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Abstract
Present-day empirical research in computational or theoretical linguistics has at its disposal an enormous wealth in the form of richly
annotated and diverse corpus resources. Especially the points of contact between modalities are areas of exciting new research. However,
progress in those areas in particular suffers from poor coverage in terms of visualization or query systems. Many limitations for such
tools stem from the non-uniform representations of very diverse resources and the lack of standards that address this problem from the
perspective of processing or querying. In this paper we present our framework for modeling arbitrary multi-modal corpus resources in
a unified form for processing tools. It serves as a middleware system and combines the expressiveness of general graph-based models
with a rich metadata schema to preserve linguistic specificity. By separating data structures and their linguistic interpretations, it assists
tools on top of it so that they can in turn allow their users to more efficiently exploit corpus resources.
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1. Introduction
The availability of richly annotated multi-layer corpora is
one of the cornerstones of modern theoretical and compu-
tational linguistics. With a steady flow of newly created
corpus resources and tools to annotate or process those cor-
pora comes also the need for exploratory support tools, es-
pecially visualization and query systems, to get a better un-
derstanding of the resources at hand.
The context of this contribution is the successor project of
the ICARUS (Gärtner et al., 2013) platform, an interactive
visualization and query tool for corpora with dependency
syntax, coreference structures (Gärtner et al., 2014) or rich
annotations for intonation (Gärtner et al., 2015). This
project aims at providing researchers a platform to explore
and query even more diverse multi-layer and multi-modal
corpus resources and artifacts through a single interactive
interface. Our target resources include, but are not limited
to, text and speech data annotated for a variety of different
layers on varying linguistic levels and granularities, such
as the SFB732 Silver Standard Collection, of which a first
overview has been provided by Eckart and Gärtner (2016).
A strong focus lies hereby on connecting linguistic layers
or modalities which so far have not received much attention
in their particular combination. This is to support interest-
ing research questions, such as the interaction of informa-
tion status and prosodic realization(Baumann and Riester,
2013) or the incorporation of prosodic information into the
task of automatic coreference resolution on spoken text as
done by Roesiger and Riester (2015).
As a result we faced the challenge of modeling access from
a single processing software to a very diverse set of cor-
pus resources. And while several standards around the Lin-
guistic Annotation Framework (LAF)(Ide and Suderman,
2014) exist, they primarily take the point of view of prepa-
ration or curation of data. The ongoing standardization ef-
fort for a Corpus Query Lingua Franca (CQLF, ISO/DIS
24623-1)(Banski et al., 2016) correctly identifies the lack
of standards which address a quite different view, that is,
the one of querying or processing of corpus resources. As

such there is no standardized or universally accepted solu-
tion readily available for this modeling task, which led us to
designing and implementing a new dedicated framework.
With “modeling corpus resources” we refer to the task of
representing the structure and content of a corpus or sim-
ilar resource by means of a data model in memory, i.e.
during an application’s runtime. As a corpus or equivalent
resource we treat any collection of utterances in arbitrary
form, be they written, spoken or presented in yet another
modality. Note that presently this definition excludes the
modeling of other types of linguistic resources like lexi-
cons or dictionaries as realized for example in the Lexical
Markup Framework (Francopoulo et al., 2006).
In the remainder of this paper we present our approach for
providing unified access to very different corpus resources.
Section 2 discusses the underlying issue of a heterogeneous
format multiverse and Section 3 contextualizes our work.
We present a detailed overview of various aspects of our
framework in Section 4 and then proceed to illustrate its
usage with code examples in Section 5. Information on the
availability of the software and its documentation is pro-
vided in Section 6 and Section 7 concludes.

2. Format Multiverse and Middleware
Extensive work has already been invested into designing
and establishing interoperable formats for linguistic re-
sources and annotations based on various common trans-
port formats. Notable examples are the NLP Interchange
Format (NIF) (Hellmann et al., 2013), an RDF/OWL-based
format, or GrAF (Ide and Suderman, 2007), a pivot XML-
based serialization format for the Linguistic annotation
framework (LAF) (Ide and Suderman, 2014). GrAF has
also been standardized by ISO1 as part of the “Language
resource management” committee (ISO/TC 37/SC 4). The
LAPPS Interchange Format (Verhagen et al., 2016) is a
JSON-LD2 format and used for data transfer between ser-
vice implementations in the The Language Applications

1ISO 24612:2012
2https://json-ld.org/
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Figure 1: Bottom-up data flows in several resource processing applications depicted as software stacks. Grey filled boxes
represent data to be processed, blue bordered ones are parts of an application’s own codebase and green shows the placement
of our middleware solution in such an architecture in (c).

