
TF-LM: TensorFlow-based Language Modeling Toolkit

Lyan Verwimp, Hugo Van hamme, Patrick Wambacq
ESAT – PSI, KU Leuven

Kasteelpark Arenberg 10, 3001 Heverlee, Belgium
{lyan.verwimp, hugo.vanhamme, patrick.wambacq}@esat.kuleuven.be

Abstract
Recently, an abundance of deep learning toolkits has been made freely available. These toolkits typically offer the building blocks
and sometimes simple example scripts, but designing and training a model still takes a considerable amount of time and knowledge.
We present language modeling scripts based on TensorFlow that allow one to train and test competitive models directly, by using
a pre-defined configuration or changing it to their needs. There are several options for input features (words, characters, words
combined with characters, character n-grams) and for batching (sentence- or discourse-level). The models can be used to test the
perplexity, predict the next word(s), re-score hypotheses or generate debugging files for interpolation with n-gram models. Addi-
tionally, we make available LSTM language models trained on a variety of Dutch texts and English benchmarks, that can be used
immediately, thereby avoiding the time and computationally expensive training process. The toolkit is open source and can be found at
https://github.com/lverwimp/tf-lm.

Keywords: language modeling, LSTM, deep learning, toolkit

1. Introduction
Language models (LMs) play a crucial role in many speech
and language processing tasks, among others speech recog-
nition, machine translation and optical character recogni-
tion. The current state of the art are recurrent neural net-
work (RNN) based LMs (Mikolov et al., 2010), and more
specifically long short-term memory (LSTM) (Hochreiter
and Schmidhuber, 1997) LMs (Sundermeyer et al., 2012).
Building, training, optimizing and testing these networks
from scratch would require a huge amount of expertise
and time. There exist many deep learning frameworks
that offer the building blocks: TensorFlow (Abadi et al.,
2015), Keras (Chollet, 2015), Torch (Collobert et al., 2011),
Theano (Theano Development Team, 2016), Caffe (Jia et
al., 2014) and others. Researchers proposing a new type of
model also frequently publish their code, but typically do
not offer a more general framework.
Among the deep learning frameworks, TensorFlow is ar-
guably the most widely used, as the Github statistics in ta-
ble 1. demonstrate. However, as far as we know (see sec-
tion 2. for a more detailed description of the existing tools),
there does not exist a toolkit that allows one to quickly de-
sign, train and test their own ‘baseline’ LMs with Tensor-
Flow. We release a toolkit that contains modular code that
should be easy to adapt, standard recipes to train compet-
itive baseline models that can be adapted in a simple con-
figuration file and LMs that are pre-trained on a variety of
English benchmarks and corpora of spoken Dutch.

Framework Stars Forks
TensorFlow 86,940 33,924
Caffe 20,003 12,275
Keras 19,261 6,978
Torch 7,232 2,140
Theano 6,862 2,277

Table 1: Github statistics for several deep learning frame-
works, recorded on Sept 6, 2017.

In the remainder of this paper, we discuss other toolkits
that provide language modeling scripts in section 2., de-
scribe the documentation and functionality that our toolkit
provides (sections 3. and 4.) and the pre-trained LMs (sec-
tion 5.). We end with experimental results (section 6.) and
a conclusion (section 7.).

