
Learning Word Vectors for 157 Languages

Edouard Grave1,∗ Piotr Bojanowski1,∗ Prakhar Gupta1,2 Armand Joulin1 Tomas Mikolov1

1Facebook AI Research 2EPFL
{egrave,bojanowski,ajoulin,tmikolov}@fb.com, prakhar.gupta@epfl.ch

Abstract
Distributed word representations, or word vectors, have recently been applied to many tasks in natural language processing, leading
to state-of-the-art performance. A key ingredient to the successful application of these representations is to train them on very large
corpora, and use these pre-trained models in downstream tasks. In this paper, we describe how we trained such high quality word
representations for 157 languages. We used two sources of data to train these models: the free online encyclopedia Wikipedia and data
from the common crawl project. We also introduce three new word analogy datasets to evaluate these word vectors, for French, Hindi
and Polish. Finally, we evaluate our pre-trained word vectors on 10 languages for which evaluation datasets exists, showing very strong
performance compared to previous models.

Keywords: word vectors, word analogies, fasttext

1. Introduction
Distributed word representations, also known as word vec-
tors, have been widely used in natural language processing,
leading to state of the art results for many tasks. Publicly
available models, which are pre-trained on large amounts
of data, have become a standard tool for many NLP appli-
cations, but are mostly available for English. While differ-
ent techniques have been proposed to learn such representa-
tions (Collobert and Weston, 2008; Mikolov et al., 2013b;
Pennington et al., 2014), all rely on the distributional hy-
pothesis – the idea that the meaning of a word is captured
by the contexts in which it appears. Thus, the quality of
word vectors directly depends on the amount and quality of
data they were trained on.
A common source of data to learn word representations,
available in many languages, is the online encyclopedia
Wikipedia (Al-Rfou et al., 2013). This provides high qual-
ity data which is comparable across languages. Unfortu-
nately, for many languages, the size of Wikipedia is rel-
atively small, and often not enough to learn high quality
word vectors with wide coverage. An alternative source
of large scale text data is the web and resources such as
the common crawl. While they provide noisier data than
Wikipedia articles, they come in larger amounts and with a
broader coverage.
In this work, we contribute high quality word vectors
trained on Wikipedia and the Common Crawl corpus, as
well as three new word analogy datasets. We collected
training corpora for 157 languages, using Wikipedia and
Common Crawl. We describe in details the procedure for
splitting the data by language and pre-processing it in Sec-
tion 2. Using this data, we trained word vectors using
an extension of the fastText model with subword informa-
tion (Bojanowski et al., 2017), as described in Section 3.
In Section 4, we introduce three new word analogy datasets
for French, Hindi and Polish and evaluate our word rep-
resentations on word analogy tasks. Overall, we evaluate
our word vectors on 10 languages: Czech, German, Span-
ish, Finnish, French, Hindi, Italian, Polish, Portuguese and
Chinese. We plan to release models for 157 languages other

∗ The two first authors contributed equally.

than English, which were not all evaluated in this paper.

Related work. In previous work, word vectors pre-
trained on large text corpora have been released along-
side open source implementation of word embedding mod-
els. English word vectors trained on a part of the
Google News dataset (100B tokens) were published with
word2vec (Mikolov et al., 2013b). Pennington et al.
(2014) released GloVe models trained on Wikipedia, Gi-
gaword and Common Crawl (840B tokens). A notable ef-
fort is the work of Al-Rfou et al. (2013), in which word vec-
tors have been trained for 100 languages using Wikipedia
data.

