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Abstract
Inspired by the tasks of Multimodal Machine Translation and Visual Sense Disambiguation we introduce a task called Multimodal
Lexical Translation (MLT). The aim of this new task is to correctly translate an ambiguous word given its context - an image and a
sentence in the source language. To facilitate the task, we introduce the MLT dataset, where each data point is a 4-tuple consisting
of an ambiguous source word, its visual context (an image), its textual context (a source sentence), and its translation that conforms
with the visual and textual contexts. The dataset has been created from the Multi30K corpus using word-alignment followed by human
inspection for translations from English to German and English to French. We also introduce a simple heuristic to quantify the extent
of the ambiguity of a word from the distribution of its translations and use it to select subsets of the MLT Dataset which are difficult
to translate. These form a valuable multimodal and multilingual language resource with several potential uses including evaluation of
lexical disambiguation within (Multimodal) Machine Translation systems.

Keywords: Multimodal Machine Translation, Visual Sense Disambiguation, Multimodal Multilingual Language Resources

1. Introduction
Multimodal Machine Translation is the task of translating
text using information in other modalities (such as images)
as auxiliary cues. It has been recently framed as a shared
task as part of the last two editions of the Conference on
Machine Translation (WMT16, WMT17) (Specia et al.,
2016; Elliott et al., 2017). Within the Conference on Ma-
chine Translation, the task is defined as: Given an image
and its description in the source language, the objective is
to translate the description into a target language, where this
process can be supported by information from the image, as
depicted in Figure 1.

Figure 1: Multimodal Machine Translation Shared Task

One of the main motivations to introduce multimodality in
Machine Translation is the intuition that information from
other modalities could help find the correct sense of am-
biguous words in the source sentence, which could poten-
tially lead to more accurate translations. For example, the
English sentence “A man is holding a seal” could have at
least two different translations in German depending on the
sense of the word seal - (1) “Ein Mann hält ein Siegel”, and
(2) “Ein Mann hält einen Seehund”. The images (Figure 2)
could help a Multimodal Machine Translation system dis-
ambiguate the correct sense of the word seal and translate
accordingly.
Disambiguation of word senses, popularly known as Word
Sense Disambiguation or Lexical Disambiguation, is a

(a) Ein Mann hält ein Siegel

(b) Ein Mann hält einen Seehund

Figure 2: Two different translations of “A man is holding a
seal” depending on the visual context

widely studied natural language processing task. Given an
ambiguous word and its context, the objective is to assign
the correct sense of the word based on a pre-defined sense
inventory. A review of approaches to Word Sense Disam-
biguation can be found in Navigli (2009) and Raganato et
al. (2017).
In standard Word Sense Disambiguation, words are disam-
biguated based on their textual context. However, in a mul-
timodal setting we could also disambiguate words using vi-
sual context. This modified version of Word Sense Disam-
biguation that uses visual context instead of textual context
is called Visual Sense Disambiguation.
In monolingual work, Visual Sense Disambiguation has
previously been attempted for ambiguous nouns like the
word ‘bank’ which could refer to a financial institution or a
river bank (Barnard et al., 2003; Loeff et al., 2006; Saenko
and Darrell, 2009; Chen et al., 2015). Recently, Visual
Sense Disambiguation has also been attempted for ambigu-
ous verbs like the word ‘play’ which could refer to playing
a musical instrument or playing a sport (Gella et al., 2016).
In Machine Translation, including Multimodal Machine
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Translation, disambiguation of word sense happens implic-
itly. For instance, in the same example “A man is holding a
seal”, we would come to know whether the system disam-
biguated the correct sense of the word seal only indirectly
from the translation produced by the system. The corre-
sponding translation of the word seal in the target language
(Siegel or Seehund in German) acts as a “sense label”. Fur-
ther, in Multimodal Machine Translation, we would like
know which modality (visual or textual) contributed to the
disambiguation and to what extent.
The main contribution of this paper is to facilitate the study
of Word Sense Disambiguation within Multimodal Ma-
chine Translation framework by:

1. Generating a language resource of ambiguous words
and its translations together with visual and textual
contexts. We call this the Multimodal Lexical Trans-
lation Dataset (MLT Dataset).