2. Related work
Although there already exist open-source neural lan-
guage modeling toolkits, they only offer feedforward
NNs (Schwenk, 2013), vanilla RNNs (Mikolov et al., 2014)
or are not easy to adapt and hence not very attractive to re-
searchers (Sundermeyer et al., 2014). TheanoLM (Enarvi
and Kurimo, 2016) should be more flexible and offers many
state-of-the-art models such as LSTMs and GRUs, but is
built on Theano. TensorFlow has a larger community than
Theano and is updated frequently, also including state-of-
the-art models. Moreover, it has been announced that the
development of Theano will not be continued.
The TensorFlow documentation offers a tutorial on re-
current neural network language modeling (TensorFlow,
2017), with code to train a word-level LM. It trains on
batches that go across sentence boundaries, while not re-
setting the state of the LSTM for every new sentence. This
implies that the model in theory can remember words from
the previous sentence(s). However, for some architectures
(e.g. bidirectional models) or applications, working on the
sentence level is a more natural choice. As explained in sec-
tion 4., we offer many more options in our toolkit, among
others the choice between training on sentence-level or
‘discourse’-level batches.
Several Github projects provide code to train LMs with
TensorFlow, but they are often quite specialized. For ex-
ample, word-rnn-tensorflow (Kim, 2017) and char-rnn-
tensorflow (Ozair, 2017) allow one to train respectively
word-level and character-level RNN LMs that one can use
to sample text (this corresponds to what we call ‘predicting
the next word(s)’, see section 4.4.).

2968

https://github.com/lverwimp/tf-lm


To the best of our knowledge, we are not aware of a similar
TensorFlow-based language modeling toolkit that offers the
same variety of options as ours.

3. Documentation
Documentation about the toolkit can be found in the Github
repository: we provide a high-level overview of the options
the toolkit offers, an overview of what every script does, a
list of possible combinations of options together with ex-
amples of commands and a link to the pre-trained models.
We also give a detailed description of what the configura-
tion should look like: mandatory versus optional parame-
ters, expected type for every parameter and a description
of what they do. The web page containing the pre-trained
LSTM LMs also gives some information about the data and
models.

4. Functionality
TF-LM offers different options with respect to device place-
ment, data reading, unit of input/output, batching, training
schemes and testing.
Firstly, the code will automatically run on GPU if one is
available, but if one does not want to use the available GPU,
it is possible to run on CPU by simply using the command
line option --device cpu.
Secondly, with respect to data handling, all data is read at
once and kept in memory, but this is not possible when deal-
ing with large datasets. For those datasets one can choose
to read the data sentence per sentence. This option can so
far only be combined with sentence-level batches (see sec-
tion 4.2. for more information about batching).
Thirdly, the main script will automatically train, validate
and test the model specified in the configuration file, un-
less certain options are switched off (with command line
options --train False, --valid False or --test False). Thus, if
one for example only wants to check the perplexity of a cer-
tain data set for an already trained model, this can be done
by using these switches.
All other options that the toolkit offers are specified in a
configuration file (command line option --config), which
contains a list of parameters and values. Certain param-
eters should always be specified, such as the path where
the model should be saved and the path where the data can
be found, others are optional. More detailed information
about every option, and about the possible combinations of
options can be found in the Github READMEs.
We tried to design the toolkit in such a manner that imple-
menting new models or new manners of feeding data, train-
ing or testing the models should be easy. One can typically
start from a base class and adapt only the parts that are nec-
essary: e.g. the LM that takes as input character n-grams
rather than words inherits from the baseline LM class, and
only adapts the initialization of variables and the manner in
which the input embeddings are generated.

4.1. Words, characters or both?
As regards unit of input/output, there are four options:
word, character, word and characters and character n-
grams. The word-level LM is the default option, and trains
a model that predicts the next word given the previous

words. The input embedding et for the word-level model
is calculated as follows:

et = Ww × wt (1)

with Ww the word embedding matrix and wt the one-hot
vector of the word at time step t. The character-level LM
does exactly the same but for characters: ct is the one-hot
vector of the current character.

et = Wc × ct (2)

In the output layer, this model predicts the next character.
The combination of word and characters feeds the current
word to the input along with a predetermined number of
characters occurring in the word, as in (Verwimp et al.,
2017b). The word and character embeddings are concate-
nated and the result of this operation is fed to the LSTM:

e>t = [(Ww × wt)
>(W1

c × c1t )
>

(W2
c × c2t )

> . . . (Wn
c × cnt )

