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Abstract
There are many machine translation (MT) papers that propose novel approaches and show improvements over their self-defined
baselines. The experimental setting in each paper often differs from one another. As such, it is hard to determine if a proposed approach
is really useful and advances the state of the art. Chinese-to-English translation is a common translation direction in MT papers, although
there is not one widely accepted experimental setting in Chinese-to-English MT. Our goal in this paper is to propose a benchmark
in evaluation setup for Chinese-to-English machine translation, such that the effectiveness of a new proposed MT approach can be
directly compared to previous approaches. Towards this end, we also built a highly competitive state-of-the-art MT system trained
on a large-scale training set. Our system outperforms reported results on NIST OpenMT test sets in almost all papers published in
major conferences and journals in computational linguistics and artificial intelligence in the past 11 years. We argue that a standardized
benchmark on data and performance is important for meaningful comparison.
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1. Introduction
Over the years, there have been many published papers on
machine translation (MT), proposing novel ideas by sho-
wing improvements over certain baselines. However, a pa-
per often has a different experimental setup from the others.
These variations include the approach (algorithm) and data-
set. Ideally, research and development work on MT should
be based on a benchmark of system setup with good per-
formance. Otherwise, there is no support in asserting that a
proposed method advances the state of the art.
Unfortunately, for Chinese-to-English MT, two widely spo-
ken human languages and one of the most well-studied
language translation directions in MT, there is no widely
accepted standard benchmark for evaluation, comprising
a standardized training set, development set, and test set.
Throughout the past decade, Chinese-to-English translation
has been most commonly performed on NIST OpenMT1

test sets, trained on parallel and monolingual corpora from
the Linguistic Data Consortium (LDC)2.
Our goal in this paper is to propose a benchmark in evalua-
tion setup for Chinese-to-English machine translation, such
that the effectiveness of a new proposed MT approach can
be directly compared to previous approaches. Towards this
end, we also built a highly competitive state-of-the-art MT
system trained on a large-scale training set. Our system
outperforms reported results on NIST OpenMT test sets in
almost all papers published in major conferences and jour-
nals in computational linguistics and artificial intelligence
in the past 11 years.
The rest of this paper is organized as follows. Section 2
describes our MT approach. Section 3 elaborates our expe-
rimental setup. Section 4 presents our experimental results.
Section 5 describes related work. Finally, Section 6 gives

1www.nist.gov/itl/iad/mig/
open-machine-translation-evaluation

2catalog.ldc.upenn.edu

the conclusion.

2. Neural Machine Translation
We built a neural machine translation (NMT) system based
on the encoder-decoder approach with attention mechanism
(Bahdanau et al., 2015). This NMT approach encodes an
input sentence into a continuous representation by an enco-
der recurrent neural network (RNN) and produces transla-
tion output by a decoder RNN. The decoder RNN, through
an attention mechanism, looks into different parts of the en-
coded input sentence while decoding is in progress.

2.1. Encoder-Decoder Model with Attention
Given a target language sentence y = (y1, ..., yn) and the
corresponding source language sentence x = (x1, ..., xm),
the neural machine translation model is formulated as

p(y|x) =
n∏
i=1

p(yi|y1, ..., yi−1,x) (1)

in which the probability of the target word yi at time step i
is computed by the decoder RNN as follows:

p(yi|y1, ..., yi−1,x) = F (yi, yi−1, si, ci) = ti[yi] (2)

where F is a function to compute the probability of the
word yi to be generated at time step i and ti is a vector
having the size of the target language vocabulary, in which
each vector dimension ti[y] stores the probability of a word
y, computed as follows:

ti = softmax(Wt(tanh(Utsi + VtE[yi−1] + Ctci + bt)))
(3)

where Ut, Vt, and Ct are matrices mapping the hidden
state si, the embedding of the previous word E[yi−1], and
the context vector ci respectively to an intermediate vec-
tor representation, with bt being the bias vector. Then
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Wt transforms the intermediate vector representation to a
vocabulary-sized probability vector.
The decoder hidden state at a time step i is computed by

si = gy(E[yi−1], si−1, ci) (4)

where gy is the RNN unit function to compute the current
hidden state given the hidden state of the previous time step,
the previous word embedding, and the context.
Equation 3 indicates that the target word to be generated
at a given time step takes into account the context vector
ci, which is a weighted sum of each annotation vector hj ,
representing the source language sentence at position j:

ci =

m∑
j=1

αijhj (5)

in which the scalar weight αij for each hj is computed by
a softmax function:

αij =
exp(eij)∑m
k=1 exp(eik)

(6)

where eij is computed by

eij = vTa tanh(Was
′
i + Uahj + ba) + β (7)

where Wa and Ua are the weight matrices and ba is the
bias vector to compute a vector, which is then converted by
the weight vector va and the bias term β into a scalar eij ,
i.e., the degree of matching between the target word at time
step i and the input word at position j. This is conceptually
a soft alignment model.
To compute the decoding hidden state si in Equation 4, we
adopt an approach that incorporates the context ci from
the attention mechanism by using two transitions (Senn-
rich et al., 2017b). The decoder hidden state function
gy(E[yi−1], si−1, ci) in Equation 4 first passes the embed-
ding E[yi−1] of the input word yi−1 to the first recurrent
unit function, resulting in an intermediate hidden state s′i,
which is computed by the decoder recurrent unit functions
gy,1 as:

s′i = gy,1(E[yi−1], si−1) (8)

and is passed to Equation 7. Then, the second recurrent unit
function gy,2 processes the context ci defined in Equation 5
and the intermediate hidden state s′i as follows:

si = gy,2(ci, s
′
i) = gatt(E[yi−1], si−1, ci) (9)

where gatt(E[yi−1], si−1, ci) is a composition of gy,1 and
gy,2. It is to be noted that as the decoder generates an output
word yi at current time step i, the input word at the time step
is yi−1. The recurrent unit function is described further in
Section 2.2.
We made use of the bidirectional encoder RNN, where each
annotation vector hj is a concatenation of the forward and
the backward RNN hidden states,

−→
hj and

←−
hj respectively,

defined as follows:

hj = [
−→
h j ;
←−
h j ] (10)

−→
h j =

−→g x(E[xj ],
−→
h j−1) (11)

←−
h j =

←−g x(E[xj ],
←−
h j+1) (12)

where−→g x is the forward RNN unit function to compute the
RNN hidden state at the current encoding position j given
the embedding of the current word E[xj ] and the hidden
state at the previous position, while ←−g x is the backward
RNN unit function to compute the hidden state at j given
the word embedding E[xj ] and the hidden state at the next
position.
Training an end-to-end NMT model is conducted by the
back-propagation through time (BPTT) algorithm, which
updates the parameters of the RNN while the time steps are
unrolled, to minimize a cost function. The parallel training
corpus is divided into mini-batches, each consisting of N
parallel sentences. The NMT model parameters are updated
in each mini-batch.
Translation decoding is performed by a beam search algo-
rithm, which produces translation output sequentially in the
target language order. NMT decoding proceeds by genera-
ting one word at each time step.
In NMT, as described in Equation 3, computing the proba-
bility involves mapping the hidden state vector to a vector
with the dimension of the vocabulary size. Therefore, to
make computation tractable, the NMT vocabulary size is li-
mited. To cope with the limitation of the vocabulary size,
we adopt fragmentation of words into sub-words of cha-
racter sequences through the byte pair encoding (BPE) al-
gorithm (Sennrich et al., 2016). This algorithm finds the
N most frequent character sequences of variable length,
through N character merge operations, and splits less fre-
quent words based on this list of character sub-sequences.

