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Abstract
We present BioRead, a new publicly available cloze-style biomedical machine reading comprehension (MRC) dataset with approxi-
mately 16.4 million passage-question instances. BioRead was constructed in the same way as the widely used Children’s Book Test and
its extension BookTest, but using biomedical journal articles and employing MetaMap to identify UMLS concepts. BioRead is one of
the largest MRC datasets, and currently the largest one in the biomedical domain. We also provide a subset of BioRead, BioReadLite,
for research groups with fewer computational resources. We re-implemented and tested on BioReadLite two well-known MRC methods,
AS Reader and AOA Reader, along with four baselines, as a first step towards a BioRead (and BioReadLite) leaderboard. AOA Reader
is currently the best method on BioReadLite, with 51.19% test accuracy. Both AOA Reader and AS Reader outperform the baselines by
a wide margin on the test subset of BioReadLite. Our re-implementations of the two MRC methods are also publicly available.

Keywords: BioRead, biomedical, dataset, corpus, evaluation, reading comprehension, question answering, deep learning.

1. Introduction

Machine Reading Comprehension (MRC) systems (Her-
mann et al., 2015) are given a passage (e.g., from a news ar-
ticle or book) and they are required to answer a question by
considering the information of the passage. Manually con-
structing MRC datasets is very labour-intensive and leads to
datasets that may not be large enough to train data-hungry
deep learning methods (Goodfellow et al., 2016; Goldberg,
2017). For example, the BioASQ dataset (Tsatsaronis et al.,
2015), which was constructed by biomedical experts, cur-
rently contains only two thousand questions approximately.
The largest manually curated MRC dataset we are aware of,
SQuAD (Rajpurkar et al., 2016), which was crowdsourced,
comprises approximately 100k passage-question instances.
Larger datasets can be constructed automatically by con-
sidering only ‘cloze-style’ questions, which require filling
in a missing word or phrase in a given sentence about the
passage (e.g., “ has been implicated in the pathogenesis
of PD.”). For example, CBTest (Hill et al., 2015) contains
passages from children’s books; each cloze-style question
is a sentence that follows the corresponding passage in its
book, with a randomly selected common noun, named en-
tity, verb, or preposition of the sentence removed and turned
into a slot to be filled in. CBTest contains approximately
687k passage-question instances. It was more recently ex-
panded to BookTest (Bajgar et al., 2016), which comprises
approximately 14 million passage-question instances, by
applying the same methodology to a much larger collec-
tion of books. The CNN and Daily Mail datasets (Hermann
et al., 2015) were produced in a similar manner. They com-
prise news articles and cloze-style questions constructed by
removing words from sentences summarising the articles;
they contain approx. 380k and 880k instances, respectively.
Apart from constituting a testbed for natural language un-
derstanding algorithms, MRC is also useful as a component
of larger systems. We are interested in a setting where an

Information Retrieval engine retrieves document passages
that may be relevant to a question, and then MRC is used
to identify exact answers (e.g., named entities) in the pas-
sages (Sultan et al., 2016; Chen et al., 2017). We focus
on the biomedical domain, where this setting is included in
the BioASQ challenges (Tsatsaronis et al., 2015). There is
currently, however, no sufficiently large publicly available
biomedical MRC dataset to train deep learning models. We,
therefore, constructed and provide a new biomedical MRC
dataset, called BioRead, with approx. 16.4 million cloze-
style questions, each paired to a passage and candidate an-
swers. BioRead was constructed in the same manner as
CBTest and BookTest, using randomly selected biomedical
articles from PubMed Central.1 To the best of our knowl-
edge, it is currently one of the largest MRC datasets, and
the largest one in the biomedical domain. We also pro-
vide a subset of BioRead, called BioReadLite, with 900k
instances, for groups with fewer computational resources.
We re-implemented (in PyTorch2), trained, and tested on
BioReadLite two well-known MRC methods, AS Reader
(Kadlec et al., 2016) and AOA Reader (Cui et al., 2017).
We report their performance, along with the performance
of four simpler baselines, as a first step towards a BioRead
(and BioReadLite) leaderboard. We open-source the re-
implementations to make it easier to replicate our experi-
ments and build upon previous MRC methods.3

Automatically generated cloze-style MRC datasets are of
lower quality compared to manually constructed ones. For
example, Chen et al. (2016) reported that the CNN and
Daily Mail datasets contain both questions that are too easy

