and
for parses that contain certain dispreferred morphemes.

2.3. Advantages of parser combinators
Parser combinators have several practical advantages, par-
ticularly in time-constrained situations:
Familiar grammar format The morphological gram-
mars have a familiar, Backus-Naur-like format that mirrors
the way linguists already think about grammars. Unlike
grammars defined in terms of continuation classes, these
grammars are easy to refactor as the linguists/programmers
discover more about the morphotactics of the language in
question.
For example, when one discovers that tense suffixes do not
immediately follow verb roots, but there is a mood suf-
fix that can intervene, one does not have to update every
verb root so that its continuation class is MoodSuffix rather
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than TenseSuffix; one simply has to change VerbRoot
+ TenseSuffix to VerbRoot + MoodSuffix +
TenseSuffix on one line of the grammar.
Familiar programming syntax and environment The
programming syntax and execution environment is famil-
iar Python. Boilerplate and repetitive code (e.g., a class of
morphemes all of which have a complex environmental re-
striction or cause a particular morphophonological change)
can be automated within the code itself; it is unnecessary
to have a separate transpilation or pre-processing step, as
was done in (Littell et al., 2014), to enable a new command
or syntactic sugar. Even complex functions entirely out-
side of the parsing paradigm (e.g., orthographic conversion
and normalization, dictionary lookup, etc.) can be wrapped
up as a parser object and integrated into the morphological
grammar.
Multi-output parsers It is straightforward to associate
a parser with multiple different kinds of outputs (Hutton,
1992) letting us simultaneously write parsers that target dif-
ferent representations for different NLP tasks.
Intuitive representation of morphological phenomena
Some morphological phenomena that are awkward to ex-
press as finite-state transducers are more straightforwardly
expressed in a recursive grammar, such as the kinds of tem-
platic or circumfixal morphology that requires finite-state
transducers to be extended with flag “memory” (Pretorius
and Bosch, 2003; Bower et al., 2017).
It is worth noting that there is no conceptual requirement
that an atomic parser define a string truncation like “remove
'd' from the end of a string”, although because of the con-
catenative nature of most morphology this is the most com-
mon kind of atomic parser. The relationship between the
input string and the remnant string can be any string-to-
string transduction. In the Tigrinya system (§4.1.), we de-
fined some parsers using regular expression substitutions, to
handle some particularly difficult plurals that involve both
reduplication and root-and-pattern morphology.4

Ease of extension We should emphasize here that the
above advantages are not just put forward as benefits of
a particular parsing library, but of a programming tech-
nique; one of the benefits of mastering this technique is
that, because parser combinators are themselves simple to
write from scratch, the programmer is not constrained by
the capabilities of an existing parsing library. Extending
a library—or rewriting it entirely—is often only a matter
of an hour or two, and is not a separate process from pro-
gramming the grammar itself, since both the library and the
grammar are written in the same programming language.
Nevertheless, the small parser-combinator library that we
release with these Tigrinya and Oromo grammars should
serve as a good starting point for the development of mor-
phological parsers in other languages, as it includes a num-
ber of convenience features for the particular problem do-
main, like predefined output channels for typical word rep-
resentations (e.g. morphological breakdowns and glosses),

4Note, however, that allowing parsers to execute arbitrary
transductions removes some guarantees—it is possible to define
parsers that never halt—and some possibilities for optimization.

specialized parsers for root-and-pattern morphology and
reduplication, and combinators that allow parsing either
from the left (for prefixes) and the right (for suffixes).

