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Abstract
Recently, various datasets for question answering (QA) research have been released, such as SQuAD, Marco, WikiQA, MCTest, and
SearchQA. However, such existing training resources for these task mostly support only English. In contrast, we study semi-automated
creation of the Korean Question Answering Dataset (K-QuAD), by using automatically translated SQuAD and a QA system bootstrapped
on a small QA pair set. As a naı̈ve approach for other language, using only machine-translated SQuAD shows limited performance due
to translation errors. We study why such approach fails and motivate needs to build seed resources to enable leveraging such resources.
Specifically, we annotate seed QA pairs of small size (4K) for Korean language, and design how such seed can be combined with
translated English resources. These approach, by combining two resources, leads to 71.50 F1 on Korean QA (comparable to 77.3 F1 on
SQuAD).
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1. Introduction
Understanding text and answering questions about the text
is an important yet challenging task for machines. To train
machines for doing that, large-scale resources are neces-
sary. For English, SQuAD (Rajpurkar et al., 2016) provides
more than 100K pairs of questions and supporting passages:
For example, for the question, such as “what causes precip-
itation to fall?”, they locate the supporting “span”, or the
relevant answer found in the passage, such as “precipitation
... falls under gravity”. As the advent of deep learning tech-
niques turns algorithms data hungry, building resources of
a significant size is a critical task, question answering (QA)
systems, as demonstrated not only by SQuAD, but also by
ImageNet for object recognition (Deng et al., ).
However, existing datasets for these tasks are mostly built
on English. For other languages, building resources of
large scale is labor intensive. Meanwhile, some approaches
transfer English resources to resource-poor language for
NLP tasks. As improvement of neural-based Machine
Translation (MT) (Bahdanau et al., 2014) and availabil-
ity for 100+ languages, some research takes advantage
of MT systems for multilingual tasks such as sentiment
analysis (Balahur and Turchi, 2014), query-document rel-
evance (Ture and Boschee, 2014), and named entity recog-
nition (Dandapat and Way, 2016). Given this opportunity,
our research questions are as follow:

• RQ1: Can we build QA resource for other language,
solely by automatically translating English resources?

• RQ2: When annotating QA resource manually for
other language, can we save efforts by leveraging ex-
isting resources for English?

• RQ3: How can we combine the two to complement
each other?

Regarding RQ1, we study Machine-Translated resource of
a SQuAD, denoted as MT. Assuming perfect translation,

MT should be sufficient to train a QA system of compara-
ble performance to English QA trained on SQuAD. How-
ever, there are two challenges: (1) The position of answer
span changes or is lost in translation. (2) Translation qual-
ity varies over QA pairs. Without overcoming these chal-
lenges, QA performance on MT is merely 52.49 in F1
(while 77.3 for SQuAD).
Regarding RQ2, the low performance on MT naturally
motivates building language-specific (Korean) resource for
QA. We construct and release such QA resource annotated
by multiple human annotators, which we explain in Section
3. More interestingly, we show that, by selectively lever-
aging MT, manual effort for annotating Korean resources
decreases drastically, from 100K+ pairs of SQuAD to mere
4K.
Finally, for RQ3, we train a QA system for Korean QA,
combining both small-scale annotated data and large-scale
translated resources we discussed above. As motivated
from RQ1, there still remains the problem that the quality
of the translation varies. To overcome this problem, we pre-
dict translation certainty for QA pairs, to use only high-
quality QA pairs for training. With such selective training,
we achieve 71.50 in F1 score.

2. Related Works
The availability of training resources has been driving
QA research, ranging from early and small datasets such
as WikiQA (Yang et al., 2015), to more recent and big
datasets such as SQuAD (Rajpurkar et al., 2016), MS
Marco (Nguyen et al., 2016), and SearchQA (Dunn et al.,
2017) dataset. Our work complements these efforts by
studying how to annotate small resources while selectively
leveraging large resources developed for another language.
Most of existing competitive models for QA systems build
on neural attention mechanism, to guide systems to focus
on a targeted area in the passage. A baseline we adopt in
this category is BiDAF model (Seo et al., 2016) which em-
ploys variant co-attention mechanism to match the question
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Table 1: Statistics of dataset

Human
dataset

Translated
dataset Total

# of passages 1.4K 19.8K 21.2K
# of Q-A pairs 4K 77K 81K

Avg length of question 6.10 5.86 -
Avg length of answer 3.69 1.81 -

and passage mutually. Alternatively, R-Net adopts a gated
attention-based recurrent network, with the gate modeling
the importance of passage parts to the particular question,
as such importance can differ for reading comprehension
and question answering purposes respectively.