2. Training Data
We train our word vectors using datasets composed of a
mixture of Wikipedia and Common Crawl.

2.1. Wikipedia
Wikipedia is the largest free online encyclopedia, available
in more than 200 different languages. Because the articles
are curated, the corresponding text is of high quality, mak-
ing Wikipedia a great resource for (multilingual) natural
language processing. It has been applied to many differ-
ent tasks, such as information extraction (Wu and Weld,
2010), or word sense disambiguation (Mihalcea, 2007). We
downloaded the XML Wikipedia dumps from September
11, 2017. The first preprocessing step is to extract the text
content from the XML dumps. For this purpose, we used
a modified version of the wikifil.pl script1 from Matt
Mahoney.
Even if Wikipedia is available for more than 200 languages,
many dumps are relatively small in size (compared to the
English one). As an example, some widely spoken lan-
guages such as Hindi, have relatively small Wikipedia data
(39 millions tokens). Overall, 28 languages contain more
than 100 millions tokens, and 82 languages contain more
than 10 millions tokens. We give the number of tokens
for the 10 largest Wikipedia in Table 1. For these reasons
(and the fact that Wikipedia is restricted to encyclopedic

1http://mattmahoney.net/dc/textdata.html

3483

http://mattmahoney.net/dc/textdata.html


Language # tokens # words

German 1,384,170,636 3,005,294
French 1,107,636,871 1,668,310
Japanese 998,774,138 916,262
Russian 823,849,081 2,230,231
Spanish 797,362,600 1,337,109
Italian 702,638,442 1,169,177
Polish 386,874,622 1,298,250
Portuguese 386,107,589 815,284
Chinese 374,650,371 1,486,735
Czech 178,516,890 784,896
Finnish 127,176,620 880,713
Hindi 39,733,591 183,211

Table 1: Comparison of the size of the Wikipedia corpora
for selected languages. The second column indicates the
number of words which appear at least five times in the
corpus.

TCL Wikipedia EuroGov

Model Acc. Time Acc. Time Acc. Time

langid.py 93.1 8.8 91.3 9.4 98.7 13.1
fastText 94.7 1.3 93.0 1.3 98.7 2.9

Table 2: Accuracy and processing time of our language
detector and langid.py on three publicly available
datasets. The TCL dataset was converted to UTF-8.

domains), we decided to also use data from the common
crawl to train our word vectors.

2.2. Common Crawl
The common crawl is a non profit organization which
crawls the web and makes the resulting data publicly avail-
able. This large scale corpus was previously used to es-
timate n-gram language models (Buck et al., 2014) or to
learn English word vectors (Pennington et al., 2014). To
the best of our knowledge, it was not used yet to learn word
vectors for a large set of languages. The data is distributed
either as raw HTML pages, or as WET files which contain
the extracted text data, converted to UTF-8. We decided to
use the extracted text data, as it is much smaller in size, and
easier to process (no need to remove HTML). We down-
loaded the May 2017 crawl, corresponding to roughly 24
terabytes of raw text data.

Language Identification. The first preprocessing step
consists in splitting the data based on the language. As
noted by Buck et al. (2014), some pages contain text in dif-
ferent languages. We thus decided to detect the language
of each line independently. For this purpose, we built a
fast language detector using the fastText linear clas-
sifier (Joulin et al., 2017), which can recognize 176 lan-
guages. We used 400 millions tokens from Wikipedia (de-
scribed in the previous section) as well as sentences from
the Tatoeba website2 to train our language detector. The
model uses character ngrams of length 2, 3 and 4 as fea-

2www.tatoeba.org

Language # tokens # words

Russian 102,825,040,945 14,679,750
Japanese 92,827,457,545 9,073,245
Spanish 72,493,240,645 10,614,696
French 68,358,270,953 12,488,607
German 65,648,657,780 19,767,924
Italian 36,237,951,419 10,404,913
Portuguese 35,841,247,814 8,370,569
Chinese 30,176,342,544 17,599,492
Polish 21,859,939,298 10,209,556
Czech 13,070,585,221 8,694,576
Finnish 6,059,887,126 9,782,381
Hindi 1,885,189,625 1,876,665

Table 3: Comparison accross languages of the size of the
datasets obtained using the Common Crawl. The second
column indicates the vocabulary size of the models trained
on this data.

tures, and a hierarchical softmax for efficiency. We eval-
uate our model on publicly available datasets from Bald-
win and Lui (2010) and report results in Table 2. Our
approach compares favorably to existing methods such as
langid.py (Lui and Baldwin, 2012), while being much
faster. This language detector will be released along the
other resources described in this article. After language
identification, we only keep lines of more than 100 char-
acters and with a high confidence score (≥ 0.8).