1Consult https://www.ncbi.nlm.nih.gov/pmc/.
2See http://pytorch.org/.
3BioRead and the re-implementations will be made available

at http://nlp.cs.aueb.gr/software.html. The orig-
inal implementation of AS Reader (in Theano) is available at
https://github.com/rkadlec/asreader/. The origi-
nal implementation of AOA Reader does not appear to be online.
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BioRead BioReadLite
Training Development Test Total Training Development Test Total

Instances ∼15,1M ∼600,7k ∼652,9k ∼16.4M 800k 50k 50k 900k
Avg candidates 25.9 27.3 26.3 26.0 18.89 20.8 19.4 19.0
Max candidates 40 40 40 40 30 30 30 30
Min candidates 2 2 2 2 2 2 2 2
Avg context len. 456.9 464.5 455.9 457.1 317.2 320.8 298.9 316.4
Max context len. 999 999 999 999 400 400 400 400
Min context len. 26 56 48 26 30 30 30 30
Avg question len. 33.4 35.5 34.8 33.5 16.8 16.8 16.8 16.8
Max question len. 300 300 300 300 25 25 25 25
Min question len. 5 5 5 5 5 5 5 5

Table 1: Statistics of BioRead and BioReadLite. Lengths in tokens.

to answer using simple hand-crafted features (e.g., sim-
ple paraphrases of passage sentences) and questions that
even people cannot answer. Nevertheless, BioRead (and
BioReadLite) is the only sufficiently large biomedical MRC
dataset to train deep learning methods on. In future work,
we plan to investigate if systems trained (or pre-trained) on
BioRead could also cope (possibly after further training)
with real biomedical questions, like those of BioASQ.

2. The BioRead Dataset
To construct BioRead, we randomly selected approx. 90.6k
from the approx. 3.4M articles (from approx. 7k biomedi-
cal journals) of the Open Access Subset of PubMed Central
(PMC).4 We then applied MetaMap (Aronson and Lang,
2010) to each one of the selected articles.5 MetaMap recog-
nises words or phrases referring to concepts of the Unified
Medical Language System (UMLS).6 As an example, the
words and phrases shown in red or green in the ‘context’ of
the left column of Table 2 were recognised as UMLS con-
cepts. MetaMap also provides the ‘preferred name’ of each
concept. For example, ‘carcinoma of the lung’, ‘lung can-
cer’, and ‘malignant tumor of the lung’ all refer to the same
concept; the preferred name is the first one.
To reduce the size of the vocabulary and avoid confusing
MRC methods by synonyms, we replaced each concept that
MetaMap recognized by its preferred name. Borrowing the
notation of the CNN and Daily Mail datasets (Hermann
et al., 2015), each preferred name (possibly multi-token)
was then mapped to a pseudo-token of the form @entityID
(Fig. 2, right), where ID is an integer identifier that is (a)
unique within the particular passage-question instance (i.e.,
the same ID will generally denote a different concept in
another instance), or (b) unique in the entire dataset (the
same ID will always denote the same concept). Hermann
et al. (2015) ensure that expressions referring to the same
entity get the same ID within the same passage-question
instance only, which corresponds to option (a). This does
not allow systems to learn information about an entity from
multiple passages of the training set. By contrast, in op-
tion (b), where each entity (concept) has the same ID in the

4Consult https://www.ncbi.nlm.nih.gov/pmc/
tools/openftlist/. The articles were available in plain
text and HTML format; we used the former.

5See https://metamap.nlm.nih.gov/.
6See https://www.nlm.nih.gov/research/umls.