2.2. Recurrent Unit Function
To compute the hidden state representations in Equations 4
and 10–12, we made use of recurrent unit functions with
gate mechanism to control the flow of information from the
input and the previous hidden state. There are two com-
monly adopted gate mechanisms in the encoder-decoder
RNN NMT model, namely the long short-term memory
(LSTM) (Hochreiter and Schmidhuber, 1997) and the ga-
ted recurrent unit (GRU) (Cho et al., 2014).
The LSTM RNN unit consists of a memory cell µj and
three gates, i.e., the input gate ιj that controls the intensity
of the new information to be stored in the memory cell,
the forget gate fj that controls how much to remember or
to forget from the previous memory cell, and the output
gate oj that controls how much information is output to the
hidden state from the memory. At each time step j, given
the input χj , the hidden state ηj is formulated as:

ηj = LSTM(χj , ηj−1)

= oj ◦ tanh(µj) (13)

where

ιj = σ(Wιχj + Uιηj−1 + bι)

fj = σ(Wfχj + Ufηj−1 + bf )

µj = fj ◦ µj−1 + ιj ◦ tanh(Wµχj + Uµηj−1 + bµ)

oj = σ(Woχj + Uoηj−1 + bo)

W and U denote the weight matrices transforming the in-
put embedding and the previous hidden state into the corre-
sponding outputs, and b denotes the bias vectors.
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Meanwhile, the recurrent unit for GRU at each time step j
consists of two gates, i.e., the update gate zj and the reset
gate rj . At each time step j, given the time step input χj ,
the hidden state ηj is formulated as:

ηj = GRU(χj , ηj−1)

= (1− zj) ◦ ηj−1 + zj ◦ ηj (14)

where

η
j
= tanh(Wχj + U [rj ◦ ηj−1] + b)

zj = σ(Wzχj + Uzηj−1 + bz)

rj = σ(Wrχj + Urηj−1 + br)

W andU denote the weight matrices transforming the input
embedding and the previous hidden state to the correspon-
ding outputs (denoted by the subscript), and b denotes the
bias vectors.
As shown in Equations 13 and 14, both LSTM and GRU
make use of gate mechanisms to control the information
flow from the input and the hidden state. But unlike LSTM,
GRU does not have the memory cell and the output gate.
GRU proposes the hidden state η

j
and interpolates each di-

mension with that of the previous hidden state, controlled
by the update gate zj . Meanwhile, the reset gate rj con-
trols the intensity of the previous hidden state to be taken
into account in the current pre-computed hidden state.
The LSTM encoder re-defines Equations 11 and 12 re-
spectively as:

−→
h j =

−→g x(E[xj ],
−→
h j−1) =

−−−−→
LSTM(E[xj ],

−→
h j−1)

←−
h j =

←−g x(E[xj ],
←−
h j+1) =

←−−−−
LSTM(E[xj ],

←−
h j+1)

while the GRU encoder re-defines the two equations re-
spectively as:

−→
h j =

−→g x(E[xj ],
−→
h j−1) =

−−−→
GRU(E[xj ],

−→
h j−1)

←−
h j =

←−g x(E[xj ],
←−
h j+1) =

←−−−
GRU(E[xj ],

←−
h j+1)

with the embedding representation E[xj ] of word xj at po-
sition j as the input to the recurrent unit function.
For decoding, in Equations 8 and 9, both gy,1 and gy,2 can
be instantiated by LSTM (Equation 13) as:

gy,1(E[yi−1], si−1) = LSTM1(E[yi−1], si−1)

gy,2(ci, s
′
i) = LSTM2(ci, s

′
i)

or with GRU (Equation 14) as:

gy,1(E[yi−1], si−1) = GRU1(E[yi−1], si−1)

gy,2(ci, s
′
i) = GRU2(ci, s

′
i)

where the input to the LSTM or GRU function for gy,1 is
the embedding of the previous word E[yi−1] and the input
for gy,2 is the context vector ci.

2.3. Deep Recurrent Layers
Following (Sennrich et al., 2017a), we adopt deep RNN
models for encoding and decoding. There are two alter-
natives to achieve this, namely the deep stacked RNN and

deep transition RNN. The deep stacked RNN passes the
whole input sequence to the first layer of RNN and feeds
the sequence of the output hidden representations to the
next layer of RNN. This is done subsequently depending
on the number of RNN layers. Meanwhile, the deep transi-
tion RNN passes an input at each time step through a series
of transitions (i.e., recurrent unit functions) and passes the
hidden state of the last transition to the next time step.