2.3. Deduplication and Tokenization
The second step of our pipeline is to remove duplicate lines
from the data. We used a very simple method for this, com-
puting the hash of each line, and removing lines with identi-
cal hashes (we used the default hash function of java String
objects). While this could potentially remove unique lines
(which do not have a unique hash), we observed very lit-
tle collision in practice (since each language is processed
independently). Removing duplicates is important for the
crawl data, since it contains large amounts of boilerplate,
as previously noted by Buck et al. (2014). Overall, 37% of
the crawl data is removed by deduplication, while 21% of
the Wikipedia data is removed by this operation.
The final step of our preprocessing is to tokenize the raw
data. We used the Stanford word segmenter (Chang et
al., 2008) for Chinese, Mecab (Kudo, 2005) for Japanese
and UETsegmenter (Nguyen and Le, 2016) for Vietnamese.
For languages written using the Latin, Cyrillic, Hebrew or
Greek scripts, we used the tokenizer from the Europarl pre-
processing tools (Koehn, 2005). For the remaining lan-
guages, we used the ICU tokenizer. We give statistics for
the most common languages in Table 1 and 3.

3. Models
In this section, we briefly describe the two methods that we
compare to train our word vectors.

Skipgram. The first model that we consider is the skip-
gram model with subword information, introduced by Bo-
janowski et al. (2017). This model, available as part of

3484

www.tatoeba.org


the fastText3 software, is an extension of the skipgram
model, where word representations are augmented using
character ngrams. A vector representation is associated to
each character ngram, and the vector representation of a
word is obtained by taking the sum of the vectors of the
character ngrams appearing in the word. The full word is
always included as part of the character ngrams, so that the
model still learns one vector for each word. We refer the
reader to Bojanowski et al. (2017) for a more thorough de-
scription of this model.

CBOW. The second model that we consider is an exten-
sion of the CBOW model (Mikolov et al., 2013b), with
position weights and subword information. Similar to the
model described in the previous paragraph, this model rep-
resents words as bags of character ngrams. The second
difference with the original CBOW model is the addition
of position dependent weights, in order to better capture
positional information. In the CBOW model, the objec-
tive is to predict a given word w0 based on context words
w−n, ..., w−1, w1, ..., wn. A vector representation h of this
context is obtained by averaging the corresponding word
vectors:

h =

n∑
i=−n
i 6=0

uwi

Here, we propose to use the model with position weights
introduced by Mnih and Kavukcuoglu (2013). Before tak-
ing the sum, each word vector is multiplied (element wise)
by a position dependent vector. More formally, the vector
representation h of the context is obtained using:

h =

n∑
i=−n
i 6=0

ci � uwi
,

where ci are vectors corresponding to each position in the
window, � is the element-wise multiplication and uwi

are
the word vectors. We remind the reader that the word vec-
tors uwi

are themselves sums over the character ngrams.
We refer the reader to Mikolov et al. (2017) for a study
of the effect of deduplication and model variants (such as
position-weighted CBOW) on the quality of the word rep-
resentations.

4. Evaluations
In this work, we evaluate our word vectors on the word
analogy task. Given a triplet of words A : B :: C, the goal
is to guess the word D such that A : B and C : D share
the same relation. An example of such analogy question
is Paris : France :: Berlin : ?, where the corresponding
answer is Germany. Word vectors can be evaluated at this
task by computing the expected representation of the an-
swer word D. Given word vectors xA, xB and xC respec-
tively for words A, B and C, the answer vector can be com-
puted as xB − xA + xC . In order to evaluate, the closest
word vector x in the dictionary is retrieved (omitting the
vectors xA, xB and xC) and the corresponding word is re-
turned. Performance is measured using average accuracy
over the whole corpus.