2. Introducing a new task - Multimodal Lexical Transla-
tion (MLT) - where the objective is to translate a single
word into the target language given an image (visual
context) and a sentence in the source language (textual
context).

3. Demonstrating a simple way to evaluate lexical dis-
ambiguation within Multimodal Machine Translation
using the MLT Dataset.

We build this resource for English to German and English
to French translations.

2. Language Resource - MLT Dataset
The MLT Dataset is a collection of 4-tuples of the form:

{(xi, yi,xi,vi)}ni=1 (1)

where xi is an ambiguous1 word, xi is its textual context
(a source sentence), vi is its visual context (an image), and
yi is its translation that conforms with both the textual and
visual contexts.

2.1. Generating the MLT Dataset
We make use of the Multi30K dataset (Elliott et al., 2016;
Elliott et al., 2017), an extension of the Flickr30K dataset
(Young et al., 2014), which consists of 31,014 triples of the
form (vi,xi,yi) where vi is an image, xi is a description
of the image in the source language (English) and yi is a
translation of the description in the target language (Ger-
man and French) by human translators (i is an integer in-
dex ranging from 1 to 31,014). From this sentence-level
dataset, we extract the ambiguous words and their lexical
translations using the following steps:
Pre-processing→Word Alignment→ Automatic Filtering
→ Human Filtering.

2.1.1. Pre-processing
Sentences in all languages are lowercased and tokenized
using scripts from the Moses toolkit2 (Koehn et al.,

1We use the term ‘ambiguous’ for those words in the source
language that have multiple translations in the target language in
a given parallel corpus, loosely representing different ‘senses’ of
the word in that corpus.

2https:/github.com/moses-smt/mosesdecoder

2007). German sentences, which can contain compound
words like ‘sonnenblumenkerne’ (sunflower seeds), are
split/decompounded using pre-computed model of SEman-
tic COmpound Splitter (SECOS)3 (Riedl and Biemann,
2016). Since we are not interested in distinguishing mor-
phological variants of the words, we also lemmatized4 all
sentences in the respective languages, which reduced vo-
cabulary size and led to better word alignment in the later
step.

2.1.2. Word Alignment
After the pre-processing step, the word tokens in the
Multi30K parallel corpus are aligned using Fast Align5

(Dyer et al., 2013). Fast Align generates asymmetric word
alignments depending on which language in the parallel
corpus is treated as the source. We generate both align-
ments - ‘forward’ (where English is treated as the source
language) and ‘reverse’ (where German or French is treated
as the source language). To learn better word alignments,
we train Fast Align on a larger corpus comprising of the
Europarl parallel corpus6 (Koehn, 2005) in addition to
the Multi30K parallel corpus for the English-German and
English-French language pairs separately. The Europarl
corpus also undergoes the same pre-processing steps in
Section 2.1.1. before word alignment.

2.1.3. Automatic Filtering
In this step we remove all the word alignments having stop
words and select only those alignments which are to be
found in both ‘forward’ and ‘reverse’ directions. In addi-
tion, we filter out the alignments between words with dif-
ferent Part-Of-Speech (POS) tags (using the NLP tool in
footnote 4). Next, we remove all English words that get
aligned to a single word in the target language across the
entire Multi30K corpus, retaining only the potentially am-
biguous English words, i.e. those aligned to multiple words
in the target language. These retained alignments are con-
verted into a dictionary format where ‘Keys’ are the poten-
tially ambiguous English words and ‘Values’ are the words
in the target language that get aligned to it. For instance, in
English-French language direction we have cases like:

four→ quart, quartequatre
woods→ forêt, bois
western→ occidental, western
hat→ casque, casquette, chapeau, haut, bonnet, couvre,
képi, béret

One dictionary from the word alignments of each language
pair is built independently, i.e. one for English-German and
one for English-French.