2.4. Disadvantages of parser combinators
On the other hand, there are some drawbacks compared to
finite-state systems:
Efficiency After compilation, a finite-state transducer ex-
ecutes in linear time, while parser combinators result in a
recursive descent parser with potentially exponential time
complexity. For the most part, morphological grammars do
not have the kind of complexity (in particular left-recursion)
that leads to worst-case performance, but nonetheless it is
important to note that the responsibility for parser perfor-
mance here falls back onto the programmer, rather than be-
ing handled in the compiler, which is a clear benefit to the
finite-state paradigm.5

Multi-representation ambiguity While the ability of our
parser combinators to define relationships between multi-
ple levels of representation (e.g. text, breakdown, gloss,
etc.) was practically useful in a multi-task setting like
LoReHLT17, the ambiguity in each representation is multi-
plicative with others. For example, if a particular word has
five possible parses in one representation, three in another,
and two in another, the parser could return as many as thirty
representations. This can pose an efficiency problem, since
parser combinators do not have the inherent efficiency of
finite-state systems when faced with parse ambiguity.
This is a downside of the particular multi-representation
system that we engineered here, but more broadly the arbi-
trary complexity of outputs in a parser-combinator system
(which we leveraged here to allow multiple output repre-
sentations) present another possible source of inefficiency
that is not a concern in two-level finite-state systems.

3. LoReHLT17
Our parsers were constructed in the context of the 2017 Low
Resource Human Language Technologies (LoReHLT) eval-
uation6. LoReHLT takes the form of a “surprise language”
exercise (Oard, 2003), in which competitors are asked to
produce machine translation, entity detection and linking
(EDL), humanitarian need detection, and sentiment detec-
tion in one or more low-resource languages within a series
of timed checkpoints, without knowing ahead of time what
the languages will be. LoReHLT17 had its first checkpoint
after 3 days and two additional checkpoints after 10 and
17 days; future LoReHLT evaluations will have their first
checkpoint after 24 hours. In this timeframe, any hand-
written rule-based systemsmust prioritize programmer time
along with runtime efficiency: they must be the kind of sys-
tems that can be written in a day or two.
When a team writing morphological analyzers is asked to
support more than one task such as MT or NER/EDL, it is
not unusual for the consumers (which might include both

5In the time-constrained environment of LoReHLT17, how-
ever, the training and test corpora were sufficiently small that run-
time efficiency was not the primary bottleneck; programmer time
was a more pressing concern, especially during the earliest stages.

6www.nist.gov/itl/iad/mig/lorehlt17-evaluations
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> NTexMor = lambda x : Tex/Mor(x) | Truncate("t", Tex) + Tex("n") + Tex/Mor(x)
> ROOT = Tex/Mor/Lem("nyaat") + Glo/Nat("eat")
> SUFFIX = NTexMor("na") + Glo("1PL.PRS") + Nat("we (.*)")
> WORD = ROOT + SUFFIX
> WORD.parse("nyaanna")
[{"breakdown":"nyaat-na", "lemma":"nyaat", "gloss":"eat-1PL.PRS", "natural":"we eat"}]

Figure 3: An Oromo example parser illustrating the phonological process that t → n | _n. The NTexMor line encodes this
phonological rule, and writing a morpheme as an argument to NTexMor, as with NTexMor("na"), indicates that the rule
applies at boundaries involving that morpheme.

NLP systems and human annotators) to request different
representations of the morphology. Does the team have to
write three or four different parsers or reparsers to parse
outputs into different formats? Our approachmakes this un-
necessary, providing a good balance between programmer
time and output flexibility.

4. System description
This year’s LoReHLT task involved Tigrinya and Oromo,
two languages spoken in the Horn of Africa. In this section
we describe the parser-combinator systems that we created
for these languages. These two case studies illustrate some
of the benefits of the parser-combinator framework in the
context of a time-sensitive task.

4.1. Tigrinya
The Tigrinya language is a member of the Semitic branch of
the Afroasiatic family. It is spoken by over 7million people,
mainly in Ethiopia and Eritrea. 7 Like many other Semitic
languages, Tigrinya has a templatic morphology system,
meaning that the surface form of a word’s root morpheme
differs in different morphological contexts. For example,
the lexical entry for ‘bee’ is just the consonants /nhb/, and
the vowels appearing between these consonants differ for
different inflections of this root, such as the singular form
[nɨhɨbi] and the plural form [ʔanahɨb]. Such root-template
patterns are nonconcatenative, meaning that they cannot be
expressed simply as the concatenation of morphemes. Be-
cause finite-state transducers are inherently concatenative
mechanisms, nonconcatenative processes pose a special
challenge to finite-state methods. Below we will describe
how our system overcomes this challenge as an example of
how our parser combinator framework solves some issues
inherent in using finite-state methods.
Tigrinya is written in the Ge’ez script which is a form of
alphasyllabary (abugida). We begin by converting the script
to IPA using Epitran8, a Python library for transliterating
orthographic text as IPA (International Phonetic Alphabet).
We used two Epitran mappings for Tigrinya. The first is
Epitran’s tir-Ethi mapping, which is a faithful one-to-
one transliteration wherein each Ethiopic symbol is realized
as a consonant-vowel sequence (e.g., ትግርኛ→ tɨɡɨrɨɲa).
There is, however, an ambiguity in one set of letters (the
“sixth series”), which represents both consonants followed