3. Model
3.1. Preliminary
As a basic QA model, we adopt Bi-Directional Attention
Flow model (BiDAF) (Seo et al., 2016), with the high-
est accuracy for SQuAD among open-sourced implemen-
tations.1 Two metrics are used to evaluate models: Exact
Match (EM) and a softer metric, F1 score, which measures
the weighted average of the precision and recall rate at word
level. This model (by itself without ensemble) achieves an
EM score of 68.0 and an F1 score of 77.3.
The inputs of this model are passage and question represen-
tation as both character- and word-level embeddings. They
pass through bi-directional LSTM with attention to obtain
a query-aware context representation. The output layer of
the model is the probability distribution of the start and the
end indices of the answer in the passage. The probabilities
are calculated using the equation below:

P (y1 = s) = softmax(w1 ∗ [G;M ]) (1)

P (y2 = e) = softmax(w2 ∗ [G;LSTM(M)]) (2)

where s and e indicate the start and the end position of
answer span, G is the output of attention flow module ac-
cording to passage, M is the output that is passed through
two layers of LSTM according to the G, w1 and w2 are the
weight of each output. In test, the model selects the answer
span to maximize the product of two probabilities:

P (y1 = s) ∗ P (y2 = e) (3)

We will use this score to check translation quality of QA
pairs in Section 3.3.

3.2. Dataset Construction
Our dataset consists of MT and Seed, representing
machine-translated (large-scale) and manually annotated
(small-scale) datasets respectively. Some statistics of the
datasets are presented in Table 1.

3.2.1. MT Construction
For addressing RQ1, we study the challenge of translat-
ing answer spans in English into those in Korean transla-
tion. From observing Google Translate2 of SQuAD QA
pairs into Korean, we identify the following four cases:

1https://github.com/allenai/bi-att-flow
2https://translate.google.com

Figure 1: The web interface used to collect the Korean QA
dataset. The labeling policy is based on SQuAD (Rajpurkar
et al., 2016)

• Exact matching (35.5%): Terms in ESP (English an-
swer spans) are translated into Korean terms which ex-
actly match the Korean terms translating the matching
English passage.

• Paraphrase matching (36.6%): Terms in KSP (Korean
translated answer spans) are the paraphrase of terms
used in Korean passage.

• Multiple spans (8.1%): Multiple ESPs are marked for
a single sentence.

• Spans unpreserved: Google Translation cannot pre-
serve answer spans in translation due to the language
gap or translation inaccuracy.

To keep the first three cases (80.2% in total of SQuAD
pairs) as MT resources, we adopt the following strategies.
First case of exact matching can be trivially supported by
string matching. For the second case, we mark answer
spans in quotation, to serve the dual purposes of (1) giving
a hint to translators to preserve the span boundary and (2)
finding a matching paraphrase. For the third case, we pre-
process QA pairs, to detach k ESPs on the same sentence
into k pairs of one ESP and the sentence. Lastly, answer
spans may be lost in translation, for which case, we do not
use as training resources.

3.2.2. Seed Construction
The performance of QA, trained only on MT, is not effec-
tive with F1 score of 52.49, while that of English is 77.30.
The main obstacle is poorly translated QA pairs, as shown
in Figure 2(b), from which, neither machine nor human can
find the right answer.
We thus build a small-scale Seed resources to serve dual
purposes of (a) training a weak QA system and (b) predict-
ing the translation quality of machine translated data. The
advantage of Seed is near perfect precision, with the disad-
vantage of being labor intensive.
Our key contribution is to show that Seed does not have to
be big and annotate such data ourselves. Unlike SQuAD
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(a) example of excellent translation

(b) example of bad translation

Figure 2: Two examples of certainty of Korean QA pairs.
Texts colored in red indicate answer span.

dataset containing 100K+ QA pairs, we show that the an-
notation of 4K is sufficient and release our annotation for
future research3.
To obtain seed QA pairs with comparable quality to
SQuAD, we deploy a UI as shown in Figure 1, inspired
by SQuAD conventions. We sample the 100 articles of Ko-
rean Wikipedia, to extract paragraphs of significant length
without images. The result was 1464 paragraphs for the
100 articles covering a wide range of topics.
The UI in Figure 1 was deployed to human annotators, to
read paragraph, enter questions, then highlight the spans
including answers. Verbatim copying of Wikipedia text was
discouraged, by disabling copy and pasting.

