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Abstract
The Action Verb Corpus comprises multimodal data of 12 humans conducting in total 390 simple actions (TAKE, PUT, and PUSH).
Recorded are audio, video and motion data while participants perform an action and describe what they do. The dataset is annotated
with the following information: orthographic transcriptions of utterances, part-of-speech tags, lemmata, information which object is
currently moved, information whether a hand touches an object, information whether an object touches the ground/table. Transcription,
and information whether an object is in contact with a hand and which object moves where to were manually annotated, the rest
was automatically annotated and manually corrected. In addition to the dataset, we present an algorithm for the challenging task of
segmenting the stream of words into utterances, segmenting the visual input into a series of actions, and then aligning visual action
information and speech. This kind of modality rich data is particularly important for crossmodal and cross-situational word-object and
word-action learning in human-robot interactions, and is comparable to parent-toddler communication in early stages of child language
acquisition.
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1. Motivation and Related Work
In the following, the multimodal Action Verb Corpus
(AVC) is presented, comprising visual and linguistic (Ger-
man) information related to instances of TAKE, PUT, and
PUSH actions. The corpus consists of 140 instances of
TAKE/PUT actions each, and 110 instances of PUSH ac-
tions). It is geared to robotic action word learning inspired
by early word learning of infants. The corpus focuses on
modality rich input for crossmodal, cross-situational learn-
ing of word-object and word-action mappings. The spe-
ciality of AVC is that people perform an action and verbal-
ize what they are doing, leading to rich multisensory data.
This is specific to task-oriented communication as well as
to parent-toddler communication where the parents’ speech
is often connected to what the infants see or do (Suanda et
al., 2016).
The corpus is small compared to, for instance, the Kinet-
ics video dataset (Kay et al., 2017) comprising more than
300,000 videos of complex actions, or CLEVR (Johnson et
al., 2016) comprising a total of 100,000 images of object
configurations (locations, object shape, size, color, texture)
and approximately a million questions related to those im-
ages. While the latter two are designed for training and
testing of deep learning models for human action classifi-
cation such as ‘brushing hair’, ‘riding a bike’, etc. (Kinet-
ics), or for diagnosing visual question-answering systems
(CLEVR), the Action Verb Corpus focuses on the multi-
modal representation of instances of TAKE, PUT, and PUSH
actions, recorded from adults in order to reflect what a robot
will be exposed to when being trained by humans.
In this respect, AVC is complementary to existing child-
specific datasets (Nilsson Björkenstam and Wirén, 2013;
MacWhinney, 2000). The former collected a longitudinal
corpus of parent-child interactions including transcriptions
of child-directed speech, child vocalizations, and annota-
tions of gestures, eye gaze, and object-related actions by

both parent and child. The CHILDES corpus (MacWhin-
ney, 2000) is a large repository of first language acquisi-
tion data in different languages (amongst others German
and English), mainly transcriptions of parent and child ut-
terances. Some of the data contain video and audio record-
ings. Extra-linguistic cues in language learning and the role
of social interaction can be investigated based on these data.
However, the interactions do not contain the same tasks
conducted by different child-adult dyads.
(Gaspers et al., 2014) present a corpus where care-
givers/instructors verbally describe learning tasks. Their
instructions are - similar to ours - based on visual input.
The corpus has information on the wrist position included,
so that a robot is able to follow the hand with its gaze. The
AVC, in addition, provides information on the arm trajecto-
ries and finger joints, and information which object is held
by the speaker and where it is moved to.
Three examples for human-robot interaction are the Home
Tour Corpus (Green et al., 2006), the Vernissage corpus
(Jayagopi et al., 2013), and the Rolland corpus (Anasta-
siou, 2012). In the first one, users show an environment
(a single room, or a whole floor) in a WoZ-Setting to a
robot. Recorded were speech, gestures, and gaze. In the
second one, a robot induces interactive behavior with and
between humans by explaining paintings in a room and then
quizzing the participants. In the third one, a user was asked
to carry out a set of simple tasks with a powered wheelchair.
In the WoZ Setup, the user interacted with the wheelchair
via language and gestures. For an overview on annotation
tools and schemes, see (Abuczki and Ghazaleh, 2013) or
(Tenbrink et al., 2013).
In general, current multimodal corpora typically include
language, objects in the visual field, eye gaze, and point-
ing gestures. An exception is the JCT corpus (Foster et al.,
2008) which also includes the currently moved object in ob-
ject manipulation tasks. Other than in the AVC, the actions
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were conducted on a screen and not in a real-world setting.
These corpora are partially suitable to evaluate multimodal
computational models for object-word learning. However,
they are not sufficient for crossmodal action learning.