>]
(3)

where c1t is the one-hot encoding of the first character, W1
c

its embedding matrix and n the total number of characters
added to the model. This option can be specified with the
parameter word_char_concat (set to True), the number of
characters to be added with num_char, the size of the char-
acter embeddings with char_size and the order in which the
characters should be added with order: begin_first implies
that we start at the beginning of the word (e.g. 5 characters
from ‘pineapple’: p, i, n, e, a), end_first that we start at the
ending of the word (e.g. 5 characters from ‘pineapple’: e, l,
p, p, a), and both that we add both the first num_char char-
acters starting from the beginning and from the ending (e.g.
3 characters from ‘pineapple’: p, i, n; e, l, p). In the output
layer the model predicts the next word.
The option of character n-grams (parameter char_ngram)
feeds a vector containing the counts of all character n-
grams that occur in the current word to the network:

et = Wg × gt (4)

where gt is not a one-hot vector but a vector of the length
of the character n-gram vocabulary, containing for every
character n-gram its frequency in the current word. For
example, for the word ‘home’, the character 2-grams are:
<bow>h, ho, om, me and e<eow> (we append a beginning-
and end-of-word token <bow>, <eow>). It is also possible
to use skipgrams (parameter skipgram with an integer value
specifying the number of skips), for example with skips of
1 character, ‘home’ has the following skipgrams: <bow>o,
hm, oe, m<eow>.
In this model, the representation needs more memory, since
every word is represented by a vector instead of an in-
dex, which is the implicit representation of a one-hot vec-
tor. To restrict the size of the input vocabulary, one can
choose to set a frequency cutoff for the character n-grams
(ngram_cutoff ): all n-grams not in the resulting vocabulary
are mapped to an unknown-ngram-symbol. Another option
to reduce the vocabulary is to only use lowercase characters

2969



and add a special symbol <cap> to the vector and assign it
the number of capitals in the word (parameter capital).
Finally, it is also possible to reserve a part of the total in-
put embedding for a standard word embedding, in a similar
manner as for character-word LMs (Verwimp et al., 2017b):

e>t = [(Ww × wt)
>(Wg × gt)

>] (5)

In this case, the input embedding consists of a concatena-
tion of the word embedding and the character n-gram input.
In the output layer, the character n-gram model always pre-
dicts a distribution over words.

4.2. Going beyond sentence boundaries?
By default, the models are trained on batches that optimally
make use of the available space. For example (extract taken
from Penn TreeBank):

“owned by <unk> & <unk> co. was under contract
with <unk> to make the cigarette filters <eos> the find-
ing probably"

The batches may contain (multiple) (parts of a) sentence,
separated from each other with the end-of-sentence token
<eos>. Since the hidden state of the LSTM is transferred
across the batches, it is not a problem that sentences are
spread over several batches and the LSTM can in theory
remember information from previous sentences. If the pa-
rameter per_sentence is present in the configuration file, the
model will train on batches that contain only one sentence,
padded until they all have the same length:

“<bos> the plant which is owned by <unk> & <unk>
co. was under contract with <unk> to make the
cigarette filters <eos> @ @ @ . . ."
“<bos> the finding probably will support those who ar-
gue that the u.s. should regulate the class of asbestos
including <unk> more <unk> than the common kind of
asbestos <unk> found in most schools and other build-
ings dr. <unk> said <eos> @ @ @ . . ."

In the above examples, ‘@’ is the padding symbol and the
number of padding symbols that has to be added to obtain
the length of the longest sentence in the whole dataset is of-
ten large. We also introduce a beginning-of-sentence sym-
bol <bos> to be able to predict the first word in the sen-
tence. In this model, a lot of memory is wasted on padding,
although in principle no extra computation is done using
TensorFlow’s dynamic RNN. To reduce the memory usage,
it is possible to stream the data sentence per sentence. The
state of the LSTM is always reset after each sentence, such
that it does not remember the previous sentence(s). The per-
plexity calculation is adapted to exclude the padding. We
will refer to this condition as ‘sentence LSTM’, whereas the
one that should remember previous sentences is referred to
as ‘discourse LSTM’.
It is important to note that most research papers on language
modeling do not explicitly mention whether their models go
beyond sentence boundaries or not. Some exceptions are
(Pelemans et al., 2016) and (Chelba et al., 2017), who re-
port worse perplexity results for models trained on sentence
level than on discourse level, supporting the intuition that
knowledge of the previous sentence(s) can have a positive