entire dataset, an MRC method may, at least in principle,
learn properties of an entity from the passages of multiple
training instances. We adopt Hermann et al.’s option (a) in
most of our experiments, but we also train the best method
with option (b), which improves performance.
As in CBTest and BookTest (Hill et al., 2015; Bajgar et
al., 2016), having replaced the recognized entities (con-
cepts) by @entityID pseudo-tokens, we applied a sliding
window of 21 sentences to the texts of the approx. 90.6k
articles.7 For each position of the window, we examined
each @entityID of the 21st sentence. If an @entityID of
the 21st sentence was also present (with the same ID) any-
where in the first 20 sentences, that @entityID was replaced
by a @placeholder pseudo-token in the 21st sentence, in-
dicating a slot to be filled in by one of the @entityID to-
kens of the first 20 sentences; the 21st sentence became a
cloze-style question (Fig. 2, right), the first 20 sentences
became the ‘context’ (passage) of the question, the @enti-
tyID tokens of the context became the candidate answers,
and the particular @entityID that was turned into @place-
holder became the correct answer. If multiple @entityID
tokens of the 21st sentence were present in the first 20 sen-
tences, multiple context-question-candidates-answer tuples
were obtained; hence, strictly speaking each instance of
BioRead is a context-question-candidates-answer tuple, not
just a context and question pair. If no @entityID tokens of
the 21st sentence were present in the first 20 sentences, no
instance was produced from that position of the window.
To lower the computational resources required to process
the dataset, we also set a maximum context length of 999
tokens, a maximum question length of 300 tokens, and
a maximum of 40 candidate answers per instance. We
discarded instances exceeding these thresholds, obtaining
approx. 16.4M instances from the approx. 90.6k articles.
BioRead contains these instances, split into training, devel-
opment, and test sets (Table 1). We also provide a sub-
set of BioRead, called BioReadLite, for researchers with
fewer computational resources. BioReadLite was created
by setting the maximum context length to 400 tokens, the
maximum question length to 25 tokens, and the maximum
number of candidate answers to 30. The vocabulary of each
dataset includes all the words (and pseudo-tokens) that oc-
curred at least 5 times in the corresponding training subset,

7We used NLTK’s sentence splitter (http://www.nltk.
org/) and a basic white-space tokeniser.
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Context: salsolinol (100mg/kg i.p.)
or l-dopa (100mg/kg i.p.) was acutely

administered (100mg/kg i.p.). in the combined treatment
group, l-dopa (100mg/kg i.p.) was administered
once 15min after salsolinol administration. the

rats were decapitated 2h after injection.
the concentration of dopamine and its

metabolites were measured using hplc . the
results are expressed as the means sem (n=710 animals
per group). the data were analyzed via two-way anova

followed by duncans test. statistical significance:
[...]

l-dopa (f[1,27]=26.9, p<0.01) on the level of
3-mt (table1). however, neither treatment with

salsolinol (f[1,27]=0.09, n.s.) nor the
interaction between salsolinol and l-dopa

(f[1,27]=0.03, n.s.) was significant (table1).
Question: the duncans post hoc test

showed that l-dopa induced an increase
in the concentration of 3-mt (by approximately

300%, p<0.01) but that salsolinol did not
influence this effect of l-dopa (table1).

Candidates: injection, control group, treatment,
concentration, substantia nigra, l-dopa, rats, dopamine,

dopac, hplc, salsolinol, analysis
Answer: l-dopa

Context: @entity10 (100mg/kg i.p.)
or @entity5 (100mg/kg i.p.) was acutely

administered (100mg/kg i.p.). in the combined treatment
group, @entity5 (100mg/kg i.p.) was administered

once 15min after @entity10 administration. the
@entity6 were decapitated 2h after @entity0

the @entity3 of @entity7 and its
metabolites were measured using @entity9 the

results are expressed as the means sem (n=710 animals
per group). the data were analyzed via two-way anova

followed by duncans test. statistical significance:
[...]

@entity5 (f[1,27]=26.9, p<0.01) on the level of
3-mt (table1). however, neither @entity2 with

@entity10 (f[1,27]=0.09, n.s.) nor the
interaction between @entity10 and @entity5
(f[1,27]=0.03, n.s.) was significant (table1).

Question: the duncans post hoc test
showed that @placeholder induced an increase

in the @entity3 of 3-mt (by approximately
300%, p<0.01) but that @entity10 did not
influence this effect of @entity5 (table1).

Candidates: @entity0, @entity1, @entity2,
@entity3, @entity4, @entity5, @entity6, @entity7,

@entity8, @entity9, @entity10, @entity11
Answer: @entity5

Table 2: An example instance of BioRead, before (left) and after (right) replacing recognized UMLS concepts by pseudo-
tokens. Red words and phrases are wrong candidate answers. The correct answer is shown in green and underlined.

after replacing all digits with ‘D’ (e.g., ‘type-3’ becomes
‘type-D’ ). The resulting vocabulary sizes of BioRead and
BioReadLite are approx. 3.9M and 597k, respectively. Out-
of-vocabulary words have been replaced by ‘UNK’.
By replacing (possibly multi-token) concept names with
@entityID tokens, we allow MRC methods that can only
select a single token from the passage (the two methods we
re-implemented belong in this category) to cope with cases
where the correct answer is actually multi-token. Further-
more, by replacing concept names with @entityID, we do
not let MRC systems look up the concepts in external re-
sources (e.g., biomedical ontologies), forcing them to base
their responses on the passages of the dataset. The use of
MetaMap, however, also adds noise, since MetaMap is not
entirely accurate. For example, in Fig. 2 (left), it failed to
recognise ‘metabolites’ as a biomedical concept.8 Similar
noise was introduced in CBTest and BookTest by the named
entity recognisers that were used during their construction.