Grid (Ide et al., 2016). Less flexible exchange formats in-
clude for instance the Text Corpus Format (TCF) of the We-
bLicht (Hinrichs et al., 2010) environment, where the cov-
erage of different annotation layers or hierarchical struc-
tures remains fixed.
Albeit having very expressive and standardized formats
available, the reality is that more often than not corpora or
system outputs used in day-to-day research work are stored
in specialized or proprietary formats. Especially tools used
for a specific task or field of research often use formats that
have emerged as a kind of “local” standard for the particu-
lar field, such as Praat TextGrid files (Boersma, 2001) for
phonetic analysis. Tools designed in the context of a par-
ticular task not uncommonly motivate the design and lim-
itations of their data model with the original data format
provided. In the popular CoNLL Shared Tasks for example
data sets consistently are made available in a tabular format
tailored to the individual tasks (e.g. parsing 2009 (Hajič
et al., 2009), coreference resolution 2011 (Pradhan et al.,
2011) and again parsing to Universal Dependencies in the
2017 shared task3). Tools developed for those tasks often
made the respective CoNLL format their exclusive input
and output representation, leading to a plethora of classic
monolithic designs of the form shown in Figure 1a.
Processing applications such as search or visualization
tools are then required to either support multiple formats
and associated abstract models (see Figure 1b) or force the
user into converting input data into a pivot format (further
encouraging designs as in Figure 1a). This leads to in-
creased workload for either the developers or end users. An
alternative solution is to shift the unification effort into a
framework that acts as a middleware between data sources
and the actual processing logic of an application. The
placement of our framework as this kind of middleware so-
lution, in comparison to above situations, is presented in
Figure 1c. Using a middleware solution also enables appli-
cations built on it to have their output freely converted into
all formats supported by the framework. We believe that
removing the need or motivation to build monolithic appli-
cation architectures then in turn can even foster the use of
standardized serialization formats like GrAF.

3. Related Work
At present several software toolkits for modeling corpus re-
sources in a flexible way exist. Graph-based models have
become a very popular approach for their implementation.
SALT (Zipser, 2009), a graph-based model toolkit, is used

3http://universaldependencies.org/conll17

in an established ecosystem together with the converter-
framework PEPPER (Zipser et al., 2011) and the search in-
terface ANNIS3 (Krause and Zeldes, 2014), the latter com-
bining it with a relational database for storage. SALT pro-
vides full bidirectional links between related nodes (such
as a sentence and its tokens) and also imposes fixed restric-
tions on the scope of relations. It is well-suited for model-
ing shallow snapshots of a corpus, but especially the bidi-
rectional linking makes it inherently expensive for model-
ing large numbers of concurrent structures (e.g. multiple
parses for the same sentence) and hampers scalability. Mo-
tivated by the need to model rich annotations for text and
speech data, the NITE Object Model (Carletta et al., 2003)
is another graph-based model that allows linking of ele-
ments to portions of a singular shared timeline. Yet another
approach is to use formalisms from the Semantic Web con-
text like the Web Ontology Language (OWL4) and combine
them with existing storage technology like XML or a rela-
tional database as proposed by Burchardt et al. (2008).
Based on the Apache UIMATMproject a series of soft-
ware components for natural language processing around
the DKPro Core (Eckart de Castilho and Gurevych, 2014)
framework have been developed. They are mainly focused
on building shareable analysis pipelines and build on a
strongly typed model, where linguistic types or theories are
directly encoded. This can be helpful for data exchange
between collections of predefined processing components
such as parsers. However, it made this approach unsuited
for us as alternative to designing our own modeling toolkit.
Other text processing pipelines include OpenNLP5, the
General Architecture for Text Engineering (Cunningham et
al., 2002) and the Natural Language Toolkit (Bird, 2006)
for Python. They provide solutions for various NLP tasks
and also feature modeling approaches of varying expres-
siveness. Their general focus on text data however keeps
them limited and unfit as basis for a middleware system
that attempts to unify access to multiple modalities.