2.3.1. Deep Stacked RNN
We adopt the deep stacked RNN that involves residual con-
nection, summing the output of the previous RNN layer
with the computed hidden state of the current RNN layer,
and alternation of direction (Zhou et al., 2016), as illustra-
ted in Figure 1. In this model, for each layer l and time
step j, we need to distinguish between the computed hid-
den state of the current RNN unit function without residual
connection, i.e.,

−→
h lj , and the hidden state which includes

the residual connection, i.e., −→w l
j . The alternation of di-

rection is designed such that the odd-numbered and even-
numbered RNN layers process the sequence in the left-to-
right and right-to-left directions respectively. In the stacked
RNN with layer depthDx, the forward encoder hidden state
at time step j in Equation 11,

−→
h j , is computed as follows:

−→
h j =

−→g x(E[xj ],
−→
h j−1) =

−→wDx
j

−→wDx
j =

−→
h Dx
j +−→wDx−1

j

−→w 1
j =
−→
h 1
j =
−→g 1
x(E[xj ],

−→
h 1
j−1)

−→
h 2k
j = −→g 2k

x (−→w 2k−1
j ,

−→
h 2k
j+1), for 1 < 2k ≤ Dx

−→
h 2k+1
j = −→g 2k+1

x (−→w 2k
j ,
−→
h 2k+1
j−1 ), for 1 < 2k + 1 ≤ Dx

−→w l
j =
−→
h lj +

−→w l−1
j , for 1 < l ≤ Dx

In the above equations, −→g lx is the forward encoder recur-
rent unit function of a layer l in the deep RNN stack. It
can be instantiated with LSTM or GRU. While the above
equations compute the forward encoder hidden state, the
backward encoder hidden state

←−
h j is computed similarly

by changing the arrow direction from right (→) to left (←)
and swapping j − 1 with j + 1.
Since at each time step, the decoder has no knowledge of
the next word, there is no alternation of direction therein.
In addition, we only use the recurrent function with atten-
tion in the first layer of the RNN stack s1i , while the deeper
layers are simple RNN without attention. Therefore, the de-
coder RNN with layer depth Dy computes the hidden state
si in Equation 4, as follows:

si = gy(E[yi−1], si−1, ci) = w
Dy

i

w
Dy

i = s
Dy

i + w
Dy−1
i

s
Dy

i = gDy
y (w

Dy−1
i , s

Dy

i−1)

w1
i = s1i = g1att(E[yi−1], s

1
i−1, ci)

sli = gly(w
l−1
i , sli−1), for 1 < l ≤ Dy

wli = sli + wl−1i , for 1 < l ≤ Dy

The first RNN stack layer, s1i = g1att(E[yi−1], s
1
i−1, ci), is

a composition of two recurrent unit functions like in Equa-
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Figure 1: An illustration of a deep stacked RNN model (Zhou et al., 2016) with encoder stack depth (Dx) of 4 and decoder
stack depth (Dy) of 4.

tions 8 and 9, i.e.,

s1i = g1att(E[yi−1], s
1
i−1, ci)

s′i = g1y,1(E[yi−1], s
1
i−1)

s1i = g1y,2(ci, s
′
i)

Like the encoders, the decoder recurrent unit function gly at
each layer l can be instantiated by LSTM or GRU.

2.3.2. Deep Transition RNN
The deep transition RNN (Miceli-Barone et al., 2017) in-
volves a number of layers within a time step j through
which an input word is fed, as illustrated in Figure 2. The
recurrent unit function of each layer l is defined as a transi-
tion, which outputs an intermediate state

−→
h j,l for the enco-

der and sj,l for the decoder. With Lx transitions, the hidden
state representation at j is equivalent to the output of the last
layer, so for the forward encoder state, Equation 11 defines
−→
h j as:

−→
h j =

−→g x(E[xj ],
−→
h j−1) =

−→
h j,Lx

−→
h j,1 = −→g x,1(E[xj ],

−→
h j−1,Lx)