influence on the language modeling capacity. However, for
certain architectures or applications, such as bidirectional
models, sentence-level models are required.

4.3. Training
Certain parameters for training always have to be speci-
fied in the configuration file. Firstly, the vocabulary size
should be specified (vocab_size) and if it is smaller than
the full vocabulary of the data, words that do not appear
in the vocabulary should be mapped to an unknown to-
ken (we also make available a script to do this mapping).
All models are trained with an open vocabulary: the un-
known token is part of the input and output vocabulary and
hence an ‘unknown’ word can be predicted. If one does
not want to use a vocabulary based on the frequency of the
words, one can load their own vocabulary with the option
read_vocab_from_file.
Secondly, the size of the TensorFlow graph can be spec-
ified in number of layers, number of neurons per layer,
batch size and number of steps to unroll the network for
backpropagation through time. The models are randomly
initialized with a uniform distribution between -init_scale
and +init_scale. Several optimizers are included (stochas-
tic gradient descent, adam and adagrad) but a new optimizer
can be easily added. With respect to regularization, by de-
fault dropout is used on the input embeddings and on the
outputs of the LSTM cell, and the norm of the gradients is
clipped to avoid exploding gradients.
If the configuration parameter bidirectional is added, the
LM is trained as a bidirectional LSTM, whereby the for-
ward state of the current time step and the backward state
of next time step + 2 are combined:

yt+1 = f(W f
o hft +W b

o h
b
t+2 + b) (6)

In the equation above, f is the softmax function, yt+1 is
the probability distribution predicted for the word at time
step t + 1, W f

o and W b
o the output weight matrices of re-

spectively the forward and backward LSTM, hft the hidden
state of the forward LSTM for the current time step, hbt+2

the hidden state of the backward LSTM for the next time
step + 2 and b the output bias vector. We use hbt+2 because
for the task of language modeling, the input from the next
time step is equal to the target from the current time step.
There are two training schemes available: training a fixed
number of epochs or training with early stopping. For early
stopping, the validation perplexity of the current epoch is
compared with those of the x (specified with early_stop)
previous epochs, and training is stopped when it has been
higher x times. If this is not the case, training is continued
until the maximum number of epochs (max_max_epoch),
similar to the other training scheme. Both schemes can
be combined with an exponentially decaying learning rate:
during the first epochs (specified with max_epoch), the
same initial learning rate is used. Then an exponential de-
cay is applied:

ηi = α ηi−1 (7)

where ηi is the learning rate at epoch i and α the learning
rate decay.

2970



4.4. Testing
TF-LM offers several options to test the performance of a
trained LM. Firstly, the test or validation perplexity of the
standard data sets can be calculated by running the same
configuration with the --train and respectively --valid or
--test arguments switched off. Other test sets can be speci-
fied with the other_test parameter.
Secondly, a trained model can be used for re-scoring sen-
tences: given a list of sentences/hypotheses, the model will
assign log probabilities to every sentence, that can be used
for re-ranking hypotheses.
A third option is generating the most likely (sequence
of) word(s) given a certain history according to a trained
model. This option can be specified with predict_next and
takes as input a file containing word sequences that serve
as the ‘history’. It then iteratively samples the most likely
word given the history, then given the history including the
previously sampled word, and so on. It is possible to spec-
ify the maximum number of words that should be generated
with max_num_predictions (the default is 100). The gener-
ation will stop if the <eos>-symbol is predicted or else if
the maximum number of predictions has been generated.
Optionally, one can choose to not generate the most likely
word at every step, but to sample from a multinomial dis-
tribution as specified by the softmax probabilities.
The final option for testing can be used to easily cal-
culate interpolation weights for LSTM LMs and n-gram
LMs. SRILM (Stolcke, 2002) offers a script to calculate
the optimal interpolation weights between several models
(compute-best-mix) based on the outputs of running differ-
ent LMs on the same test set (with the -debug 2 option,
which prints the probabilities per word). The debug file
generated by our code has a similar structure as SRILM’s
debug file, containing (log) probabilities per word.
Re-scoring, generating the next word(s) and generating a
debug file are all implemented on sentence-level batches,
even if the LM was trained on discourse-level batches.