4. Architecture
An implementation of our modeling approach is provided
as an open-source Java toolkit (further information on avail-
ability is provided in Section 6) which requires version 8 of
the Java Runtime Environment (JRE). It offers a set of ab-
stract building blocks and other components to compose the
data structures that make up a given corpus resource once
read into the model and an extensive API to interact with
them in various ways.

4www.w3.org/2004/OWL/
5http://opennlp.apache.org
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Figure 2: Core components for storage and associated
metadata of the model architecture. Storage components
are aligned horizontally.

A core concept is to separate components that represent ad-
dressable units (tokens, sentences, audio frames, syntactic
structures, edges, regions of an image or video stream.)
from their actual content (such as classic text annotations
or binary data of audio or video streams). Figure 2 shows
the hierarchy of core components in the model with parts
responsible for storage aligned horizontally. The follow-
ing sections line out the conceptual foundations of our ap-
proach and then describe the core components and concepts
in detail.

4.1. Separation of Model Responsibilities
While the approaches described in Section 3 and many oth-
ers are sufficient for the task of representing data in mem-
ory, the gain in representational generality is often achieved
at the cost of specificity when it comes to the linguistic
meaning or interpretation of modeled units or annotations.
Thus even when using them as a developer one still needs
to model this information and connect it with the data struc-
tures in such models.
To work around these shortcomings we decided to split the
task of modeling corpus resources into two subparts:
One part for segmentation, structure and data storage max-
imizes generality but sacrifices any direct knowledge about
linguistic specificity (equivalent to aforementioned general-
purpose graph models). Independent of this the other part
acts as metadata and carries the information describing
composition and dependencies of a specific resource.
We outline the two aforementioned parts and how they in-
teract with each other in Sections 4.3 to 4.5.

4.2. Design Foundations
Our model design builds on several observations and re-
quirements for modeling diverse corpus resources, some of
which have been proposed by Ide et al. (2003) in an early
iteration of LAF. We list these requirements and show how
our modeling approach fulfills them:

Expressive adequacy and Openness: We do not impose
any limitations on the nature of linguistic information or
theories that are expressed or stored in our framework to
keep it as flexible as possible.

Uniformity: We utilize a compact set of universal “build-
ing blocks” (see Section 4.3) to model all kinds of structural
or hierarchical information in a corpus (equal in expressive-
ness to a graph, but closer to linguistic universals).

Media independence: As stated in the introductory part
of Section 4 our framework conceptually splits structural
properties of a resource from its (media) content, treating
all content as annotations. It thereby allows for arbitrary an-
notations to be associated with individual building blocks.

Semantic adequacy: We utilize a compact metadata
schema (see Section 4.5) to formally define a resource’s
overall composition. This includes declarations of avail-
able layers as well as their hierarchies and dependencies.

Granularity: For every resource there is at least one
mandatory segmentation layer that defines atomic units as a
common foundation. This guarantees spacial comparability
of all other structural constructs on top of it. As an exten-
sion to the original observation made by Ide et al. (2003)
we also acknowledge the need to retrospectively define an
even finer granularity as originally declared for a resource.
Our framework supports subdivision of existing units in a
corpus by declaring anchors into rastered6 annotation val-
ues for those blocks (see Section 4.3 for further explanation
and Section 5.3 for a usage example).

Extensibility: We offer various mechanisms for extend-
ing the functionality of the corpus modeling framework:
• A template system for the metadata schema to for exam-

ple allow sharable tagset definitions or format schemata
for converters (see Figure 4 for a tagset template).

• Integration of new converter implementations via the
Java Plugin Framework7, Java’s own Service Provider
Interface (SPI) or the Open Services Gateway initiative8.

• An abstract type system for building blocks that al-
lows custom implementations to optimize based on the
underlying corpus resource, for instance read-only re-
sources or when accessing a corpus stored in a (rela-
tional) database versus converting from classic file data.