−→
h j,l =

−→g x,l(0,
−→
h j,l−1), for 1 < l ≤ Lx

where the input to the first recurrent unit transition isE[xj ],
the embedding of the input word at j, while the subsequent
higher level transitions only receive the output from the pre-
vious transition and do not receive the input word. The re-
verse hidden state

←−
h j in Equation 12 is computed similarly

by substituting j−1 with j+1. The encoder recurrent unit
function −→g x,l at each layer l can be instantiated by LSTM
or GRU.
While the baseline shallow decoder RNN already contains
two transitions, without and with attention respectively, the

deep transition decoder RNN is extended similarly to the
deep transition encoder RNN, such that the decoder hidden
state with depth Ly is computed as:

si,1 = s′i = gy,1(E[yi−1], si−1,Ly
)

si,2 = gy,2(ci, si,1)

si,l = gy,l(0, si,l−1), for 2 < l ≤ Ly
si = si,Ly

Similarly, the decoder recurrent unit function gy,l at each
layer l can be instantiated by LSTM or GRU.

3. Experimental Setup
3.1. Datasets
We conducted experiments using the parallel training cor-
pora from LDC to test on the NIST test sets. In addition,
we also conducted experiments on the United Nations Pa-
rallel Corpus (Ziemski et al., 2016), following (Junczys-
Dowmunt et al., 2016). We used the pre-defined trai-
ning, development, and test sets of the corpus following
(Junczys-Dowmunt et al., 2016) and conducted NMT ex-
periments accordingly.
We pre-processed our parallel training corpora by seg-
menting Chinese sentences, which originally have no spa-
ces to demarcate words, and tokenizing English sentences
to split punctuation symbols from words. Chinese word
segmentation was performed by a maximum entropy mo-
del (Low et al., 2005) trained on the Chinese Penn Treebank
(CTB) segmentation standard.
To alleviate the effect of rare words in NMT, we fragmented
words to sub-words through the byte pair encoding (BPE)
algorithm (Sennrich et al., 2016) with 59,500 merge opera-
tions. All our training sentences are lowercased.
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Figure 2: An illustration of a deep transition RNN model (Miceli-Barone et al., 2017) with 4 encoder transitions (Lx = 4)
and 4 decoder transitions (Ly = 4).

3.1.1. LDC Corpora
We divide the LDC corpora we used into older corpora3

and newer corpora4. Due to the dominant older corpora, we
duplicate the newer corpora of various domains ten times to
achieve better domain balance.
In addition to the parallel sentences, we also utilized a large
amount of monolingual English texts, consisting of the En-
glish side of FBIS parallel corpus (LDC2003E14) and all
the sub-corpora of the English Gigaword Fourth Edition
(LDC2009T07). Altogether, the combined corpus consists
of 107M sentences and 3.8B tokens. Each individual Gi-
gaword sub-corpus (i.e., AFP, APW, CNA, LTW, NYT, and
Xinhua) is used to train a separateN -gram language model.
The English side of FBIS is also used to train another sepa-
rate language model (LM). These individual language mo-
dels are then interpolated to build one single large LM, via
perplexity tuning on the English side of the development
data. We use this LM for translation output re-ranking.
To recover the original casing on the translation output,
we trained a statistical MT recaser model by using Moses
(Koehn et al., 2007) on the English side of FBIS parallel
text and the Xinhua portion of English Gigaword Fourth
Edition.
Due to computation time and memory consideration, pa-
rallel sentences in the corpora that are longer than 50 sub-
words in either Chinese or English are discarded. In the
end, the final parallel training examples consist of 7.65M
sentence pairs, 169M Chinese sub-word tokens (equivalent
to 166M word tokens), and 186M English sub-word tokens
(equivalent to 184M word tokens).

3LDC2002E18, LDC2003E14, LDC2004E12, LDC2004T08,
LDC2005T06, and LDC2005T10.

4LDC2007T23, LDC2008T06, LDC2008T08, LDC2008T18,
LDC2009T02, LDC2009T06, LDC2009T15, LDC2010T03,
LDC2013T11, LDC2013T16, LDC2014T04, LDC2014T11,
LDC2014T15, LDC2014T20, and LDC2014T26.