2. Setup for Collecting Data
2.1. Task Scenarios
The overall goal of the data collection activity was to
gather multimodal data of basic actions such as TAKE (Ge:
nehmen), PUT (Ge: stellen/legen) and PUSH (Ge: schieben).
The participants were instructed to perform actions with
three objects positioned on a table – a bottle, a can and a
box – and verbalize what they are doing. Task 1 was to take
an object from the table and put it back on the table at a spe-
cific position and use the action verbs nehmen, legen/stellen
(En: take, put) when verbalizing one’s action. Task 2 is
comparable to Task 1 but with a focus on verbally specify-
ing the spatial location where the object is put. In Task 3,
the user had to push objects to certain locations. The ac-
tual actions the user had to perform were displayed in the
Virtual Reality headset (Figure 3, right). Sample configura-
tions for Tasks 1 and 2 are shown in Figure 1. In total, there
were 4 configurations each depicting a start situation, an in-
termediate and an end situation. Possible verbalizations for
the tasks depicted in Figure 1 would be: T1 – ich nehme die
Flasche und stelle sie neben die Schachtel (‘I take the bot-
tle and put it next to the box’), T2 – ich nehme die Flasche
stelle sie rechts neben die Dose (‘I take the bottle and put
it on the right side of the can’), whereby the picture on the
left shows the start configuration, the one at the right (2)
shows the end configuration, and the one in the middle (1)
shows the intermediate configuration where the moved ob-
ject is not on the table. As regards Task 3, the users were
presented with a starting configuration and 10 intermediate
configurations indicating which object had to be moved to
which position, see Figure 2 for 3 sample moves. Possible
verbalizations would be: ich schiebe die Schachtel rechts
neben die Flasche (‘I push the box to the right side of the
bottle’) (3), ich schiebe die Flasche zwischen die Schachtel
und die Dose (‘I push the bottle between the box and the
can’) (4), ich schiebe die Flasche links neben die Dose (‘I
push the bottle to the left of the can’) (5). While in the
TAKE/PUT actions of T1 and T2 the moved object leaves the
table (intermediate configuration Figure 1), the pushed ob-
ject in T3 stays on the table while changing position (con-
figurations 3, 4 and 5 in Figure 2).

2.2. Technical Setup
The user sits (or stands) in front of the table and is wearing
an Oculus Rift DK2 Virtual-Reality (VR) headset1 mounted
with the Leap Motion sensor2 for hand tracking, see Figure
3, left. A camera (Microsoft Kinect) is positioned opposite
of the user directed at the table for object tracking. The
user performs different actions defined by visual instruc-
tions and verbally describes what he/she is doing. Two mi-
crophones record the user’s description of the performed
action. The data is recorded in such a way that it resembles

1https://www.oculus.com/dk2/
2https://www.leapmotion.com

Figure 1: Sample instructions for tasks T1 and T2.

Figure 2: Sample instructions for task T3.

what a robot sees and hears. Letting the human see through
the robot’s eyes forces the subjects to perform more pro-
nounced movements within a restricted field of vision. This
facilitates processing of the input by the artificial system.
The Leap Motion is a stereo infrared camera which is spe-
cialized on hand tracking. The Software Development Kit
(SDK) provides detailed information on the position of the
various joints of the user’s arm down to the finger segments.
We use the Leap Motion mounted on a VR headset to have
the best available tracking performance.

Figure 3: Experimental setup (left) and view through Ocu-
lus including instructions (right).