3. Re-implemented Methods and Baselines
We re-implemented and experimented with AS Reader
(Kadlec et al., 2016), because it is one of the simplest and
most well-known deep learning MRC methods. It has also
been shown (Bajgar et al., 2016) that increasing the size
of the training set of AS Reader (using BookTest instead
of CBTest) leads to much larger performance gains than
training more complex MRC methods, like AOA Reader

8We configured MetaMap for high precision, by setting its
minimum score of recognised concepts to 10.

(Cui et al., 2017) and EpiReader (Trischler et al., 2016), on
the original training set (CBTest). We also reimplemented
and experimented with AOA Reader (Cui et al., 2017), an
extension of AS Reader that uses a more complex atten-
tion mechanism, because it is one of the best performing
methods on CBTest (Bajgar et al., 2016). We make both
re-implementations publicly available, as already noted.

AS Reader (Kadlec et al., 2016) uses a bidirectional recur-
rent neural network (biRNN) (Schuster and Paliwal, 1997;
Seo et al., 2016) with GRU units (Cho et al., 2014) to pro-
cess the passage (context) and another one to process the
question. The states of the first biRNN (the concatenated
states of the two directions, for each token position) are
used as context-sensitive embeddings of the passage tokens,
whereas the last states of the second biRNN (the concate-
nated last states of the two directions) represent the ques-
tion. The dot product between the question representation
and the context-sensitive embedding of each passage token
is then computed, and a softmax is applied to the dot prod-
ucts to turn them into attention scores from 0 to 1. The can-
didate answers can only be single tokens of the passage. If
a candidate answer occurs multiple times in the passage, its
attention scores are summed. Finally, the candidate answer
with the largest (summed) attention score is selected.
AOA Reader (Cui et al., 2017) uses a biRNN to create
context-sensitive embeddings for each passage token, as in
AS Reader. Another biRNN processes the question, but in-
stead of keeping only the (concatenated) last states of the
two directions as the question representation, all the states
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of the question biRNN (the concatenated states from both
directions, for each question token position) are kept as
context-sensitive embeddings of the question tokens. The
dot product between each context-sensitive embedding of
the passage and each context-sensitive embedding of the
question is then computed, leading to a matrix M = C×Q
of dot products, where C and Q are the lengths of the pas-
sage (context) and question, respectively, in tokens. Intu-
itively, each element mi,j of M shows how relevant token
i of the passage is to token j of the question. The i-th row
of M contains Q scores, showing how relevant each token
of the question is, from the viewpoint of the i-th token of
the passage. The rows of M are averaged (after applying
a softmax to each row first) to obtain a single row-vector
q with Q scores that shows how relevant each token of the
question is with respect to all the tokens of the passage.
Similarly, the j-th column of M contains C scores showing
how relevant each token of the passage is, from the view-
point of the j-th token of the question. The matrix-vector
multiplication M ′qT , where M ′ is the original M with a
softmax applied to each column, produces C scores that
show how important each passage token is from the view-
point of the entire question, as captured by q. A softmax is
applied to the C scores, to turn them into attention scores
from 0 to 1. As in AS Reader, the candidate answers can
only be single tokens of the passage. If a candidate answer
occurs multiple times in the passage, its attention scores
are summed. Finally, the candidate answer with the largest
(summed) attention score is selected.
Baselines: The first baseline, called BASE1, returns the
candidate answer (@entityID) that occurs most frequently
in the context (passage), on the grounds that this candidate
answer is more likely to have also occurred in the ques-
tion (a sentence that follows the passage) and, hence, more
likely to have been converted to @placeholder. The second
and third baselines, BASE2 and BASE3, return the candi-
date answer that occurs first or last in the context, respec-
tively. The last candidate answer is arguably more likely to
be repeated in the question and, hence, more likely to have
been converted to @placeholder, whereas the first candi-
date is the least likely to be repeated in that sense. We also
suspected that the biRNN encoder of the passage of AS
Reader and AOA Reader would tend to ‘remember’ more
the last (in the forward RNN) and the first (in the backwards
RNN) tokens (and candidate answers) of the passage, in an
extreme case behaving like BASE2 and BASE3.
In the fourth baseline, BASE4, we first extract all the token
n-grams (n = 2) of the question that contain the @place-
holder.9 For each candidate answer (@entityID), we then
replace the @placeholder in all the extracted n-grams by
the particular candidate answer, and count the total number
of occurrences of the resulting n-grams in the context. The
candidate answer with the largest total number of n-gram
occurrences is returned as the answer.
Human performance: To get a rough estimate of how eas-
ily humans can answer the questions of BioRead, we ran-
domly selected 30 instances from BioRead’s test subset and