• Interfaces to implement the handling of new media or an-
notation types for tasks such as fragmentation (cf. Sec-
tion 4.3) or spacial comparison of those fragments.

Scalability: Special care is taken to ensure the framework
and its performance are able to scale along two different
and very important axes:
• Horizontally with the size of resources, i.e. the number

of addressable units they contain (which can reach up to
billions of tokens for web corpora like those from the
WaCky family (Baroni et al., 2009)).

• Vertically in terms of the number of (parallel) annotation
layers of arbitrary type. Especially speech corpora can
contain very rich phonetic annotations on various levels
when annotated by automatic systems.

4.3. Components
Instead of squeezing an entire corpus into one big graph we
provide a series of types and constructs that model aspects
of a corpus in ways closer to actual linguistic concepts.

6We borrow the term to describe the transformation of raw an-
notation values into collections of addressable discrete units, such
as sequences or grids. Common examples are individual charac-
ters in a text, pixels in an image or frames in an audio stream.

7http://jpf.sourceforge.net/
8OSGiTM https://www.osgi.org/
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Figure 3: Simplified UML class diagram showing the rela-
tions between basic types described in Section 4.3.

Units: At the core we provide generic building blocks to
model addressable units in a corpus (see Figure 3 for a basic
UML class diagram of those types and their relations and
Table 1 for additional explanations). Those Items can rep-
resent any individual data points, regions, edges or aggre-
gations within a corpus. In addition to construct a corpus
by aggregation, Fragments offer a way of subdividing
existing items into smaller addressable units.
Each item in a corpus can be identified by two ways: One
is a numerical id that is unique within its host layer and the
other is its current position in that layer. While the id is
persistent, the current index can change for editable corpus
data and is mainly used for spatial comparisons or map-
pings. Unlike other approaches we do not maintain a full
bidirectional linking between related items outside of their
native host container. Instead a container only holds links
to its contained items, but the reverse linking is moved into
dedicated mapping facilities on the layer level. This keeps
linking overhead to a minimum and makes the model scal-
able wrt concurrent segmental or structural information.

Layer: Layers in our model directly correspond to their
linguistic counterparts and organize parts of a corpus such
as annotations, segmentations, hierarchies or other types of
structures. Layers carrying segmental or grouping infor-
mation play a special role since they can act as foundation
or boundary layers. The former provide a shared space for
spatial comparisons equivalent to timelines in other systems
and the latter are used for restricting the scope of complex
constructs such as relations. To link different aggregating
or foundation layers dedicated mapping facilities are used
to translate between those index spaces.

Context: Layers are naturally grouped according to the
data source their content originated from, for example a
database, web-service or a local file. On the context level
dependencies to external corpus resources are defined and
each context must have a singular layer designated for the
roles of foundation and primary, to define the segmentation
of traversable data chunks of the context and their shared
address space. Each context is associated with its individual
converter implementation that mediates between the phys-
ical source of data and the in-memory model instances as
described in more detail in Section 4.7.

Corpus: On the top of the hierarchy a corpus combines
an arbitrary number of contexts, which enables modeling
of resources that consist of multiple data sources or are ex-
pressed in several different formats. Each corpus in the
framework is an independent and interactive object that
client code can work with in many different ways, some
of which are described and compared in Section 4.6.

Type Function
Item basic addressable unit
Edge link/relation between items
Fragment anchors used to split existing items based

on their rastered annotation values
Container logical grouping of items
Structure container that augments its elements (=

nodes) with edges

Table 1: Basic types used to model addressable units, seg-
mentation and structure in a corpus resource and their re-
spective functions. Aggregating types are italicized.

4.4. Annotations
A very central requirement for successfully unifying richly
annotated corpus resources across different modalities is
the ability to deal with very diverse types of annotations. To
achieve this we impose no direct limitations on the nature
of annotation values that can be stored or retrieved through
the model. In addition we defined a (extensible) collection
of commonly used annotation types that are directly sup-
ported by specialized storage implementations. The most
important ones are listed as follows:

• Character sequences (Strings). With Java natively
modeling characters as UTF-16 code units in memory,
this directly provides sufficient Unicode support.