2.1.4. Human Filtering
Finally, each dictionary (English-German and English-
French) from the Automatic Filtering step is given to hu-
man annotators for a final inspection and filtering. Human

3https://github.com/riedlma/SECOS
4http://staffwww.dcs.shef.ac.uk/people/A.

Aker/activityNLPProjects.html
5https://github.com/clab/fast_align
6http://www.statmt.org/europarl/
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annotators are native speakers of French/German who are
also fluent in English. They were asked to

1. filter out instances which they believe did not have
multiple senses, e.g. ‘western→ occidental, western’

2. filter out target words which they believe are not trans-
lations of the source word in any context, such as haut
in the example ‘hat → casque, casquette, chapeau,
haut, bonnet, couvre, képi, béret’

The annotators were given the freedom to use any other
resource, such as bilingual dictionaries, existing translation
tools, etcetera that may help them filter the dictionaries. Af-
ter the final filtering and inspection, for each (Key, Value)
pair in the dictionaries we retrieve the visual and textual
contexts from the Multi30K dataset to complete the MLT
Dataset language resource.

2.2. Dataset Statistics and Examples
We extracted 1108 words in English which are ambiguous
in either German or French or both (i.e. they have multiple
translations in the target language). Each of these words
can appear in multiple sentences, thus resulting in a total of
98,647 MLT datapoints.
Both English-German and English-French MLT language
resources are made freely available7 under the Creative
Commons Attribution Non Commercial ShareAlike 4.0 In-
ternational license.

English - French
We extracted 661 words in English which are ambiguous
in French with 2.98 translations per word (on average)
and 22.73 instances per translation (on average) totaling to
44,779 MLT datapoints.

English - German
We extracted 745 words in English which are ambiguous
in German with 4.09 translations per word (on average)
and 17.69 instances per translation (on average) totaling to
53,868 MLT datapoints. A couple of examples are shown
below.

Examples
1. Ambiguous Word x1: subway

Lexical Translation y1: bahnstation
Textual Context x1: “a few people are waiting in a
subway, with an arriving car in the distance.”
Visual Context v1:

7https://github.com/sheffieldnlp/mlt

2. Ambiguous Word x2: subway
Lexical Translation y2: subway
Textual Context x2: “pedestrians bombard a city
street covered in consumerism, including signs for
burger king, mcdonalds, subway, and heineken.”
Visual Context v2:

3. Multimodal Lexical Translation Task
Once we have the MLT Dataset, which is of the form in
Equation 1, then at least three versions of MLT task can
be defined. Given an ambiguous word x, translate it (or
disambiguate its sense) using its

1. Textual context only, i.e. source sentence x only

2. Visual context only, i.e. image v only

3. Both Textual and Visual contexts (x,v)

These three versions can help identify the relative impor-
tance of the textual context and visual context when trans-
lating (or disambiguating) an ambiguous word.

3.1. Evaluating Machine Translation Systems
MLT can be used to evaluate (Multimodal) Machine Trans-
lation systems in their ability to correctly translate ambigu-
ous words. Consider a MLT datapoint (x, y,x,v) of the
form in Equation 1. A Multimodal Machine Translation
system S can take two arguments as inputs - the source sen-
tence x and the image v - and generate an output S(x,v),
which is a translation of the source sentence in the target
language. A straightforward evaluation strategy is to sim-
ply check if the correct lexical translation y of the ambigu-
ous word x, as given in the reference translation, is also
found in the system’s output S(x,v)8. When run across
all the examples in the MLT dataset, we can then count the
number of times a system translated ambiguous words cor-
rectly to compute its accuracy in the task. We call this the
MLT accuracy. More elaborate metrics and metrics that
also consider variants of the words in the reference, will be
developed and tested in future. For now, we use this simple
accuracy measure and demonstrate a potential application
of the MLT Dataset.

8For consistency, the system’s outputs undergo the same pre-
processing steps in Section 2.1.1.