5. Pre-trained LSTM Language Models
We make available LSTM LMs trained on several English
and Dutch datasets, that can be found at http://homes.
esat.kuleuven.be/~lverwimp/lstm_lm/.
The English datasets are two publicly available bench-
marks: Penn TreeBank (PTB) (Marcus et al., 1993) and
WikiText (Wiki) (Merity et al., 2016). PTB contains 900k
word tokens for training, 70k word tokens as validation
set and 80k words as test set and has a vocabulary of 10k
words. For WikiText we used the small dataset for training,
WikiText-2, which contains 2M words for training, 210k
words for validation and 240k words for testing. We used
the same 33k vocabulary as Merity et al. (2016).
The Dutch datasets are two corpora of spoken Dutch, the
Corpus of Spoken Dutch (CGN) (Oostdijk, 2000) and a
dataset of subtitles (Sub). The CGN dataset contains nor-
malized versions of all components, both Flemish and
Dutch. The dataset is split in a training set of 8M words,
a validation set of 200k words and a test set of 240k words.
The Sub dataset contains 45M words for training, 100k
words for validation and 120k words for testing. It con-
tains subtitles for a variety of TV shows from the Flemish

national broadcaster, including fiction, documentaries, talk
shows, quizzes, lifestyle programs and news. For more in-
formation about this dataset, including a reference to pre-
trained n-gram LMs, see (Verwimp et al., 2017a); for more
details about the normalization, we refer the reader to (Ver-
wimp et al., 2016). The vocabulary for both Dutch datasets
is limited to the 100k most frequent words (the full vo-
cabulary size is 145k for CGN and 330k for the subtitles
dataset).

6. Experimental results
6.1. Perplexity
In table 2, we report perplexity results for the pre-trained
models.

Data 5-gram sentence LSTM discourse LSTM
PTB 147.9 102.4 84.1
Wiki 231.0 150.6 98.2
CGN 395.2 257.6 192.6
Sub 114.5 74.4 65.1

Table 2: Test perplexities for the pre-trained sentence and
discourse LSTM LMs compared to 5-gram LMs.

We compare a 5-gram model with interpolated modified
Kneser-Ney smoothing (Chen and Goodman, 1999) trained
with SRILM (Stolcke, 2002), with two baseline LSTM
models, one trained on sentence-level batches and one
trained on discourse-level batches. More details about
the complexity of the models can be found on the Github
repository and the download page. The perplexities for
the English benchmark datasets are comparable to results
for baseline word-level models reported in the literature:
e.g. Jozefowicz et al. (2015) report a perplexity of 81.4
for a standard LSTM model on PTB and Grave et al.
(2017) report a baseline perplexity of 99.3 for WikiText.
As expected, discourse-level batching performs better than
sentence-level batching: the improvement is largest for
WikiText that has many long-term dependencies.

Input/output unit Perplexity
word 84.1
character 2-gram 101.1
word-char 83.6

Table 3: Test perplexities for models trained with differ-
ent input/output units on Penn TreeBank. The ‘word-char’
model is one to which 9 characters starting from the end of
the word have been added.