• Numerical values (integer, long, float, double)
• Links to external resources such as files or websites

(URL, URI and local file paths).
• Images modeled as bitmap graphics.
• Binary streams such as audio or video content. Our

framework does not restrict or support specific multime-
dia formats. It is left to the producer of a resource de-
scription (cf. Section 4.5) to include sufficient informa-
tion about the encoding, preferably in the form of stan-
dardized format identifiers so that Java’s default frame-
works for handling media content can be used.

• References to other Items to model simple structures
such as arguments.

• Vector and matrix types to allow aggregation of other
supported value types.

4.5. Metadata
In Section 4.3 we covered the design of a very flexible
data model for representing the content of arbitrary cor-
pus resources. This maximized generality reduces the typ-
ical overhead of developing very content specific software
components (e.g. a custom-built search or visualization in-
terface tailored to the content of a single corpus).
Sacrificing specificity, if not compensated somehow, can
on the other hand create certain disadvantages, such as not
knowing how to visualize a certain piece of data expressed
in the model. This is especially true for interactive sys-
tems that wish to provide assistive functions or information
to the end-user. Such assistive functions are for example
optimized visualization of linguistic data or automatically
limiting user input for search constraints based on the con-
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1 <annotation id=”common.tags.stts” name=”STTS−
Tagset”, valueType=”string”>

2 <values>
3 <value name=”Adjective”>JJ</value>
4 <value name=”Noun”>NN</value>
5 <value name=”Determiner”>DT</value>
6 <value name=”Verb, gerund”>VBG</value>
7 <value name=”Verb, 3rd sg”>VBZ</value>
8 [...]
9 </values>

10 </annotation>

Figure 4: Part of a manifest in XML format describing a
part of the STTS tagset for part-of-speech annotations as a
reusable template. See Figure 5 for an example of another
metadata component referencing this template.

1 <corpus id=”my.simple.corpus”>
2 <context foundation=”token”>
3 <layerGroup primary=”token”>
4 <itemLayer id=”token”/>
5 <itemLayer id=”sentence”>
6 <baseLayer layerId=”token”/>
7 <container containerType=”span”/>
8 </itemLayer>
9 <annotationLayer id=”content”>

10 <baseLayer layerId=”token”/>
11 <annotation key=”id” valueType=”int”/>
12 <annotation key=”form”/>
13 <annotation key=”lemma”/>
14 <annotation key=”pos” templateId=”common.tags.

stts”>
15 <!-- Inherited from template -->
16 </annotation>
17 </annotationLayer>
18 </layerGroup>
19 </context>
20 </corpus>

Figure 5: Manifest XML specifying the structure of a sim-
ple two-level corpus resource with some shallow annota-
tions. Note how the declaration for part-of-speech annota-
tions in line 14 references a template previously defined in
Figure 4. A sentence matching this structural description
can be found in Figure 6 encoded in two different formats.

tent of a tagset. If only provided a general graph-like repre-
sentation of a corpus without any additional information, a
processing software component would have to undergo the
time-consuming task of analyzing the resource first.
To this end we designed a compact metadata schema and its
associated serialization format in XML that can express in-
formation regarding a corpus resource’s structure and con-
tent. For every complex type (Container or Structure)
and each layer used in the storage model this metadata
model provides dedicated descriptions called manifests
(“simple” types are described as part of their surrounding
host construct). These descriptions include dependencies
between layers, what annotations are available for which
items, as well as types of structures or containers and more.

For improved interoperability most metadata elements can
be linked to established identifiers of linguistic categories
to better express their meaning, for example using ISO-
cat/DatCatInfo as described in (Windhouwer and Wright,
2012). Conventional metadata to describe a resource’s
provenance is however outside the scope of this scheme.
Using such a manifest enables tools to properly handle the
general data structures provided by the storage model to-
tally independent from the original format or data source of
a corpus. Figure 6 shows instances of two different textual
formats that both encode the same chunk of data match-
ing the description in Figure 5. For an application the re-
sulting representation in our data model looks exactly the
same. It could also contain information on how to access
the resource it is describing, but this is currently outside
our intended scope for the metadata model. Note that it
remains the responsibility of the producer of a resource to
provide this metadata and also to some extent to implement
means of converting the raw form of a resource into an ac-
tual model representation (more on this in Section 4.7).