9We experimented with 2 ≤ n ≤ 6, and selected n = 2, which
led to the best results on the development set of BioReadLite.

gave them to three human annotators (the first two authors
and a colleague), who had no biomedical background. The
annotators were shown the context and question of each in-
stance (as in Fig. 2, right) in a user interface that displayed
@entityIDs as hyperlinks, and they were asked to select
(click on) the correct candidate answer (@entityID). When
the annotators felt they were clueless (or very uncertain)
about the correct answer, they could indicate this by click-
ing on a button, but they were instructed to select an an-
swer when they felt it was probably the correct one, even if
they were not entirely sure. The mean accuracy of the three
annotators was 68.01% (77.27%, 65.22%, 61.54% per an-
notator), counting only instances they answered (78.89%
on average, 73.33%, 76.67%, 86.67% per annotator). The
mean pairwise inter-annotator agreement, measured as Co-
hen’s Kappa (Cohen, 1960), was 68.57, considering only
questions answered by both annotators in each pair. If not
answering a question is treated as an additional candidate
answer, the mean pairwise Kappa becomes 50.32.

4. Experimental Results
Table 3 summarises our experimental results on BioRead-
Lite; we did not have the computational resources to exper-
iment with the full BioRead dataset, but we hope that others
may be able to do so.10 With the exception of the last row
of Table 3, in all other cases we used option (a) of Section
2, i.e., the identifier of each @entityID was unique only
within the particular instance. For AS Reader and AOA
Reader, we used the same hyper-parameter values as in the
work of Kadlec et al. (2016) and Cui et al. (2017), respec-
tively. Hence, a direct possible improvement would be to
fine-tune the hyper-parameters for BioRead (or BioRead-
Lite), which requires, however, substantial computational
resources. We stopped training the two methods when their
development loss had converged, i.e., after 5 epochs for AS
Reader, 15 epochs for AOA Reader when using option (a),
and 20 epochs for AOA Reader when using option (b); re-
call that in option (b) the identifier of each @entityID is
unique in the entire dataset. A single training epoch (in-
cluding computing the development loss) takes 17, 21, and
22 hours, respectively (Table 3). Performance is measured
in terms of accuracy, i.e., number of correctly answered de-
velopment or test instances, divided by the total number of
development or test instances.
Table 3 shows that AOA Reader is clearly more accurate
than AS Reader, at the expense of training speed, reach-
ing 50.44% and 49.94% development and test accuracies
with option (a), compared to 37.90% and 42.01% for AS
Reader, respectively. These results confirm that the more
elaborate attention mechanism of AOA Reader is impor-
tant, as also reported in previous work (Cui et al., 2017;
Bajgar et al., 2016; Munkhdalai and Yu, 2016). Despite its
simplicity, BASE1 (most frequent candidate answer in the
passage) is a reasonably strong baseline, reaching 26.86%
development and 28.87% test accuracy, but AS Reader and
AOA Reader outperform it by a wide margin. BASE2 and
BASE3 are much weaker, suggesting that AS Reader and

10We used a PC running Ubuntu, with 64 GB RAM, a 16 core
CPU, and a GeForce GTX TITAN X GPU with 12GB memory.
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Dev. Test Training
Method Accuracy Accuracy Epochs

BASE1 (a) 26.86 28.87 n/a
BASE2 (a) 8.14 9.38 n/a
BASE3 (a) 16.48 17.28 n/a
BASE4 (a) 40.10 37.20 n/a

AS Reader (a) 37.90 42.01 5 × 17 h
AOA Reader (a) 50.44 49.94 15 × 21 h

AOA Reader (b) 52.41 51.19 20 × 22 h

Table 3: BioReadLite results (%), and number of epochs
(and time) required for the development loss to converge,
when each entity ID is unique (a) in the particular instance
only, or (b) in the entire dataset.