3https://fasttext.cc/

4.1. Evaluation Datasets
Analogy datasets are composed of word 4–uplets, of the
form Paris : France :: Rome : Italy. Such datasets are
usually composed of all the possible combinations of pairs
such as Paris : France, Berlin : Germany or Beijing :
China. In our evaluation, we use the dataset of Svoboda
and Brychcin (2016) for Czech, that of Köper et al. (2015)
for German, that of Cardellino (2016) for Spanish, that
of Venekoski and Vankka (2017) for Finnish, that of Be-
rardi et al. (2015) for Italian, the European variant of the
dataset proposed by Hartmann et al. (2017) for Portuguese
and that of Jin and Wu (2012) for Chinese.
One of the contributions of this work is the introduction of
word analogy datasets for French, Hindi and Polish. To
build these datasets, we use the English analogies intro-
duced by Mikolov et al. (2013a) as a starting point. Most
of the word pairs are directly translated, and we introduced
some modifications, which are specific for each language.

French. We directly translated all the word pairs in the
capital-common-countries, capital-world
and currency analogies. For family we translated
most pairs, but got rid of ambiguous ones (singular and
plural for fils) or those that translate into nominal phrases.
We replaced the city-in-state category by capitals
of French départements, removing those where either
the département or capital name is a phrase. We also
added a category named antonyms-adjectives
composed of antinomic adjectives such as chaud / froid
(hot and cold). For syntactic analogies, we translated word
pairs in all categories, except for comparative and
superlative, which in french are trivial: for example
fort, plus fort, le plus fort (strong, stronger, strongest).
When the word pair was ambiguous we either removed
it or replaced with another one. Finally, we added a
new past-participle category with pairs such as
pouvoir and pu. In total, this dataset is composed of 31,688
questions.

Hindi. All the word pairs in the categories
capital-common-countries, capital-world
and currency were translated directly. For the family
category, most of the pairs were translated. However,
we got rid of word pairs like stepbrother and stepsister
which translate into two-word phrases. Also, word-pairs
which differentiate in the maternal or paternal origin of
the relationship like ‘dādā - dādı̄’ (paternal grandpar-
ents) and ‘nānā - nānı̄’ (maternal grandparents) were
added. For the city-in-state category, city-state
pairs from India were added, removing pairs in which
the city or the state name is a phrase. We had to re-
move adjective-to-adverb, comparative,
superlative, present-participle and
past-tense categories as in these cases, we are
left with phrases rather than words. We also added a new
category adjective-to-noun, where an adjective is
mapped to the corresponding abstract noun: for example
‘mı̄t.hā’(sweet)’ is mapped to ‘mit.hās’(sweetness).

Polish. As for the other languages, we translated all
the word pairs in the capital-common-countries,
capital-world, currency and family categories.

3485

https://fasttext.cc/


CS DE ES FI FR HI IT PL PT ZH Average

Baseline 63.1 61.0 57.4 35.9 64.2 10.6 56.3 53.4 54.0 60.2 51.0
n-gram 5-5 57.7 61.8 57.5 39.4 65.9 8.3 57.2 54.5 54.8 59.3 50.9
CBOW 63.9 71.7 64.4 42.8 71.6 14.1 66.2 56.0 60.6 51.5 55.5
+negatives 64.8 73.7 65.0 45.0 73.5 14.5 68.0 58.3 62.9 56.0 57.4
+epochs 64.6 73.9 67.1 46.8 74.9 16.1 69.3 58.2 64.7 60.6 58.8

Using Crawl 69.9 72.9 65.4 70.3 73.6 32.1 69.8 67.9 66.7 78.4 66.7

Table 4: Performance of the various word vectors on the word analogy tasks. We restrict the vocabulary for the analogy
tasks to the 200,000 most frequent words from the training data.

CS DE ES FI FR HI IT PL PT ZH

Wikipedia 76.9 79.1 93.9 94.6 88.1 70.8 80.9 69.5 79.2 100.0
Common Crawl 78.6 81.1 90.4 92.2 92.5 70.7 82.6 63.4 75.7 100.0

Table 5: Coverage of models trained on Wikipedia and Common Crawl on the word analogy tasks.