4.6. Interaction
Modeling frameworks often confine themselves to provid-
ing generic data structures and support for their serializa-
tion. This keeps them usually easy to use, but leaves the
bulk of additional management to client code. Different
types of applications pose very diverse requirements to un-
derlying model libraries. To accommodate a wide range of
possible use-cases our framework features different opera-
tion modes for interacting with a corpus:

Navigation: Depending on their individual needs, appli-
cations can access data in a corpus directly (communicating
with the converter level without intermediate abstraction
layers), as a stream (forward-only iteration) or in a “win-
dow” mode through so called views. The latter approach
allows for horizontal and vertical filtering (for instance to
limit elements to candidates provided by some index sys-
tem and to reduce the amount of required annotation layers)
and also supports paging to traverse the selected sub-corpus
block-wise.

Assistance: The components described in Section 4.3 can
be used with a varying degree of framework support, for
instance raw as generic building blocks if no management
support by the framework is desired or fully managed when
accessing the corpus content through a view or stream. As-
sistance includes for example structural or annotation veri-
fication based on the associated metadata definitions.

Editability: Resources are declared static or editable in
their metadata and client code can additionally specify if
it needs write access when connecting to a corpus. The
framework is then able to optimize actual model instances
for performance based on those decisions. When in write
mode, the framework also offers an integrated edit history
for live data to record (or undo) any modifications and a
notification system to inform client code of changes.

4.7. Conversion
Of course the transformation of raw data into an in-memory
model still requires a piece of software dedicated to that
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1 Finding find VBG
2 the the DT
3 right right JJ
4 format format NN
5 is be VBZ
6 tricky tricky JJ
7 . . .

<s id=”s1”>
<graph>
<terminals>
<t id=”s1 1” word=”Finding” lemma=”find” pos=”VBG”/>
<t id=”s1 2” word=”the” lemma=”the” pos=”DT”/>
<t id=”s1 3” word=”right” lemma=”right” pos=”JJ”/>
<t id=”s1 4” word=”format” lemma=”format” pos=”NN”/>
<t id=”s1 5” word=”is” lemma=”be” pos=”VBZ”/>
<t id=”s1 6” word=”tricky” lemma=”tricky” pos=”JJ”/>
<t id=”s1 7” word=”.” lemma=”.” pos=”.”/>
</terminals>
</graph>
</s>

Figure 6: Automatically processed sentence in both a tabular (left text) format similar to the ones used in various CoNLL
Shared Tasks, e.g. (Hajič et al., 2009), and TigerXML (König et al., 2003) on the right. Both representations contain the
same annotations and hierarchical structure expressed by the manifest description in Figure 5.

particular representation or data source. This is an issue
which cannot be solved universally due to the fundamen-
tal differences in the ways data is stored in different sys-
tems or file types (such as database system versus plain text
or audio files). While ideally the existence of serialization
formats for linguistic annotations such as GrAF (cf. Sec-
tion 2) would obsolete many less expressive or flexible ap-
proaches, in reality pragmatic considerations of sticking to
alternative formats often prevail. The matter is further com-
plicated when taking different use-cases into account where
corpora of vastly different sizes are involved and where as-
pects like pure storage-efficiency takes priority over those
of expressiveness or flexibility of the format being used.
As such the necessity of decoupling in-memory modeling
completely from the original representations still remains.

In our framework this task of physically connecting to a
given corpus resource (i.e. converting between its native
form and the respective in-model instances) is performed
by implementations of the Driver interface. Drivers al-
low the core framework to completely abstract away from
the specifics of individual data sources. From the frame-
work’s point of view the complexity is reduced to querying
the driver implementations for information such as the size
of a layer and to issue read or write operations for selected
parts of a resource (which in turn causes the driver to per-
form the necessary conversions).

While the initially stated complexity to some extent still re-
mains, it is possible to implement this “converter” part of
the application in such a way that the specifics of a physical
representation can be defined by means of a schema which
allows converters to adapt to input that is different but of
a similar type9 and greatly reduces required development
effort. We cover a series of common formats and sources
natively and provide generic converter solutions which can
be configured using such schemata (either as part of a man-
ifest, via external files or programmatically).