3.3. Translated Data Refinement
With Seed, we now study how to complement each other,
rather than simply merge the two datasets. If mistranslated
QA pairs are added to training set, the performance of the
model may be worse, therefore we selectively denoise MT
data as the quality of translation.
For such selection, we quantify translation certainty, as
shown in Figure 2, high for correct translation (Figure 2(a))
and low for incorrect translation (Figure 2(b)). We use the

3https://e05087.github.io/

weak QA system, or BiDAF built on Seed for such pre-
diction. A naive solution is using Equation (3): Based on
the starting and end positions s and e, we use the equation
to compare with the probabilistic certainty of the span pre-
dicted by the model, or BiDAF on the translated pair. This
score will be high if our weak QA finds the right answer,
which might be near impossible without reasonable trans-
lation quality. In other words, selecting QA pairs with high
score would ensure high translation quality of the data.
However, this computation is rather strict, disallowing a mi-
nor disagreement in span boundaries, of including one more
(or less) word before and after the span. We thus extend the
equation to tolerate a minor error of one word, in both the
start and end, or s and e, as below:(

P (y1 = s− 1) + P (y1 = s) + P (y1 = s+ 1)
)

∗
(
P (y2 = e− 1) + P (y2 = e) + P (y2 = e+ 1)

)
(4)

Figure 2 shows the example scores this model computed:
For example, in Figure 2(a) with high certainty, the passage
and question were well translated into Korean, and a human
can easily deduce correct answer through only this infor-
mation. While, in Figure 2(b), the intention of the question
was lost in translation, and the answer cannot be inferred
from these question. This QA pair will not be used in train-
ing, guided by the low certainty score computed from the
model.

4. Experiment
4.1. Experiment Setting
For test, we partitioned the annotated QA pairs randomly
into a training set (2K) and a test set (2K), where the two
sets do not share the same passages and articles. The im-
plementation details used for this task are based on that of
BiDAF model (Seo et al., 2016). We set a mini-batch size
of 60 for 10 epochs on GPU Titan X, and a dropout rate
of 0.5. Other hyper-parameters are the same with BiDAF
model. For Korean-specific implementation of tokenizer
and embedding, we adopt the state-of-the-arts KoNLPY4

and skip-gram model (Mikolov et al., 2013) trained on Ko-
rean Wikipedia corpus and QA dataset.

4.2. Models
We compare our model with the following baselines:

• Seed: BiDAF using only manually annotated seed re-
sources of a small scale.

• MT: BiDAF using only machine translated resources
of a large scale.

• Seed+Rand: Hybridization of Seed and MT, by run-
ning BiDAF on Seed and x% of Randomly selected
QA pairs from MT. For example, S+MT(25%) is the
results of running BiDAF on Seed and 25% randomly
selected QA pairs.

4http://konlpy-ko.readthedocs.io/
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Figure 3: From left to right, the result of (a) F1 score and (b) EM score

Table 2: The results when using only Seed/MT, and ours
which is the highest performance in our results.

Metric F1 score Exact Match
Seed 61.29 39.00
MT 52.49 10.13
Ours 71.50 50.72

Our proposed model prioritizes high-quality QA pairs from
MT, and thus enables a prioritized selection of MT QA
pairs. In this model, we use the techniques discussed in
Section 3.3 to decide x% of the highest translation quality.

4.3. Result and Discussion
The results are reported in Table 2. In terms of both F1
and Exact Match (EM) scores, using only Seed or MT re-
sources show poor performances, such as 61.29, 52.49 in
F1 and 39.00, 10.13 in EM, respectively. In such case, the
result on Seed is higher than that on MT, even though Seed
is a small size compared to MT. This supports the need to
build language-specific resource.
Meanwhile, as shown in Figure 3, using both Seed and MT
set improves accuracy. As we add a random sampling of
MT 25% set per each step, its performance also increases,
and peaks at 68.89 in F1 and 45.80 in EM when x = 100%.
In the random sampling, the performances of F1 and EM
tend to increase as the size of training data. Compared to
the random sampling, our model, by refining MT, peaks at
71.50 in F1 and 50.72 in EM when x = 75%. The peak
value is higher than the result value at x = 100%. This
means that excluding refined 25% supports the improve-
ment of the QA model. In all x% except at 25%, prioritized
selection outperforms random selection. Although we use
the same dataset and model, the prioritization of our ap-
proach enables a significant improvement, of F1 2.61 points
increase. Therefore, our model is successful in effectively
using small seed and large translation data to improve the
performance of the QA model.

5. Conclusion
In this work, we study the feasibility of using translated
resources for training QA systems. Inspired by our obser-
vations of challenges in using such translated resources for
the task, we then build and release a 4K seed QA training
resources for Korean language. We then study how we can

combine such seed resources with the selective translated
resources, for which we propose a model quantifying the
translation certainty for the selective use of high quality re-
sources. Lastly, we study the performance of QA systems
on this combination of translated and seed resources. This
release of seed resource and the proposed method of com-
bining seed with large-scale resources available for another
language is useful for follow-up research for providing QA
services on many languages.
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