In table 3, we report results for LMs trained with different
input units. We see that models with concatenated word
and character embeddings (last row) perform slightly better
than word-level models, and that character 2-grams as input
decreases the performance. Note that we did not do exten-
sive experiments with character n-gram input, so it is very
well possible that with a more thorough investigation, better
results can be obtained. For example, this model might be
interesting for other, more morphologically complex lan-
guages. Using a convolutional layer before the LSTM layer
might also improve them. A character-level model with the

2971

http://homes.esat.kuleuven.be/~lverwimp/lstm_lm/
http://homes.esat.kuleuven.be/~lverwimp/lstm_lm/


same hidden size, which has characters as input and output
(and hence a different output vocabulary than the models in
table 3), has a perplexity of 2.8.

6.2. Interpolation weights
The toolkit can also be used to calculate interpolation
weights between different neural LMs and/or n-gram LMs.
As an example, we generate a debugging file for the val-
idation set of PTB with our pre-trained LSTM LM. If we
generate a debugging file for a 5-gram LM with inter-
polated modified Kneser-Ney smoothing with the SRILM
toolkit, we can automatically define the optimal interpola-
tion weights on the validation set, which are 0.24 for the n-
gram model and 0.76 for the LSTM model. These weights
can subsequently be used in applications such as N-best
rescoring. The perplexity of the interpolated model (see
table 4) has improved 8% with respect to the LSTM LM
alone.

Model Valid Perplexity Test Perplexity
5-gram 155.1 147.9
LSTM 107.5 102.4
interpolation 98.6 94.7

Table 4: Validation and test perplexities for a 5-gram LM,
an LSTM LM and their interpolation on PTB.

6.3. Predicting next word(s)
In table 5, we show some examples of generating text
with trained LMs. We show the difference between gen-
erating text with a model trained on PTB or on WikiText,
and between generating the most likely word at every time
step (‘-p’) or sampling based on a multinomial distribution
(‘-s’). Since the class of unknown words is treated as a
word itself, unknown words can in principle be predicted
too, but in the case of sampling from the multinomial dis-
tribution, we sample another word is the unknown word has
been chosen. We observe that sampling from the multino-
mial distribution, hence not always choosing the most prob-
able word, results in sequences that are more ‘free’ in the
sense that they are often longer and contain less frequent
words.

6.4. Rescoring
The rescoring option can be used to assign log probabilities
to a list of sentences with a trained LM. For example, in ta-
ble 6 we show some results after rescoring the 100-best lists
from the DARPA WSJ’92 and WSJ’93 data sets, used by
among others (Xu et al., 2009) and (Filimonov and Harper,
2009). The LM used for rescoring is the pre-trained PTB
LM. Note that these log probabilities should be scaled by
the number of words in the sentence (with a word insertion
penalty) to properly compare them, since hypotheses with
more words get a lower probability as more log probabili-
ties are added. Compare for example the log probability for
he made a sales goal he says (-31.997), and for the exact
same sentence but with an extra word at the end, he made a
sales goal he says it (-35.9978).

seed consumers may. . .
PTB-p be able to <unk> the <unk> of the <unk>
PTB-s no longer be active
Wiki-p be used to be a <unk>
Wiki-s have made 0 - 3 victory in Mahwah
seed consumers may want. . .
PTB-p to be <unk>
PTB-s to keep the gop golden share
Wiki-p to be the first to be <unk>
Wiki-s to have a strong impact on the storytelling
seed in recent. . .
PTB-p years

PTB-s months after four years of investments
last month for the year alone

Wiki-p years

Wiki-s years , broadcasts by Conservative Party theatre
in the 18th century

seed The city ‘s growth has reflected the
push and pull of many social. . .

PTB-p security benefits
PTB-s states in the areas of southeast asia
Wiki-p contexts
Wiki-s forms

Table 5: Results of predicting the most probable sequence
(‘-p’) or sampling based on a multinomial distribution (‘-s’)
with the pre-trained PTB and Wiki models given several
seeds extracted from the validation data from PTB and
Wiki.