9For example the support for schema definitions to read arbi-
trary tabular text data in the ICARUS (Gärtner et al., 2015) explo-
ration and query tool

5. Usage Examples
This section illustrates how client code uses the concepts
introduced in previous sections and especially the different
interaction modes outlined in Section 4.6. Where applica-
ble, example code will assume the simple corpus structure
shown in Figure 5 and the one-sentence content in Figure 6.

5.1. Building a Corpus
For low-level tasks, for instance a driver implementation,
direct constructive interaction with the basic framework
members is required. The following code snippet illustrates
the construction of the sentence shown in Figure 6:
1 // Binding to manifests/storage
2 ContainerManifest sentenceManifest = ...;
3 Container sentenceRootContainer = ...;
4 AnnotationLayer contentLayer = ...;
5 // Simplify creation of building blocks via factory
6 LayerMemberFactory factory = newMemberFactory();
7 // Instantiate sentence container
8 Container sentence = factory.newContainer(
sentenceManifest, sentenceRootContainer, 1);

9 // Create, add and annotate tokens
10 Item token1 = factory.newItem(sentence,1);
11 sentence.addItem(token1);
12 contentLayer.setValue(token1, "form", "Finding");
13

14 Item token2 = factory.newItem(sentence,2);
15 sentence.addItem(token2);
16 contentLayer.setValue(token2, "form", "the");
17

18 // Finally add finished sentence
19 sentenceRootContainer.addItem(sentence);

The process involves manually constructing the individual
tokens, grouping them into a sentence and attaching annota-
tions. It also assumes an existing host corpus and access to
certain parts of the associated manifest and layers to store
new content in. For brevity only the first two tokens are
constructed and other annotation layers besides the form
layer are omitted.

5.2. Accessing Corpus Parts
As mentioned previously in Section 4.6 there are several
ways for accessing (parts of) a corpus resource through the
framework. The following two code examples show very
different approaches, one involving horizontal filtering and
one for simple sequential streaming.
In the first snippet client code is only interested in a selected
subset of tokens. It qualifies the actual token indexes by
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means of IndexSet instances and the layers it requires by
a Scope in lines 3 and 5. With those parameters the corpus
then creates a CorpusView object which essentially acts
as a filtered sub-corpus. Iterating over the tokens contained
in this view and outputting their respective form annota-
tions then results in “the format is tricky” to be printed one
token per line:

1 Corpus corpus = ...;
2 // Define the section of interest
3 IndexSet[] indices = IndexUtils.wrap(1,3,4,5);
4 // Define the layers of interest
5 Scope scope = Scope.withLayers(corpus, "token",
"content");

6 // Filtered "window" of the corpus
7 CorpusView view = corpus.createView(scope, indices,
AccessMode.READ, Options.NONE);

8 // Our "triple store" of annotations
9 AnnotationLayer content = view.fetchLayer("content");

10 // Request loading of the corpus portion
11 view.getPageControl().load();
12 // Interface for accessing the view
13 CorpusModel model = view.getModel();
14 // Contained "list" of tokens
15 Container rootContainer = model.getRootContainer();
16 // Iterate over all tokens
17 for(int i=0; i<rootContainer.getItemCount(); i++) {
18 Item item = rootContainer.getItemAt(i);
19 System.out.println(content.getValue(item, "form"));
20 }

Often an application does not require elaborate filtering of a
corpus before processing. Especially analysis tools such as
parsers simply need a way of accessing an entire corpus one
element at a time. For this use-case the framework provides
streaming, as shown in the following code:

1 Corpus corpus = ...;
2 // Define the layers of interest
3 Scope scope = Scope.withLayers(corpus, "token",
"content");

4 // Create stream for entire corpus
5 ItemStream stream = corpus.getStream(scope,
AccessMode.READ, Options.NONE);

6 // Our "triple store" of annotations
7 AnnotationLayer content = view.fetchLayer("content");
8 // Traverse items in sequence
9 while(stream.advance()) {

10 Item item = stream.currentItem()
11 System.out.println(content.getValue(item, "form"));
12 }

Again client code defines the layers it is interested in, but
this time it obtains an ItemStream that lets it iterate over
all the tokens in the corpus. Since there is no horizontal fil-
tering involved this time, the output will be the entire sen-
tence from Figure 6 “Finding the right format is tricky .”.