7According to Ethnologue: https://www.ethnologue.
com/language/tir.

8github.com/dmort27/epitran

by /ɨ/ (e.g. /gɨ/) and consonants that are not followed by
any vowel (e.g. /g/). In this first Epitran mapping, all such
letters are transliterated as Cɨ unless they are at the end of
the word, in which case they are transliterated as just C.
The second mapping is tir-Ethi-pp, a ‘precision-
phonemic’ IPA representation (e.g.,ትግርኛ→ tɨɡrɨɲa). In
this system, sixth series letters are realized as consonants
and /ɨ/ is inserted where demanded by the syllable structure,
yielding a phonemic representation that is closer to Tigrinya
speech and more suitable for some tasks downstream from
our morphological analyzer, including speech recognition.
Keeping to the tir-Ethi representation system-internally
enabled us to simplify the grammar development process
where the success of morphological analysis is defined on
the level of orthographic, rather than phonetic, tokens, with
the exception of the word-final position where the final
vowel, present in the script, is omitted.
Grammar development centered around several different
linguistic aspects. Concatenative morphology was the ini-
tial focus leading up to checkpoint 1. Plural suffixes, nega-
tive prefixes and pronominal clitics on verbs were handled,
while minimal attention was paid to morpho-phonemic pro-
cesses. At the same time, a frequency list of Tigrinya word
types was compiled from a corpus, which served as (1) a
type list to prioritize, and (2) in the absence of gold data, a
basis for recall-oriented performance evaluation and moni-
toring.
Tightening up morpho-phonemic rules for better handling
of allomorphs and treatment of templatic verbal morphol-
ogy became the main goals for the second checkpoint.
However, documentation on numerous templates was in-
complete at best. Given this lack of information and time
pressure, we decided to look to existing solutions. Gasser’s
HornMorpho (Gasser, 2011) is a finite-state transducer
(FST) capable of analyzing Tigrinya verbs (but not nouns)
with a reported 96% accuracy. We compiled a list of the
5,700 most frequent verb types, processed them through
HornMorpho, re-parsed the output to conform to our sys-
tem’s output, and made the cached analyses available to the
lookup routine.
Before the final checkpoint, we concentrated on the so-
called “internal plurals” − plural nouns built from conso-
nantal roots and templates. They were handled via sev-
eral regular-expression-based root patterns, 8 sets in total,
extending the system’s coverage to such plural nouns as
ኣናህብ ʔanahɨb ‘bees’, whose singular form isንህቢ nɨhɨbi
‘bee’. To handle root-and-template patterns, we expressed
these templates as Python regular expressions, and wrapped
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each into a parser function; this way non-concatenative
morphology and concatenative morphology could be com-
bined.
The class of nouns for the ‘bee/bees’ example above used
the following template, which operates on a triplet of the
pre-defined consonant class C, which are integrated into the
specified positions into a regular expression

pat2 = 'ʔa(%s)a(%s)ɨ(%s)' % (C, C, C)