Hypothesis Log prob
he made a sales goal he says -31.9997
he made a sales coal he says -32.0020
he made a sales goal he sets -32.0021
he made a sales call he says -32.0053
he made its sales goal he says -32.0184
he made its sales coal he says -32.0221
he made its sales call he says 32.0255
he made as sales goal he says -32.0304
he made as sales coal he says -32.0331
he made as sales call he says -32.0360
he made it sails call he says -32.0619
he may to a sales goal he says -35.9857
he made a sales goal he says it -35.9978
he made a sale of coal he says -35.9994
he made a sales to call he says -36.0034
he made a sales call he says it -36.0043
he made a sale to call he says -36.0083

Table 6: Sorted log probabilities for part of the WSJ N-best
list development set, assigned by a model trained on PTB.

7. Conclusion
We release an open-source toolkit for language model-
ing based on TensorFlow: https://github.com/
lverwimp/tf-lm. It contains several options for in-
put/output unit, batching, training and testing and is easy
to adapt. We show that it obtains state-of-the-art perfor-
mance on English benchmarks, and release LMs trained on
those benchmarks and on corpora of spoken Dutch.

2972

https://github.com/lverwimp/tf-lm
https://github.com/lverwimp/tf-lm


8. Acknowledgements
This research is funded by the Flemish government agency
IWT project 130041, SCATE.

9. Bibliographical References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,

Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin,
M., Ghemawat, S., Goodfellow, I., Andrew Harp, G. I.,
Isard, M., Jozefowicz, R., Jia, Y., Kaiser, L., Kudlur,
M., Levenberg, J., Mané, D., Schuster, M., Monga, R.,
Moore, S., Murray, D., Olah, C., Shlens, J., Steiner, B.,
Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Va-
sudevan, V., Viégas, F., Vinyals, O., Warden, P., Wat-
tenberg, M., Wicke, M., Yu, Y., and Zheng., X. (2015).
Tensorflow: Large-scale machine learning on heteroge-
neous systems. Software available from tensorflow.org.

Chelba, C., Norouzi, M., and Bengio, S. (2017). N-gram
language modeling using recurrent neural network esti-
mation. Technical report, Google.

Chen, S. F. and Goodman, J. (1999). An empirical study of
smoothing techniques for language modeling. Computer
Speech and Language, 17:359–394.

Chollet, F. (2015). Keras. https://github.com/
fchollet/keras.

Collobert, R., Kavukcuoglu, K., and Farabet, C. (2011).
Torch7: A matlab-like environment for machine learn-
ing. In BigLearn, NIPS Workshop.

Enarvi, S. and Kurimo, M. (2016). TheanoLM – An Exten-
sible Toolkit for Neural Network Language Modeling. In
Proceedings Interspeech, pages 3052–3056.

Filimonov, D. and Harper, M. (2009). A joint language
model with fine-grain syntactic tags. In Proceedings
Conference on Empirical Methods in Natural Language
Processing (EMNLP).

Grave, E., Joulin, A., and Usunier, N. (2017). Improving
neural language models with a continuous cache. In Pro-
ceedings International Conference on Learning Repre-
sentations (ICLR).

Hochreiter, S. and Schmidhuber, J. (1997). Long short-
term memory. Neural Computation, 9(8):1735–1780.

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J.,
Girshick, R., Guadarrama, S., and Darrell, T. (2014).
Caffe: Convolutional architecture for fast feature embed-
ding. arXiv preprint arXiv:1408.5093.

Jozefowicz, R., Zaremba, W., and Sutskever, I. (2015). An
Empirical Exploration of Recurrent Network Architec-
tures. In Proceedings of the 32nd International Confer-
ence on Machine Learning (ICML), pages 2342–2350.

Kim, S. (2017). word-rnn-tensorflow. https://
github.com/hunkim/word-rnn-tensorflow.