AOA Reader do not just remember the first or last candi-
date answers of the passage. The best baseline is BASE4
(n-grams). It scored 40.10% development and 37.20% test
accuracy, surpassing AS Reader on the development subset,
and challenging AS Reader on the test subset. Neverthe-
less, AOA Reader outperformed BASE4 by a wide margin
(Table 3). The performance of AOA Reader improved fur-
ther (from 50.44% to 52.41% development accuracy, from
49.94% to 51.19% test accuracy), at the expense of addi-
tional training time, when option (b) was used, i.e., when
each entity ID was unique in the entire dataset, suggesting
that AOA Reader was able to learn properties of at least
some entities (concepts) from multiple training passages.
We also trained the best method, AOA Reader with option
(b), on smaller subsets of BioReadLite to study the effect
of the size of the training set. We always used 20 epochs
in this experiment, the number of epochs it took for the de-
velopment loss to converge when using the entire training
set of BioReadLite (Table 3, last row). Table 4 shows that
increasing the size of the training set leads to improved de-
velopment accuracy. We see a similar trend in test accuracy
(from 49.22% to 51.19%) when going from 50% to 100%
of the training set, but surprisingly the best test accuracy
(51.51%) was obtained when using only 25% of the train-
ing set. The latter may be the result of a random fluctuation
(e.g., the optimizer may have managed to find a better local
minimum of the loss function in that case). It would be bet-
ter to repeat each experiment multiple times, with different
random parameter initializations, and report mean results
(and standard deviations), but we did not have the required
resources. Overall, however, it seems worth experimenting
with the entire BioRead dataset, instead of BioReadLite,
to see if its larger training subset would lead to significant
improvements in accuracy. We also note that the average
accuracy of the human annotators was 68.01% (Section 3).
This score was computed only on a sample of 30 test ques-
tions, and it does not consider questions the annotators left
unanswered, but it is an indication that there is headroom
for improvements in the performance of MRC methods.

5. Conclusions and Future Work
We constructed and make publicly available a new cloze-
style biomedical MRC dataset, BioRead, with approx. 16.4
million instances, currently one of the largest MRC datasets
and the only one of its kind in the biomedical domain. We

Training Dev. Test Training
Subset Accuracy Accuracy Epochs

25% 47.06 51.52 20 × 6 h
50% 50.25 49.22 20 × 11 h

100% 52.41 51.19 20 × 22 h

Table 4: BioReadLite results (%) of AOA Reader, with op-
tion (b), using the entire or only subsets of the training set.

also provide a subset of BioRead, BioReadLite, with 900k
instances, for groups with fewer resources. Both datasets
were constructed in the same way as CBTest and Book-
Test, but using biomedical journal articles and employing
MetaMap to identify biomedical entities (concepts) and re-
place them by their preferred UMLS names. We also re-
implemented and tested on BioReadLite two well-known
MRC methods, AS Reader (Kadlec et al., 2016) and AOA
Reader (Cui et al., 2017), along with four baselines, as
a first step towards a BioRead (and BioReadLite) leader-
board. Our re-implementations are also publicly available.
BioRead and BioReadLite are available in two forms,
where each identified entity is replaced by an identifier that
is unique (a) only in the particular passage-question in-
stance, or (b) in the entire training corpus. AOA Reader
is currently the best method on BioReadLite, and its per-
formance improves (reaching 52.41% development and
51.19% test accuracy) when option (b) is used, suggest-
ing that it manages to learn properties of at least some en-
tities from multiple training passages. The best baseline,
which uses n-grams, surpasses the second best method,
AOA Reader, on the development set of BioReadLite and
performs reasonably well on the test set. Nevertheless,
AOA Reader outperforms it by a wide margin.
Future work could use BioRead (and BioReadLite) to test
other existing MRC methods in the biomedical domain or
develop new MRC methods. It would also be interesting
to examine if methods trained (or pre-trained) on BioRead
could also cope with real-world biomedical questions, like
those of BioASQ, possibly after further training.
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