3812

https://github.com/sheffieldnlp/mlt


3.1.1. Evaluating Machine Translation Systems
In Elliott et al. (2017), the Multimodal and Text-only Ma-
chine Translation systems submitted to the shared task were
evaluated and ranked using the Meteor metric and Human
scoring.
The Meteor metric (Denkowski and Lavie, 2014) calcu-
lates a sentence-level similarity score between 0 and 100
between the system output and the reference (human) trans-
lation, where 0 means no similarity and 100 means ‘per-
fect’ similarity. Similarity is computed as a function of the
proportion of words that can be aligned between the sys-
tem and human translations, allowing for different types of
alignments (e.g. lemma, synonym). The overall Meteor
score of a system is the mean of the sentence-level scores
over the test set.
Human scoring was carried out in Elliott et al. (2017) using
bilingual Direct Assessment (Graham et al., 2017), where
the assessors were asked to evaluate the semantic related-
ness between the system outputs and the source sentence
(not the reference translation) given the image. The asses-
sors gave a sentence-level score between 0 and 100, where
0 indicates that the meaning of the source sentence is not
preserved in the system output, and 100 means that the
meaning is ‘perfectly’ preserved. The sentence-level scores
were standardized according to each individual assessor’s
overall mean and standard deviation score. The overall Hu-
man score of a system was computed as the mean of the
standardized sentence-level scores over the test set.
We evaluate the participating systems of the Multimodal
Machine Translation Task using the MLT Accuracy. The
MLT Accuracy of a system measures the proportion of am-
biguous words in the test set that are correctly translated
by the system. The ambiguous words in the test set and
its lexical translations are obtained from the MLT Dataset.
We extract ambiguous words from the official test sets –
Multi30K 2017 test set and Ambiguous COCO test set (El-
liott et al., 2017) – for our evaluation. The MLT Accuracy
is measured in percentages on a scale of 0 to 100.
The performance of all submissions to the Multi30K 2017
test set is shown in Table 1 for English to German, and Ta-
ble 2 for English to French. The performance of all submis-
sions to the Ambiguous COCO test set is shown in Table 3
for English to German, and Table 4 for English to French.
For the Ambiguous COCO test set, no human evaluation
was performed.

3.1.2. System ranking correlation
We observe that our evaluation of MLT Accuracy is mostly
consistent with Meteor and human scores. To measure the
extent of this consistency, we computed the Spearman’s
rank correlation coefficient ρs and Pearson’s Correlation
Coefficient ρp between MLT and Meteor or MLT and
Human in Tables 1, 2, 3, and 4. The results are as follows.

For EN-DE on Multi30K 2017 test set (Table 1)
ρs(MLT,Meteor) = 0.94 ρs(MLT,Human) = 0.90

ρp(MLT,Meteor) = 0.99 ρp(MLT,Human) = 0.78

For EN-FR on Multi30K 2017 test set (Table 2)
ρs(MLT,Meteor) = 0.93 ρs(MLT,Human) = 0.54

System MLT ↑ Meteor ↑ Human ↑
NICT 1 NMTrerank C 75.49 53.9 70.3

LIUMCVC NMT C 74.70 53.8 65.1
LIUMCVC MNMT C 73.78 54.0 77.8

DCU-ADAPT MultiMT C 71.54 50.5 68.1
UvA-TiCC IMAGINATION U 70.75 53.5 74.1
UvA-TiCC IMAGINATION C 70.75 51.2 59.7

CUNI NeuralMonkeyTextualMT U 69.96 51.0 68.1
CUNI NeuralMonkeyMultimodalMT U 69.30 50.2 60.6
OREGONSTATE 2NeuralTranslation C 68.64 50.6 54.4

CUNI NeuralMonkeyTextualMT C 67.72 49.2 54.2
CUNI NeuralMonkeyMultimodalMT C 64.95 47.1 55.9
OREGONSTATE 1NeuralTranslation C 64.82 48.9 53.3

SHEF ShefClassProj C 60.74 43.4 49.4
SHEF ShefClassInitDec C 60.47 44.5 46.6

AFRL-OHIOSTATE-MULTIMODAL U 23.06 20.2 36.6

Table 1: Performance of systems submitted to the Multi-
modal Shared Task at WMT 2017 on Multi30K 2017 test
set for English to German.