Our translation development (tuning) set is MTC corpus
version 1 (LDC2002T01) and version 3 (LDC2004T07).
This development set has 1,928 sentence pairs in total,
49K Chinese word tokens and 58K English word tokens on
average across the four reference translations. Our transla-
tion test set consists of the NIST MT evaluation sets from
2002 to 2006, and 20085. Altogether in the test sets, there
are 7,497 sentence pairs, 192K Chinese word tokens, and
237K English word tokens on average across the four refe-
rence translations.

3.1.2. UN Parallel Corpus
The training set of the UN Parallel Corpus, after pre-
processing and filtering those exceeding 50 sub-words, con-
sists of 9.73M parallel sentence pairs, 207M Chinese sub-
word tokens (equivalent to 204M word tokens), and 225
English sub-word tokens (equivalent to 223M word to-
kens). We also utilized larger English monolingual text,
i.e., all the English side of the UN Parallel Corpus before
length filtering, consisting of 11.3M sentences and 335M
word tokens. The development set of the UN Parallel Cor-
pus contains 4,000 sentence pairs, 107K Chinese word to-
kens, and 118K English word tokens, while the test set con-
tains 4,000 sentence pairs, 106K Chinese word tokens, and
118K English word tokens. There is only one reference
translation in the development and test sets of the UN Pa-
rallel Corpus.

3.2. NMT Model Parameters
We built our neural machine translation (NMT) system by
using Nematus (Sennrich et al., 2017b), an open-source
NMT toolkit which implements the encoder-decoder NMT
architecture with attention mechanism. Our system is based
on the NMT system in (Sennrich et al., 2017a). We built an

5LDC2010T10, LDC2010T11, LDC2010T12, LDC2010T14,
LDC2010T17, and LDC2010T21.
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ensemble model consisting of 4 independent models, which
are the cross product of two different deep RNN architectu-
res, i.e., deep stacked RNN and deep transition RNN, and
two different recurrent unit functions, i.e., GRU and LSTM.
For all our models, the word embedding dimension is 500,
and the hidden layer dimension is 1,024. Our deep stacked
RNN contains 4 stack layers on each of the encoder and
decoder. Meanwhile, our deep transition RNN contains 4
encoder transitions and 8 decoder transitions.
Training for each individual model progresses by updating
the model parameters at each mini-batch of 40 sentence
pairs to minimize the negative log-likelihood loss function
on the parallel training data. We use the Adam algorithm
(Kingma and Ba, 2015) with learning rate of 0.0001. At
each update, we clip the gradient norm to 1.0. We apply
layer normalization (Ba et al., 2016) on the model parame-
ters for faster convergence and tie the target-side embed-
ding with the transpose of the output weight matrix (Press
and Wolf, 2017). Model parameters are saved at every
checkpoint of 10,000 update iterations. At this stage, the
negative log-likelihood loss function on the development
set is checked. Training stops when there has been no im-
provement over the lowest loss function value on the deve-
lopment set for 10 consecutive checkpoints.
The main difference between our system and (Sennrich et
al., 2017a) is that while they only built NMT models with
GRU, we also made use of LSTM. Another difference is in
the usage of the larger monolingual English text. They built
a synthetic Chinese-English parallel corpus by translating
the monolingual English text to Chinese with an English-
to-Chinese (reverse direction) NMT model and appended
those sentence pairs to their parallel training corpus. Me-
anwhile, we exploited the English monolingual corpus by
building a 5-gram language model to re-rank the k-best
translation outputs produced by our NMT system.