Additionally, the parser’s lexicon base was dramatically ex-
panded to include a gazetteer, hand-edited entries, and mul-
tiple dictionaries sourced from the web and known multi-
lingual resources.
As stated earlier, coverage of the morphological system as
measured against a Tigrinya corpus was the only metric of
performance available to us, and each update to the system
was made sure to result in an increase in recall. At the same
time, we closely monitored the system’s performance on the
annotation front, with annotators reporting in anomalies or
undesirable parser behaviors.
Of particular importance was achieving a balance between
coverage and overanalysis. An example would be place
names such asኡጋንዳ ʔuɡanɨda ‘Uganda’: unless they are
present in the lexicon, such proper nouns will be overan-
alyzed, with the final ‘a’ separated out as the 3rd person
singular feminine possessive marker. With an abundance
of country and place names ending in ‘a’, such overanalysis
would have a negative impact on downstream applications
such as entity detection and linking. We addressed this is-
sue by employing the Cost channel of the parser combina-
tor library, which allows the programmer to add an arbitrary
penalty anywhere in the grammar. The total penalty associ-
ated with a particular parse output is then taken into account
by the heuristic disambiguator.
In the case of ‘a’, the suffixation rule was penalized with
a sufficient amount of cost to make sure that the ana-
lyzed root+’a’ form gets outranked by the whole, unana-
lyzed word, unless the remnant root is found in the lexicon.
Many similar affixation rules were penalized with varying
amounts of cost, which were manually determined and as-
signed with the aim to engineer desired ranking behaviors
among multiple analysis candidates.

4.2. Oromo
Oromo is a language in the Cushitic branch of the Afroasi-
atic language family. It is spoken by nearly 25 million
people in Ethiopia. 9 Unlike Tigrinya, Oromo does not
possess templatic morphology. Instead, its morphological
processes are generally concatenative, which means that
they involve only the concatenation of stems and affixes
(though it also has several phonological changes that oc-
cur at morpheme boundaries, meaning that its morphologi-
cal processes do not consist of plain concatenation). These
affixes specify many different features including tense and
aspect (for verbs) or gender and number (for nouns).
Because Tigrinya morphology poses certain challenges to
traditional finite-state methods, we used the Tigrinya sec-
tion to showcase a theoretical advantage of our system in

9According to the 2007 Ethiopian census, available at http:
//microdata.worldbank.org/index.php/catalog/2747.

terms of its expressive capabilities. Oromo morphology, on
the other hand, does not pose such theoretical challenges,
so we will instead use this section to illustrate the practical
benefits of our parser combinator framework. That is, even
for a case (such as Oromo) where the increased expressive
capabilities of parser combinators are not a benefit, we show
how the ease of implementation of parser combinators can
make them a good choice for implementing morphological
parsing under time constraints.
Oromo uses the Roman script, which is sufficiently close to
a phonological representation of the language that we did
not have to transliterate Oromo into IPA as was necessary
for Tigrinya. For checkpoint 1, we focused mainly on nom-
inal morphology because nouns are the most crucial part
of speech for some of the downstream tasks such as NER-
EDL. For example, Figure 2 identifies the lemma ugaandaa
within the word ugaandaatti, informing the downstream
NER system that the two words refer to the same named
entity. For the next checkpoint, we added handling of other
parts of speech to the parser, with a focus on verbs (since
most multi-morpheme words in Oromo are either nouns or
verbs). For the final version of the parser included in the
submission to checkpoint 3, we polished the existing func-
tionalities of the parser, increased its lexical coverage, and
incorporated orthographic normalization.
As stated above, one of the major advantages of using
parser-combinators is in saving programmer time. The con-
struction of the Oromo grammar provides case studies in
how parser combinators can save programmer time through
three of their key properties: integration with Python, mul-
tiple channels, and streamlined handling of phonological
transformations.

Integrationwith Python: It is easy to incorporate Python
functions and objects into the parsing pipeline. We
used a custom Oromo orthography normalizer, written in
Python, to handle considerable variability in Oromo orthog-
raphy such as multiple different spellings for “Ethiopia”
(⟨Itoophiya⟩, ⟨Itoophiyaa⟩, ⟨Itophiyaa⟩, etc.). Also, as our
set of lexical resources for Oromo grew throughout the
project, we added dictionaries including one that was dy-
namically updated as human annotators annotated text in
Oromo. Here, the Python environment made it easy to read
in each dictionary and compile it into a Python dictionary
for lexical lookup, whereas without the Python IO tools
some more tedious method for adding each new word/defi-
nition pair to the parsing program would have been neces-
sary.