System MLT ↑ Meteor ↑ Human ↑
NICT 1 NMTrerank C 82.50 72.0 79.4

LIUMCVC NMT C 81.34 70.1 60.5
LIUMCVC MNMT C 81.23 72.1 71.2

DCU-ADAPT MultiMT C 81.00 70.1 74.1
OREGONSTATE 2NeuralTranslation C 78.68 68.3 65.4
OREGONSTATE 1NeuralTranslation C 75.78 67.2 60.8

CUNI NeuralMonkeyTextualMT C 75.55 67.0 61.9
CUNI NeuralMonkeyMultimodalMT C 74.97 67.2 74.2

SHEF ShefClassInitDec C 73.70 62.8 54.7
SHEF ShefClassProj C 72.42 61.5 54.0

Table 2: Performance of systems submitted to the Multi-
modal Shared Task at WMT 2017 on Multi30K 2017 test
set for English to French.

System MLT ↑ Meteor ↑
DCU-ADAPT MultiMT C 68.50 46.8

LIUMCVC NMT C 68.24 48.9
NICT 1 NMTrerank C 67.19 48.5

UvA-TiCC IMAGINATION C 67.19 45.8
LIUMCVC MNMT C 66.40 48.8

CUNI NeuralMonkeyMultimodalMT U 65.35 45.6
UvA-TiCC IMAGINATION U 64.30 48.1

CUNI NeuralMonkeyTextualMT U 63.78 46.0
OREGONSTATE 1NeuralTranslation C 62.99 46.5
OREGONSTATE 2NeuralTranslation C 62.99 45.7

CUNI NeuralMonkeyTextualMT C 62.99 43.8
CUNI NeuralMonkeyMultimodalMT C 57.74 42.7

SHEF ShefClassProj C 55.64 40.0
SHEF ShefClassInitDec C 54.33 40.7

Table 3: Performance of systems submitted to the Multi-
modal Shared Task at WMT 2017 on Ambiguous COCO
test set for English to German.

System MLT ↑ Meteor ↑
LIUMCVC MNMT C 77.55 65.9
NICT 1 NMTrerank C 77.55 65.6

DCU-ADAPT MultiMT C 76.42 64.1
LIUMCVC NMT C 75.28 63.4

OREGONSTATE 2NeuralTranslation C 74.83 63.8
CUNI NeuralMonkeyTextualMT C 74.83 62.5

CUNI NeuralMonkeyMultimodalMT C 74.83 62.5
OREGONSTATE 1NeuralTranslation C 70.75 61.6

SHEF ShefClassProj C 68.93 57.0
SHEF ShefClassInitDec C 68.48 57.3

Table 4: Performance of systems submitted to the Multi-
modal Shared Task at WMT 2017 on Ambiguous COCO
test set for English to French.
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ρp(MLT,Meteor) = 0.94 ρp(MLT,Human) = 0.68

For EN-DE on Ambiguous COCO test set (Table 3)
ρs(MLT,Meteor) = 0.80 ρp(MLT,Meteor) = 0.90

For EN-FR on Ambiguous COCO test set (Table 4)
ρs(MLT,Meteor) = 0.95 ρp(MLT,Meteor) = 0.96

Ranking of the systems using MLT Accuracy differs only
slightly from the ranking using Meteor or human scores,
and the top performing systems are often the same. On
further inspection, we notice that the high correlation of
MLT Accuracy and Meteor is mainly due to words with
skewed distributions for their translations.
For instance, the ambiguous word lean has the follow-
ing translations in German in our training set - lehnen (to
be leaning), schlank (slim), stützen (support), and beugen
(bend). However, in the training set lehnen occurs 137
times while the rest of the lexical translations combined oc-
cur only 16 times. Such a skewed distribution makes the
word lean virtually unambiguous (or less ambiguous) com-
pared to the cases when the distribution is more uniform
over the translations. We propose a way to deal with such
skewed distributions using a simple heuristic we call the
‘ambiguity score’.