The Oculus Rift DK2 is worn by the user and provides the
user’s head pose. It is needed to transfer the tracking data of
the Leap Motion to a fixed coordinate system. The instruc-
tions for the current task are displayed in the Oculus Rift
above the camera images of the Leap Motion. This way,
the users are able to look at the instructions without mov-
ing their heads as it would be the case if they had to look at
printout versions of the instructions. Additionally, the setup
forces the user to direct the Leap Motion at his/her hands
to see what he/she is doing. This behavior is necessary for
satisfying hand tracking performance.
For object tracking, the RGB as well as depth data of the
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Kinect camera is recorded as a ROS3 bag on a separate
machine running Ubuntu. The models of the objects were
created beforehand with the RTM-Toolbox from the V4R
library4. The objects were positioned on a turntable and a
Kinect camera recorded a sequence of RGB-D images. The
software tool uses a Kanade-Lucas-Tomasi feature tracker
with FAST features to create an object model as described
in (Prankl et al., 2015). The features for creating the model
are saved with the model and used for object tracking.
We apply the object tracker from the V4R Library on the
recorded data from the user experiments5. It utilizes the
Perspective-n-Point algorithm to calculate the 6-Degrees-
of-Freedom pose of the objects from a monocular image
stream. The offline tracking enables the best possible re-
sults because the object tracker can be tuned for a specific
recording. Besides the position and orientation of the ob-
ject, two Boolean variables are saved: object is in contact
with the table and object is in contact with a hand. The for-
mer is set automatically depending on the object’s position,
the latter is currently manually annotated. We use the fol-
lowing information to process the raw data from the object
tracker: If the object is in contact with the user’s hand, the
object position is saved as received from the object tracker.
If the object is not in contact with the hand, we calculate an
average object pose because we assume that the object does
not move. This assumption is correct in our experimen-
tal setup, as long as the user does not push an object with
a different object. The weighted arithmetic mean is used
whereby the weight is the confidence received from the ob-
ject tracker. Tracked object positions with a low confidence
or further away than 10 cm from the average position are
discarded to omit wrong positives. However, we count the
number of outliers with a high confidence. If this number
exceeds a certain threshold, the current average position is
discarded. This way, the jittering of the raw object posi-
tion is cancelled out and occlusions do not impair tracking
performance if the object was successfully tracked before.
The recorded data from the different systems (hand and
object tracking) are transformed to a common coordinate
frame (fixed in the user’s head) and temporally aligned in a
post-processing step. This alignment is done manually.

Figure 4: Visualization of manipulating hand and objects.

3http://www.ros.org
4http://www.acin.tuwien.ac.at/forschung/

v4r/software-tools/rtm/
5http://www.acin.tuwien.ac.at/forschung/

v4r/software-tools/v4r-library/

3. Dataset and Annotations
The corpus, at the time of writing, comprises 140 instances
of TAKE/PUT actions each and 110 instances of PUSH ac-
tions from 20 recordings of Task 1, 15 recordings of Task 2
and 11 recordings of Task 3. See Table 1 for an overview.
Overall, 12 persons conducted the tasks.

Number of Number of Actions
Task Recordings per Recording
T1 20 4 TAKE/PUT-actions
T2 15 4 TAKE/PUT-actions
T3 11 10 PUSH-actions

Table 1: Composition of corpus.

3.1. Representation of Information
Apart from the raw data from hand and object tracking, the
audio recordings, and grey-scale videos from the user per-
spective, each instance of a task is represented by:
1. the merged output of the hand and the object tracker,
including per frame the 3D positions of the joints in the el-
bow, wrist, and knuckles of the instructor’s hands as well
as the object poses and their reliability estimate calculated
by the object tracker;
2. an animation of the merged hand and object tracking, see
Figure 4;
3. manual orthographic transcriptions of speech: one is
close to what is actually spoken, the other one is normal-
ized with respect to standard NLP tools such as taggers,
parsers, stemmers, etc.;
4. part-of-speech tags, automatically generated with the
Tree-Tagger (Schmid, 1995) and manually corrected;
5. lemmata, automatically generated with the Tree-Tagger
and manually corrected;
6. the information which object is moved and where it is
moved to (manually annotated);
7. the information whether the left or right hand touches a
particular object (manually annotated);
8. the information whether a particular object touches the
ground/table (automatically identified by the object tracker
and manually corrected);
9. segmentation of the stream of words into chunks using
heuristics such as long pauses (min. 0.5 sec) or connectives
(e.g. und – ‘and’);
10. segmentation of the visual input into situations com-
prising actions: in our specific dataset, a situation is con-
strued each time a hand touches an object and the object
moves. If the object is lifted from the ground, the situation
consists of the two actions TAKE and PUT, otherwise it is a
PUSH action.
While the information described in 1. is provided as a CSV
file per recording, the information described in 3. to 10.
(henceforth the annotation tiers) is represented as Elan6 file
(.eaf) and CSV exported from Elan. All annotation tiers are
synchronized with the real-time animation of the hand and
object tracking and with the speech stream. Praat7 is used