Marcus, M. P., Marcinkiewicz, M. A., and Santorini, B.
(1993). Building a Large Annotated Corpus of English:
the Penn Treebank. Computational Linguistics, 19:313–
330.

Merity, S., Xiong, C., Bradbury, J., and Socher, R.
(2016). Pointer sentinel mixture models. arXiv preprint
arXiv:1609.07843.

Mikolov, T., Karafiát, M., Burget, L., C̆ernocký, J., and
Khudanpur, S. (2010). Recurrent neural network based

language model. In Proceedings Interspeech, pages
1045–1048.

Mikolov, T., Kombrink, S., Deoras, A., Burget, L., and Čer-
nocký, J. (2014). RNNLM - recurrent neural network
language modeling toolkit. In Proceedings Interspeech,
pages 2093–2097.

Oostdijk, N. (2000). The Spoken Dutch Corpus. Overview
and first Evaluation. In Proceedings Language Re-
sources and Evaluation Conference (LREC), pages 887–
894.

Ozair, S. (2017). char-rnn-tensorflow.
https://github.com/sherjilozair/
char-rnn-tensorflow.

Pelemans, J., Shazeer, N., and Chelba, C. (2016). Sparse
non-negative matrix language modeling. Transactions of
the Association for Computational Linguistics, 4:329–
342.

Schwenk, H. (2013). CSLM – a modular open-source con-
tinuous space language modeling toolkit. In Proceedings
Interspeech, pages 1198–1202.

Stolcke, A. (2002). SRILM an extensible language mod-
eling toolkit. In Proceedings International Conference
Spoken Language Processing, pages 901–904.

Sundermeyer, M., Schlüter, R., and Ney, H. (2012). LSTM
Neural Networks for Language Modeling. In Proceed-
ings Interspeech, pages 1724–1734.

Sundermeyer, M., Schlüter, R., and Ney, H. (2014).
rwthlm – The RWTH Aachen University Neural Net-
work Language Modeling Toolkit. In Proceedings Inter-
speech, pages 2093–2097.

TensorFlow. (2017). Recurrent neural networks.
https://www.tensorflow.org/tutorials/
recurrent.

Theano Development Team. (2016). Theano: A Python
framework for fast computation of mathematical expres-
sions. arXiv preprint arXiv:1605.02688.

Verwimp, L., Desplanques, B., Demuynck, K., Pelemans,
J., Lycke, M., and Wambacq, P. (2016). STON: Effi-
cient subtitling in Dutch using state-of-the-art tools. In
Proceedings Interspeech, pages 780–781.

Verwimp, L., Pelemans, J., Lycke, M., Van hamme, H.,
and Wambacq, P. (2017a). Language Models of Spoken
Dutch. arXiv preprint arXiv:1709.03759.

Verwimp, L., Pelemans, J., Van hamme, H., and Wambacq,
P. (2017b). Character-Word LSTM Language Models.
In Proceedings of the European Chapter of the Associa-
tion for Computational Linguistics (EACL), pages 417–
427.

Xu, P., Karakos, D., and Khudanpur, S. (2009). Self-
supervised discriminative training of statistical language
models. In Proceedings IEEE Automatic Speech Recog-
nition and Understanding Workshop (ASRU).

2973

https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://github.com/hunkim/word-rnn-tensorflow
https://github.com/hunkim/word-rnn-tensorflow
https://github.com/sherjilozair/char-rnn-tensorflow
https://github.com/sherjilozair/char-rnn-tensorflow
https://www.tensorflow.org/tutorials/recurrent
https://www.tensorflow.org/tutorials/recurrent

	Introduction
	Related work
	Documentation
	Functionality
	Words, characters or both?
	Going beyond sentence boundaries?
	Training
	Testing

	Pre-trained LSTM Language Models
	Experimental results
	Perplexity
	Interpolation weights
	Predicting next word(s)
	Rescoring

	Conclusion
	Acknowledgements
	Bibliographical References