3.1.3. Ambiguity Score
On inspecting the generated MLT Dataset, we noticed that
ambiguity of words is not a simple concept to define and
measure. Some words appear to be more ambiguous than
others based on the distribution of their translations in
the training set, while other words, like lean (see Section
3.1.2.), appear less ambiguous in the training set due to the
skewed distribution of its translations. We propose to quan-
tify the extent of ambiguity using a simple heuristic that
looks at the distribution of the translations.
Consider a word en in English with n different translations
in German de1, de2, ..., den. Let freq(dei|en) denote the
number of times the word dei occurs as a translation of
en in the training set. Also, without loss of generality, ar-
range the translations in decreasing order of frequency, i.e.
freq(de1|en) > freq(de2|en) > ... > freq(den|en).
Then we define ambiguity score of en as:

Ambiguity(en) =

∑n
i=2 freq(dei|en)
freq(de1|en)

(2)

Using the above formulation, an ambiguity score of zero
signifies unambiguous words and closer to zero signifies
low ambiguity. The higher the ambiguity score, the more
difficult it is to translate/disambiguate the source word cor-
rectly. Thus, to increase the difficulty of the MLT Dataset
we can filter out words with ambiguity scores below a cer-
tain threshold. To demonstrate this, we set an ambiguity
threshold of 0.2 and filter out all those words in the MLT
Dataset with ambiguity score below this threshold. We then
evaluate the WMT 2017 participating systems using MLT
accuracy on this difficult version of the MLT Dataset (de-
noted as MLT0.2). The results are shown in Tables 5, 6, 7
and 8:

System MLT0.2 ↑ Meteor ↑ Human ↑
NICT 1 NMTrerank C 69.08 53.9 70.3

LIUMCVC NMT C 69.08 53.8 65.1
LIUMCVC MNMT C 68.10 54.0 77.8

DCU-ADAPT MultiMT C 65.75 50.5 68.1
UvA-TiCC IMAGINATION U 65.36 53.5 74.1

CUNI NeuralMonkeyTextualMT U 63.99 51.0 68.1
UvA-TiCC IMAGINATION C 63.01 51.2 59.7

OREGONSTATE 2NeuralTranslation C 62.23 50.6 54.4
CUNI NeuralMonkeyMultimodalMT U 61.64 50.2 60.6

CUNI NeuralMonkeyTextualMT C 61.25 49.2 54.2
OREGONSTATE 1NeuralTranslation C 59.69 48.9 53.3
CUNI NeuralMonkeyMultimodalMT C 58.71 47.1 55.9

SHEF ShefClassProj C 56.16 43.4 49.4
SHEF ShefClassInitDec C 53.82 44.5 46.6

AFRL-OHIOSTATE-MULTIMODAL U 18.40 20.2 36.6

Table 5: Performance of systems submitted to the Mul-
timodal Shared Task at WMT 2017 on Multi30K 2017
MLT0.2 subset for English to German.

System MLT0.2 ↑ Meteor ↑ Human ↑
NICT 1 NMTrerank C 71.43 72.0 79.4
LIUMCVC MNMT C 71.17 72.1 71.2

DCU-ADAPT MultiMT C 69.61 70.1 74.1
LIUMCVC NMT C 69.09 70.1 60.5

OREGONSTATE 2NeuralTranslation C 65.71 68.3 65.4
OREGONSTATE 1NeuralTranslation C 63.38 67.2 60.8

CUNI NeuralMonkeyTextualMT C 60.78 67.0 61.9
SHEF ShefClassInitDec C 60.00 62.8 54.7

CUNI NeuralMonkeyMultimodalMT C 59.48 67.2 74.2
SHEF ShefClassProj C 58.44 61.5 54.0

Table 6: Performance of systems submitted to the Mul-
timodal Shared Task at WMT 2017 on Multi30K 2017
MLT0.2 subset for English to French.