Multiple channels: Figure 2 shows a simple chunk of
Oromo grammar written using parser-combinators. This
grammar has four different channels covering morphologi-
cal breakdown, lemma, gloss, and natural gloss. In a stan-
dard finite-state parser, each one of these four channels
would have had to be implemented by its own separate
finite-state transducer, but with parser-combinators all four
can coexist in the same file. Such consolidation is helpful
in two ways: First, it saves the programmer time during the
initial creation of the grammar. Second, when making fu-
ture updates to the grammar, the consolidation means that
the programmer only has to update one program rather than
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Language Measurement Original word Lemma
Tigrinya typed_mention_ceaf_plus F1 0.478 0.521
Oromo typed_mention_ceaf_plus F1 0.355 0.376

Table 1: Results on entity detection and linking, before and after adding lemmatization.

Language Measurement Original word Lemma
Tigrinya SFType F1 0.325 0.333
Tigrinya SFType occurrence-weighted F1 0.422 0.471
Oromo SFType F1 0.047 0.086
Oromo SFType occurrence-weighted F1 0.051 0.124

Table 2: Results on Situation Frame detection, before and after adding lemmatization.

four, possibly saving the effort of version control across
multiple files. Since our grammars were continuously being
updated, streamlining the updating process was very impor-
tant.

Streamlined handling of phonology: In traditional
FSTs, phonological transformations are typically handled
with two separate transducers, one that builds upwhatmight
be termed an underlying representation of a word (such as
inlogical) and another that transforms this underlying rep-
resentation into a surface form (such as illogical). This is
computationally elegant, but can be difficult to engineer,
since it separates the phonological effects of morphemes in
code from the specification of the morphemes that trigger
those effects, necessitating workarounds (e.g. special, non-
pronounced characters) to pass information between the
transducers. For example, many phonological transforma-
tions only occur at morpheme boundaries, so a finite-state
grammar writer has to keep track of morpheme boundaries
to make sure that inlogical turns to illogical but only does
not turn into olly. Phonological transformations can also be
sensitive to exactly which morphemes are being combined,
so it might be necessary to keep track not just of where the
morpheme boundaries are but also what sort of morpheme
boundaries they are so that, for example, inlogical turns to
illogical but unlikely does not turn into ullikely.
For parser-combinators, however, a phonological rewrite
rule can be represented simply as a parser and treated like
any other parser in the BNF-style rules of the grammar. This
removes the need for a separate finite-state transducer to
handle the phonology and also removes the need to keep
track of different types of morpheme boundaries.10 Since
this approach require no single lexical representation in-
termediate between orthographic form and morphological
form, as is typically the case with FST morphological an-
alyzers, every juncture can be handled on a morpheme-by-
morpheme basis. This necessarily results in some loss of
generality but is actually a boon for maintainability. Figure
3 shows one Oromo phonological rewrite rule implemented
with parser-combinators.

10On the other hand, since these rules are themselves complex
parsers, they increase the complexity of the grammar and includ-
ing many of them can affect the runtime performance of the parser.

5. Experiments and results
We report here the results of adding the Tigrinya and Oromo
parsers (specifically, their lemmatization function) to our
LoReHLT17 entity detection and linking (§5.1.) and hu-
manitarian need assessment (§5.2.) systems.
It should be noted that in all tasks the scores for Oromo are
substantially lower than the scores for Tigrinya; all partic-
ipants in LoReHLT17 encountered this effect, due largely
to the relatively small parallel corpora and lexicons avail-
able in Oromo and the large amount of spelling variation in
Oromo text.

5.1. Entity Detection and Linking
Entity detection and linking (EDL) for LoReHLT17 was
concerned with the recognition of named entities (a sub-
set of proper nouns) in text, their categorization as
one of four entity types (person, organization, loca-
tion, geopolitical entity), and their linking to an external
knowledge-base of entities (compiled from several existing
databases). The primary metric for EDL in LoReHLT17
was typed_mention_ceaf_plus, an F1 measure of detecting
the entity and getting both the category and the link correct.
We used word-to-word translation with bilingual lexicons
for linking entities to the knowledge-base (Pan et al., 2017).
Adding lemmatization improved translation of the entities
and resulted in F1 point gain for both Tigrinya and Oromo,
as seen in Table 1.