For the city-in-state category, we used the cap-
ital of Polish regions (województwo). For the syntac-
tic analogies, we translated word pairs in all categories
except for plural-verbs, which we replaced with
verb-aspect. One example with two aspects is iść and
chodzić which are both imperfective verbs, but the second
one expresses an aimless motion. For the past-tense
category, we use a mixture of perfective and imperfective
aspects. Overall, by taking all possible combinations, we
come up with 24,570 analogies.

4.2. Model Variants
In all our experiments, we compare our word vectors with
the ones obtained by running the fastText skipgram
model with default parameters – we refer to this variant
as “Baseline”. Additionally, we perform an ablation study
showing the importance of all design choices. We succes-
sively add features as follows:

• n-gram 5–5: getting word vectors with character n-
grams of length 5 only. By default, the fastText
library uses all character n-grams from length 3 to
6. One motivation for using fewer n-grams is that
the corresponding models are much more efficient to
learn.

• CBOW: using the model described in Sec. 3. instead
of the skipgram variant from Bojanowski et al. (2017).

• +negatives: using more negative examples. By de-
fault, the fastText library samples 5 negative ex-
amples. Here, we propose to use 10 negatives.

• +epochs: using more epochs to train the models. By
default, the fastText library trains models for 5
epochs. Here, we propose to train for 10 epochs.

• Using Crawl: instead of only training on Wikipedia,
we also use the crawl data. For many languages, this
corresponds to a large increase of training data size.

4.3. Results

We evaluate all the model variants on word analogies in ten
languages and report the accuracy in Table 4. We restrict
the vocabulary for the analogy tasks to the 200,000 most
frequent words from the training data. Therefore, the mod-
els trained on Wikipedia and Wikipedia+Crawl do not share
the exact same vocabulary (see coverage in Table 5).

Influence of models and parameters. First, we observe
that on average, all the modifications discussed in Sec-
tion 4.2. lead to improved accuracy on the word analogy
tasks compared to the baseline fastText model. First,
using character n-grams of size 5, instead of using the de-
fault range of 3–6, does not significantly decrease the ac-
curacy (except for Czech). However, using a smaller num-
ber of character n-grams leads to faster training, especially
when using the CBOW model. Second, we note that using
the CBOW model with position weights, described in Sec-
tion 3., gives the biggest improvement overall. Finally, us-
ing more negative examples and more epochs, while mak-
ing the models slower to train, also leads to significant im-
provement in accuracy.

Influence of training data. One of the contributions of
this work is to train word vectors in multiple languages
on large scale noisy data from the web. We now compare
the quality of the obtained models to the ones trained on
Wikipedia data. Unsurprisingly, we observe that for high
resources languages, such as German, Spanish or French,
using the crawl data does not increase (or even slightly de-
creases) the accuracy. This is partly explained by the do-
main of the analogy datasets, which corresponds well to
Wikipedia. However, it is important to keep in mind that
the models trained on the crawl data have a larger coverage,
and might have better performance on other domains. Sec-
ond, we observe that for languages with small Wikipedia,
such as Finnish or Hindi, using the crawl data leads to great
improvement in performance: +23.5 for Finnish, +9.7 for
Polish, +16.0 for Hindi, +17.8 for Chinese.

3486



5. Conclusion
In this work, we contribute word vectors trained on
Wikipedia and the Common Crawl, as well as three new
analogy datasets to evaluate these models, and a fast lan-
guage identifier which can recognize 176 languages. We
study the effect of various hyper parameters on the perfor-
mance of the trained models, showing how to obtain high
quality word vectors. We also show that using the com-
mon crawl data, while being noisy, can lead to models with
larger coverage, and better models for languages with small
Wikipedia. Finally, we observe that for low resource lan-
guages, such as Hindi, the quality of the obtained word
vectors is much lower than for other languages. As future
work, we would like to explore more techniques to improve
the quality of models for such languages.