System MLT0.2 ↑ Meteor ↑
DCU-ADAPT MultiMT C 65.59 46.8

LIUMCVC NMT C 64.16 48.9
UvA-TiCC IMAGINATION C 63.44 45.8

NICT 1 NMTrerank C 60.93 48.5
UvA-TiCC IMAGINATION U 60.93 48.1

LIUMCVC MNMT C 59.50 48.8
OREGONSTATE 2NeuralTranslation C 59.14 45.7
CUNI NeuralMonkeyMultimodalMT U 59.14 45.6

CUNI NeuralMonkeyTextualMT U 57.71 46.0
OREGONSTATE 1NeuralTranslation C 56.99 46.5

CUNI NeuralMonkeyTextualMT C 56.63 43.8
CUNI NeuralMonkeyMultimodalMT C 51.61 42.7

SHEF ShefClassInitDec C 50.54 40.7
SHEF ShefClassProj C 49.10 40.0

Table 7: Performance of systems submitted to the Multi-
modal Shared Task at WMT 2017 on Ambiguous COCO
MLT0.2 subset for English to German.

System MLT0.2 ↑ Meteor ↑
LIUMCVC MNMT C 66.83 65.9
NICT 1 NMTrerank C 65.83 65.6

OREGONSTATE 2NeuralTranslation C 64.82 63.8
DCU-ADAPT MultiMT C 64.32 64.1

LIUMCVC NMT C 63.32 63.4
CUNI NeuralMonkeyTextualMT C 61.81 62.5

CUNI NeuralMonkeyMultimodalMT C 61.81 62.5
OREGONSTATE 1NeuralTranslation C 58.29 61.6

SHEF ShefClassProj C 55.78 57.0
SHEF ShefClassInitDec C 53.77 57.3

Table 8: Performance of systems submitted to the Multi-
modal Shared Task at WMT 2017 on Ambiguous COCO
MLT0.2 subset for English to French.
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The first thing to notice is that for every system the MLT ac-
curacy drops when evaluated on MLT0.2 (Tables 5, 6, 7 and
8) as compared to the full MLT Dataset (Tables 1, 2, 3 and
4). This shows that by setting an ambiguity threshold we
are extracting ambiguous words which are more difficult to
translate/disambiguate.
In general, for any threshold τ , we can extract a subset
MLTτ of the MLT Dataset consisting only of words with
ambiguity score ≥ τ . In other words, the threshold τ can
be used to regulate the difficulty of the MLT Dataset. Also,
system rankings change as threshold τ changes. This can
help in error analysis and identify the strengths and weak-
nesses of the systems.

3.1.4. Analysis
According to MLT accuracy, for the teams that submitted
both constrained and unconstrained models (those using
additional external data for training), unconstrained mod-
els show improvement over their constrained counterparts
in most cases (see Tables 1 and 5). For teams that sub-
mitted both multimodal and text-only systems, the role of
multimodality is not evident as far as MLT Accuracy is con-
cerned: sometimes multimodal systems perform better and
sometimes text-only systems perform better. However, Hu-
man scores show that overall multimodal systems tend to be
better than the text-only counterparts. MLT Accuracy fails
to show this maybe because in its current form the match-
ing performed between reference and system words is still
too simplistic and does not take synonyms into account.

(a) hut (b) kappe

(c) mütze (d) kopfbedeckung

Figure 3: Different kinds of ‘hats’ translated into German
differently based on the visual context in Multi30K corpus

Qualitative example In our English-German MLT
Dataset, the word hat has been identified ambiguous be-
cause professional translators have translated it differently
depending on the textual and visual contexts. Sometimes
it has been translated as hut which refers to hats with
edges/extensions coming off from all sides and usually
worn in summer (see Figure 3a). Sometimes it has been

translated as kappe which refers to the modern caps with
shade extending out from front side only, usually worn in
sports (see Figure 3b). Sometimes it has been translated
as mütze which refers to differently designed hats usually
worn in winters (see Figure 3c) and sometimes as kopfbe-
deckung which means a headgear which could refer to any
kind of object worn on the head (see Figure 3d).
Now consider the following MLT data point from the 2016
test set whose textual context x was translated by the sys-
tems submitted to the Multimodal Shared Task:

Ambiguous Word x: hat
Lexical Translation y: hut
Textual Context x: “a man in an orange hat starring
at something.”
Visual Context v:

While most systems translated hat to hut
in this example, a few translated differently.
‘CUNI NeuralMonkeyMultimodalMT C’ translated it
as kappe, ‘OREGONSTATE 1NeuralTranslation C’
translated it as mütze, and ‘SHEF ShefClassInitDec C’
translated it as kopfbedeckung. All these words are refer-
ring to the same object but have slightly different senses as
seen earlier in Figure 3. From the image - visual context v
- it can be seen that this hat looks a bit unusual because of
its colour, texture and brand logo on it. Perhaps, that could
be a reason why some systems chose another translation
instead of hut. This can be considered as an instance where
ambiguity is being introduced by the image.

4. Future Work
Currently, the MLT evaluation using counts and accuracy is
too simplistic and has its limitations. First of all, it is based
on exact matching of the surface-form of the gold standard
lexical translation with the corresponding word in the sys-
tem generated translation. Thus, any other form of the cor-
rect translation that does not appear in our gold standard
lexical translation will be considered an error. This could
be partly addressed by performing morphological analysis
during the matching process. Secondly, no partial credit
is given to synonymous words. This is a more difficult is-
sue to address as synonyms can also have different senses.
For instance, in the hat example discussed in the previous
Section 3.1.4. all systems translated hat into some form of
hat, which could be considered synonymous to some ex-
tent. Maybe not the correct kind of hat. Our future work
will be focused on developing more elaborate scoring for
MLT evaluation.
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Additionally, we are interested in understanding whether
the disambiguation happening within the system is due to
the textual context, the visual context, both or none. For
this, we propose to use a (Multimodal) Machine Translation
system to translate the MLT data in four different ways. Re-
call from equation 1, MLT data is of the form (x, y,x,v).
Given a Machine Translation System S, we should be able
to compare four kinds of output with the reference.

S(x,v) ∼ S(x,0) ∼ S(x,v) ∼ S(x,0) ∼ y (3)

where 0 refers to absence of visual context (no image) and
∼ refers to comparison of the different outputs. Such a
comparison should help measure a system’s ability of mak-
ing use of different modalities. Thus, in addition to the
inter-system comparisons that was demonstrated in section
3.1.1., in future we will work on these intra-system com-
parisons depicted in equation 3.

5. Conclusion
We introduced the Multimodal Lexical Translation lan-
guage resource and the process of generating it from
Multi30K using word alignments followed by human fil-
tering. 53,868 MLT data points for English to German and
44,779 MLT data points for English to French have been
generated.
Different versions of MLT tasks were also introduced.
We demonstrated the use of MLT task to evaluate Multi-
modal and Text-only Machine Translation systems’ ability
to translate ambiguous words correctly. For this, submis-
sions to the WMT 2017 Multimodal Shared task were eval-
uated using a simple MLT accuracy metric. This metric,
in spite of its limitations, was found to be consistent with
Meteor and human scoring used in Elliott et al. (2017).
Further, we introduced a simple heuristic to quantify am-
biguity based on the distribution of the translations in the
training set and demonstrated its use to extract more am-
biguous subset of the MLT Dataset which was found to be
more difficult to translate/disambiguate.
We observed that in most cases unconstrained (Multimodal)
Machine Translation models perform better than their con-
strained counterparts in terms of MLT accuracy. The contri-
bution of multimodality in machine translation has not yet
proved evident in terms of MLT. The qualitative example of
hat in Section 3.1.4. showed us that the MLT Dataset can be
useful to compare different Machine Translation Systems.
We believe the multimodal multilingual MLT Dataset is a
useful language resource that can facilitate, among many
things, the study of lexical disambiguation within Multi-
modal and Text-only Machine Translation systems.
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