4. Experimental Results
For experiments using the LDC corpora, translation qua-
lity is measured by case-insensitive BLEU (Papineni et al.,
2002), for which the brevity penalty is computed based
on the shortest reference (NIST-BLEU)6. Statistical signi-
ficance testing between systems is conducted by bootstrap
resampling (Koehn, 2004).
As shown in Table 1, among the individual model types,
the deep stacked LSTM NMT model gives the best perfor-
mance. However the best result is achieved by the ensem-
ble of 4 independent model types, combining deep stacked
and deep transition architectures with GRU and LSTM re-
current unit functions. This ensemble model gives an im-
provement of 4.40 BLEU points over the best deep stac-
ked LSTM model. Applying re-ranking by the N -gram
language model on top of the ensemble system of 4 inde-
pendent models gives a further improvement of 0.11 BLEU
point on average, which gives the best result of our system.
We are interested in comparing our 4-model ensemble be-
fore re-ranking with the ensemble of 2 models with only
one RNN unit function (but two different deep layers) and

6ftp://jaguar.ncsl.nist.gov/mt/resources/
mteval-v11b.pl

with only one deep layer (but two different RNN units). As
shown in Table 2, our 4-model ensemble outperforms every
2-model ensemble, and the improvement is statistically sig-
nificant (p < 0.01).
We also compare the best results of our system on NIST
test sets with the best results reported in published papers
on Chinese-to-English MT systems in major computational
linguistics and artificial intelligence publication venues7.
Over the years 2007–2017 (both years inclusive), our 4-
model ensemble system with re-ranking achieves a higher
BLEU score than the best results reported in almost all (402
out of 403) papers8.
Note that the LDC training datasets used in the publis-
hed papers that we compare to may not be the same as
ours. This incomparability would not have happened if
there were a widely adopted, standardized dataset for trai-
ning.
In addition, since there are two ways of computing BLEU
scores with respect to word casing, i.e., case-insensitive and
case-sensitive, we have taken care to compare BLEU scores
using the same word casing, that is, by comparing our case-
sensitive BLEU scores only to case-sensitive BLEU sco-
res published previously, and similarly for case-insensitive
BLEU scores.
Moreover, there are two ways of computation with respect
to brevity penalty calculation involving multiple reference
translations, namely “shortest”, used in NIST-BLEU, and
“closest”, used in IBM-BLEU. The former sets brevity pen-
alty against the shortest reference translation while the lat-
ter sets brevity penalty against the reference translation
whose length is the most similar to the system translation
output. We have also taken this into account by compa-
ring NIST-BLEU with NIST-BLEU, and IBM-BLEU with
IBM-BLEU9.
For UN Parallel Corpus experiments, translation quality is
measured by case-insensitive BLEU using the script provi-
ded by Moses10, following the evaluation setup in (Junczys-
Dowmunt et al., 2016)11.
As shown in Table 3, our best result is obtained by an
ensemble of 4 independent models with k-best output re-
ranking using N -gram LM trained on the whole English
side of the UN Parallel Corpus. Our system with re-ranking
is 0.3 BLEU point better than without re-ranking, and the
improvement is statistically significant (p < 0.05). Both of
our systems achieve higher BLEU scores than the best pu-
blished result for Chinese-to-English translation reported in
(Junczys-Dowmunt et al., 2016).

7CL journal, TACL, ACL, COLING, EMNLP, NAACL, SSST,
WMT, AAAI, and IJCAI.

8In one paper out of 403 papers (Huang et al., 2013), testing
was performed on 4 test subsets: the news subset and the web sub-
set of NIST06 and NIST08. Our system is only marginally worse
(by less than 0.1 BLEU point) on the news subset of NIST06, and
is better by a large margin (by 2–6 BLEU points) on the other 3
subsets.

9ftp://jaguar.ncsl.nist.gov/mt/resources/
mteval-v13a.pl

10The multi-bleu.perl script in the Moses distribution.
11Personal communication.
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Dataset GRU LSTM 4mod-ens
dstack dtrans dstack dtrans no re-ranking with re-ranking

NIST02 41.27 43.28 44.03 42.12 46.82∗∗ 46.94
NIST03 41.78 42.38 42.49 41.87 47.42∗∗ 47.58
NIST04 43.75 44.33 45.11 43.97 49.12∗∗ 49.13
NIST05 41.71 42.52 43.40 41.97 47.72∗∗ 47.78
NIST06 42.27 43.18 43.43 42.19 49.19∗∗ 49.37
NIST08 35.28 36.11 36.78 35.55 41.36∗∗ 41.48
Average 41.01 41.97 42.54 41.28 46.94∗∗ 47.05