5.2. Situation Frame detection
Situation frames (SFs) are a structured representation of
events intended to “enable information from many differ-
ent data streams to be aggregated into a comprehensive, ac-
tionable understanding of the basic facts needed to mount
a response to an emerging situation” (Strassel et al., 2017).
Situation frame detection involves detecting eight human-
itarian requirements (e.g. water, food, medicine, evacua-
tion) and three background issues (e.g. terrorism or civil
unrest), linking these needs and issues to places, and deter-
mining whether or not this is a current, urgent, unrelieved
need.
The basic evaluationmetric for SF detection in LoReHLT17
is SFType11—whether the frame identify the correct

11Additional metrics, such as SFType+Location, evaluate
whether both the type and other fields of the frame are correct.
These are bounded from above by SFType, and our improvement
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needs and issues—measured by mean F1 and occurrence-
weighted F1, which differ according to whether or not a
situation frame is given greater weight when multiple an-
notators have annotated it. (That is to say, if only one an-
notator detects an evacuation need in a document, it counts
less towards occurrence-weighted F1 than if all annotators
detected it.)
Table 2 shows the results of adding lemmatization to our
keyword-based situation frame detection system, compared
to a system that attempts to identify keywords without
lemmatization. Lemmatization adds a ~.01 F1 point im-
provement (~.05 when weighted for occurrence) to the
Tigrinya system, and roughly doubles Oromo performance
with a ~.04 F1 point improvement (~.07 when weighted for
occurrence).

6. Future research
While this paper has presented parser combinators as if
they were in opposition to finite-state methods, the two
paradigms are compatible; the ability of parser combina-
tors to incorporate arbitrary functions into their parsing
paradigm means that there are no conceptual reasons why
some parts of the grammar could not be parsed in a finite-
state manner and others in a recursive-descent manner.
We are therefore looking into the possibility of integrating
Foma FSTs (Hulden, 2009) as parser functions, and/or com-
piling “safe” subgraphs of the grammar into finite-state sys-
tems, to take advantage of the linear time execution where
it is possible.
The other benefit of finite-state parsers is that they can be
run “backwards” (that is, generating rather than parsing).
Incorporating this ability into a parser-combinator frame-
work would be valuable both for pure parser-combinator
systems and for the hybrid systems proposed above. The
small parser combinator library released with these parsers
already supports this to a limited degree: as seen in the
examples in §2., the syntax for expressing a parser (like
Tex("tti")) and a generator (like Mor("tti")) is iden-
tical, and a subset of parsers/generator functions have im-
plementations such that they can either parse or generate
depending on what channel is considered to be the input. A
parser that consists solely of these functions can parse and
generate in any direction (that is, between any two represen-
tations that the parser supports); however, both implemen-
tations described here use parser functions that do not yet
have corresponding generators. We intend, in further devel-
opment, to augment the library such that all parsers have a
corresponding generator and thus any grammar written with
this library can parse/generate between all of its representa-
tions.

7. Conclusion
By utilizing a declarative programming paradigm that al-
lowed our linguist-programmers to use a familiar grammar
formalism within a familiar general-purpose programming
language, we created Tigrinya and Oromo parsers within

on these metrics by adding lemmatization are roughly proportional
to the SFType improvements shown in Table 2.

a limited time-frame, that nonetheless led to consistent im-
provements in entity detection and linking and humanitarian
need detection.
These parsers allowed us to rapidly capture some types
of morphology (in particular root-and-pattern morphology)
that, although possible within finite-state systems, can be
difficult to engineer. In future work, we plan to generalize
these specialty parsers into a general framework for parsing
morphology-specific phenomena. We also intend to make
wrappers that allow interoperation with finite-state systems,
so that the efficiency of finite-state techniques can be com-
bined with the ease of engineering of parser-combinator
techniques.
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