5.3. Fragmentation

What is the obligatory form for a corpus’ primary data?
Should it be a collection of already segmented units? Or
should it be the original raw data such as the entire text of a
book? Rarely is there an absolute answer for such questions
within the universe of highly diverse corpus resources.

Our framework therefore does not force a singular approach
for composing a corpus. The previous code snippets always
used elements of token layer that already were properly
segmented. The next example shows how those tokens can
be created by splitting annotation values to fragment the
respective original text.

1 // Simplify creation of building blocks
2 LayerMemberFactory factory = newMemberFactory();
3 // Existing item that represents entire text
4 Item text = ...;
5 // Define span for "Finding"
6 Position begin = Positions.create(0);
7 Position end = Positions.create(6);
8 Fragment token1 = factory.newFragment(sentence, 1,
text, begin, end);

9 // Define span for "the"
10 begin = Positions.create(8);
11 end = Positions.create(10);
12 Fragment token2 = factory.newFragment(sentence, 2,
text, begin, end);

5.4. Using Manifests
Manifests (the metadata part of our framework) offer a
great way for applications to optimize computation or
graphical user interfaces specifically for the content of a
corpus in advance. Since the entire composition of a cor-
pus object is described in detail in a formalized manner by
its associated manifest, client code can use this information
without having to actually read the content of a the corpus
or to tailor its behavior to a certain type of resource.
The following code snipped illustrates how an application
can use the manifest in Figure 5 (more specifically, the
tagset template from Figure 4) to create specialized com-
ponents for its user interface (UI):
1 // Manifest as provided to client code
2 AnnotationLayerManifest layerManifest = ...;
3 // Pick part-of-speech annotations as example
4 AnnotationManifest annotations =
layerManifest.getAnnotationManifest("pos");

5 // Fetch the allowed values for this annotation
6 ValueSet tagset = annotations.getValueSet()
7 for(int i=0; i<tagset.valueCount(); i++) {
8 Object value = tagset.getValueAt(i);
9 // Check if advanced documention is available

10 if(value instanceof ValueManifest) {
11 ValueManifest manifest = (ValueManifest) value;
12 // Human readable id of the tag
13 String name = manifest.getName();
14 // Detailed description of the tag
15 String description = manifest.getDescription();
16 // Actual underlying tag value
17 value = manifest.getValue();
18 // Now make a more user friendly UI
19 addComplexUiElement(value, name, description);
20 } else {
21 // Use "value" without additional info
22 addSimpleUiElement(value);
23 }
24 }

By exploiting the information available through the prede-
fined tagset, the application can create rich UI components
that provide increased usability to its users. For instance,
human readable names and descriptions that accompany the
bare value definitions in the manifest can be used for addi-
tional info-labels or tooltips in the interface.

6. Availability
The core of our framework is available as a collection of
individual Java libraries that cover and implement differ-
ent aspects of our approach. We published the model li-
braries themselves, as well as a detailed documentation in
the framework of CLARIN10 and made it available via a
persistent identifier11 in order to ensure sustainability.

10https://www.clarin.eu/
11http://hdl.handle.net/11022/

1007-0000-0007-C636-D

1093

https://www.clarin.eu/
http://hdl.handle.net/11022/1007-0000-0007-C636-D
http://hdl.handle.net/11022/1007-0000-0007-C636-D


7. Conclusion
In this paper we presented our design and implementation
of a novel corpus modeling framework. It approaches the
task of modeling corpus resources from a perspective of
processing and querying. Being available as a Java toolkit
it can be used to provide unified in-memory representa-
tions of arbitrary corpus resources. Independence wrt to
linguistic theories or tagsets allows it to work across dif-
ferent modalities. While our reference implementation is
provided in Java, the default metadata serialization format
is XML and so the entire concept can be also transfered to
other programing languages.
In the future we plan on broadening the support for (stan-
dardized) serialization formats and also provide a built-in
interface for database connectivity. While currently fo-
cused strictly on the modeling of corpora as collections of
utterances, we do consider extending the toolkit to at least
conceptually recognize other resources such as lexicons for
which adequate modeling solutions already exist.
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