Table 1: Experimental results in BLEU (%) of our NMT systems on NIST data set from LDC. Each individual model
is obtained by cross-combining two different deep RNN architectures, i.e., deep stacked (dstack) and deep transition
(dtrans) RNN, with two different recurrent unit functions, i.e., GRU and LSTM, without k-best re-ranking. The ensemble
of 4 model types (4mod-ens) is obtained by taking the best model from each individual model type. This setting is tested
both without and with re-ranking. Statistical significance testing was done to compare 4mod-ens with the best individual
model type, dstack-LSTM (∗∗: significant at p < 0.01).

PPPPPPPPUnit
Layer dstack dtrans dstack

+dtrans
GRU 41.01 41.97 45.15

LSTM 42.54 41.28 45.34
GRU+LSTM 44.72 45.02 46.94∗∗††‡‡##

Table 2: Experimental results in BLEU (%) on NIST data
set showing different combinations of RNN unit functions
and deep layers. The RNN unit functions include GRU,
LSTM, and the ensemble of the two. The deep layers in-
clude deep stacked (dstack) and deep transition (dtrans)
RNN, and the ensemble of the two. Statistical significance
testing is shown to compare our 4-model ensemble with
the ensemble of dstack+dtrans GRU (∗∗: significant at
p < 0.01), with dstack+dtrans LSTM (††: significant at
p < 0.01), with dstack GRU+LSTM (‡‡: significant at
p < 0.01), and with dtrans GRU+LSTM (##: signifi-
cant at p < 0.01).

Published Ours (4mod-ens)
no reranking with reranking

53.1 55.0 55.3∗

Table 3: Experimental results in BLEU (%) on the test
set of the UN Parallel Corpus of the best published result
in (Junczys-Dowmunt et al., 2016) and our system, without
and with k-best re-ranking with N -gram language model.
Statistical significance testing shows the comparison bet-
ween our 4-model system with re-ranking and without re-
ranking (∗: significant at p < 0.05).

5. Related Work
Establishing standards for the state of the art by publicly
accessible resources is important in research. In speech re-
cognition, for instance, there has been work on building
a virtual machine as a means of collaboratively building
a state-of-the-art system for speech recognition (Metze et
al., 2013), aiming at realizing a standardized state-of-the-
art system in a collaborative manner. While we do not pro-
vide any virtual machines, we have a similar intention of
making available a state-of-the-art MT system.

On NMT, Denkowski and Neubig (2017) argued that ex-
periments should be based on a strong baseline system to
ensure that a newly proposed approach indeed improves
over the best prior published approaches. They performed
their experiments on WMT and IWSLT tasks (but not on
Chinese-to-English translation) which have fixed training,
development, and test sets. The problem for Chinese-to-
English MT is greater in that there is no pre-defined set of
training data that must be used for experiments, and various
groups used different tuning sets and reported their results
on different NIST OpenMT test sets. In addition, the lack
of a standardized benchmark is not limited to neural MT
approaches, but has been widespread since statistical MT
approaches began to be tested on Chinese-to-English trans-
lation.

6. Conclusion

The problem of lack of consistent experimental setups for
Chinese-to-English MT poses a challenge in evaluating ne-
wly proposed approaches over the pre-existing state of the
art. This can be avoided if there is a clear benchmark
which consists of standardized training, development, and
test sets, as well as a common benchmark system setup. In
this paper, we have shown that our proposed MT appro-
ach can be used to build a competitive system on the NIST
OpenMT test sets that outperforms systems in almost all
403 published papers in the past 11 years.
We encourage Chinese-to-English MT experiments to use
our common benchmark consisting of standard data and
evaluation. As the NIST dataset from LDC is widely
used in the Chinese-to-English MT research community,
we have put up a scoreboard listing the scores achieved by
all prior published papers when evaluated on the NIST da-
taset and released the source code and translation output of
our best NMT system12. By doing so, we hope future work
can make more meaningful comparisons to previous MT
research.

12https://github.com/nusnlp/
c2e-mt-benchmark
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