6. Bibliographical References
Al-Rfou, R., Perozzi, B., and Skiena, S. (2013). Poly-

glot: Distributed word representations for multilingual
nlp. Proc. CoNLL.

Baldwin, T. and Lui, M. (2010). Language identification:
The long and the short of the matter. In Proc. NAACL.

Berardi, G., Esuli, A., and Marcheggiani, D. (2015). Word
embeddings go to Italy: a comparison of models and
training datasets. Italian Information Retrieval Work-
shop.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T.
(2017). Enriching word vectors with subword informa-
tion. Transactions of the Association for Computational
Linguistics, 5.

Buck, C., Heafield, K., and Van Ooyen, B. (2014). N-gram
counts and language models from the common crawl. In
Proc. LREC, volume 2.

Cardellino, C. (2016). Spanish Billion Words Corpus and
Embeddings, March.

Chang, P.-C., Galley, M., and Manning, C. D. (2008). Op-
timizing chinese word segmentation for machine transla-
tion performance. In Proceedings of the third workshop
on statistical machine translation.

Collobert, R. and Weston, J. (2008). A unified architecture
for natural language processing: Deep neural networks
with multitask learning. In Proc. ICML.

Hartmann, N., Fonseca, E., Shulby, C., Treviso, M., Ro-
drigues, J., and Aluisio, S. (2017). Portuguese word em-
beddings: Evaluating on word analogies and natural lan-
guage tasks. arXiv preprint arXiv:1708.06025.

Jin, P. and Wu, Y. (2012). Semeval-2012 task 4: evaluating
chinese word similarity. In Proc. *SEM.

Joulin, A., Grave, E., Bojanowski, P., and Mikolov, T.
(2017). Bag of tricks for efficient text classification. In
Proc. EACL.

Koehn, P. (2005). Europarl: A parallel corpus for statisti-
cal machine translation. In MT summit, volume 5.

Köper, M., Scheible, C., and im Walde, S. S. (2015). Mul-
tilingual reliability and ”semantic” structure of continu-
ous word spaces. Proc. IWCS 2015.

Kudo, T. (2005). Mecab: Yet another part-of-speech and
morphological analyzer. http://mecab. sourceforge. net/.

Lui, M. and Baldwin, T. (2012). langid.py: An off-the-
shelf language identification tool. In Proc. ACL (system
demonstrations).

Mihalcea, R. (2007). Using wikipedia for automatic word
sense disambiguation. In Proc. NAACL.

Mikolov, T., Chen, K., Corrado, G. D., and Dean, J.
(2013a). Efficient estimation of word representations in
vector space. arXiv preprint arXiv:1301.3781.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and
Dean, J. (2013b). Distributed representations of words
and phrases and their compositionality. In Adv. NIPS.

Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C., and
Joulin, A. (2017). Advances in pre-training distributed
word representations. arXiv preprint arXiv:1712.09405.

Mnih, A. and Kavukcuoglu, K. (2013). Learning word em-
beddings efficiently with noise-contrastive estimation.
In Adv. NIPS.

Nguyen, T.-P. and Le, A.-C. (2016). A hybrid approach to
vietnamese word segmentation. In Computing & Com-
munication Technologies, Research, Innovation, and Vi-
sion for the Future (RIVF), 2016 IEEE RIVF Interna-
tional Conference on. IEEE.

Pennington, J., Socher, R., and Manning, C. (2014).
Glove: Global vectors for word representation. In Proc.
EMNLP.

Svoboda, L. and Brychcin, T. (2016). New word anal-
ogy corpus for exploring embeddings of Czech words.
In Proc. CICLING.

Venekoski, V. and Vankka, J. (2017). Finnish resources for
evaluating language model semantics. In Proc. NoDaL-
iDa.

Wu, F. and Weld, D. S. (2010). Open information extrac-
tion using wikipedia. In Proc. ACL.

3487


	Introduction
	Training Data
	Wikipedia
	Common Crawl
	Deduplication and Tokenization

	Models
	Evaluations
	Evaluation Datasets
	Model Variants
	Results

	Conclusion
	Bibliographical References