6https://tla.mpi.nl/tools/tla-tools/elan/
7http://www.fon.hum.uva.nl/praat/
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for transcribing the utterances.8

3.2. Alignment of Visual Action and Speech
For tasks such as crossmodal learning of word-object and
word-action references, the chunks obtained from the tran-
scribed speech as described in 9. above, and the actions re-
trieved from the visual representation of situations (see 10.
above) need to be aligned. Each situation – a multimodal
perceptual frame – comprises one or two events. An event
consists of an action (with all involved objects) and an ut-
terance that verbally describes what happens. In order to
obtain these events, information from different modalities
has to be processed in order to identify actions, utterances
and correct alignment between them.
For the given dataset, each action ideally is described by
exactly one utterance (made up of one or several chunks),
see for instance the following example where the speech se-
quence ich schiebe die Dose (‘I push the can’) is followed
by a (relatively long) pause of 2.082 seconds and then fol-
lowed by the sequence neben die Schachtel (‘next to the
box’). These two chunks need to be aggregated into one
utterance and aligned to the corresponding action. Align-
ment proceeds in two steps: first the right boundary is iden-
tified from the set of chunks, in a second step the algorithm
works backwards in order to determine the left boundary.
When a situation consists of two actions, the string of se-
lected chunks has to be split into two utterances, otherwise
the string of chunks directly maps to a single utterance.
In order to identify the rightmost speech chunk that is to
be aligned to the current action(s), the algorithm proceeds
left to right on the list of chunks. The endpoint of the
situation (plus some latency, here set to 0.7 sec) marks the
preliminary cutoff point (1), see Figure 5. Chunks that start
later than that can be connected to the preceding chunk, if
the pause between the previous and the currently examined
chunk does not exceed a given threshold of 1.4 sec (2). In
addition to that, the chunk must not overlap with the next
situation (3) and must not start with a connective (‘and’)
since this would hint to the begin of a new utterance (4).

Figure 5: Step 1: Alignment of utterance and action.

In the second step, starting from the last chunk, preced-
ing chunks are merged until either the chunk ends long be-
fore the situation starts, or it is already aligned to a pre-
ceding situation. The threshold for the difference between
endpoint of speech chunk and begin of situation is set to
7 sec, equivalent to temporal bounds in ‘working mem-
ory’(Miller, 1956). Only if there are two actions within a

8The dataset (comprising the information described in 1.
to 10.) can be downloaded from http://www.ofai.at/
research/interact/avc.html.

given situation (‘take’ together with ‘put’) – implying that
there should be two utterances describing theses actions
– for the second utterance the threshold is set to 1.4 sec.
In that case, the algorithm is also attentive to continuation
words (‘and’). When it hits one, it would regard this chunk
as the begin of the second utterance. See Figure 6.

Figure 6: Step 2: Alignment of utterance and action.

This procedure presupposes that speakers tend to start the
description of an action before executing it. This presuppo-
sition is supported by the empirical facts. The accuracy of
the algorithm is high (92% on a subset of the AVC and 86%
on Dataset 1 of the MMTD corpus9), and it also guarantees
that explanations and comments by the test persons that are
temporally outside the given bounds and do not pertain to
the actions described, are not aligned to actions.

4. Conclusion and Future Work
So far, the presented corpus provides a solid basis for cross-
modal and cross-situational word-object and word-action
learning, inspired by early language acquisition in children.
In addition, we presented an algorithm for segmenting ac-
tions and utterances, and aligning the two. The three ac-
tions TAKE, PUT, and PUSH can be successfully segmented
by the presented heuristics, however, there are limitations
as the algorithm is fine-tuned to the given dataset. As we
plan to extend the number and complexity of actions, we
expect the list of relevant features to segment those actions
to be extended. In addition, some aspects of visual ac-
tions are currently manually annotated (whether an object
is moving and whether a hand touches an object). Work
is underway in order to recognize this information auto-
matically. An open issue is also the granularity of actions
(e.g., whether the GRASP action preceding a PUSH action
should be modeled as part of the PUSH action, or as a sepa-
rate action) and the effect this has on crossmodal and cross-
situational action learning in robots.
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