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Abstract
We propose approaches that use information retrieval methods for the automatic calculation of CO2-footprints of cooking recipes. A
particular challenge is the “long tail problem” that arises with the large diversity of possible ingredients. The proposed approaches are
generalizable to other use cases in which a numerical value for semi-structured items has to be calculated, for example, the calculation
of the insurance value of a property based on a real estate listing. Our first approach, ingredient matching, calculates the CO2-footprint
based on the ingredient descriptions that are matched to food products in a language resource and therefore suffers from the long tail
problem. On the other hand, our second approach directly uses the recipe to estimate the CO2-value based on its closest neighbor
using an adapted version of the BM25 weighting scheme. Furthermore, we combine these two approaches in order to achieve a more
reliable estimate. Our experiments show that the automatically calculated CO2-value estimates lie within an acceptable range compared
to the manually calculated values. Therefore, the costs of the calculation of the CO2-footprints can be reduced dramatically by using
the automatic approaches. This helps to make the information available to a large audience in order to increase the awareness and
transparency of the environmental impact of food consumption.

Keywords: BM25 weighting scheme adaptation, cooking recipe retrieval, CO2-footprint estimation

1. Introduction
One easily measurable quantitative quality criterion of a
language resource (LR) is its coverage. However, achieving
a high coverage usually requires a lot of human effort. One
of the reasons is that often the frequencies of potential LR
entries; e.g. words in human language or food products in
cooking recipes (Müller et al., 2012), arrange themselves
according to the so-called Zipf’s law (Zipf, 1949), mean-
ing that most entries relate to entities that occur very in-
frequently. Therefore, LRs are most likely never complete.
This long tail problem is relevant for most applications that
rely on LRs, however, it is particularly severe for informa-
tion retrieval (IR) applications that not only use the LR to
enhance their effectiveness (e.g. expanding queries with
synonyms) but directly use the LR entries to compile their
output.
To illustrate, consider a new class of retrieval applications
that require the calculation of a single numerical value from
a semi-structured item that consists of a list of textual ele-
ments. For example, such a semi-structured item may be
a cooking recipe in which the elements are the instruction
lines, such as “100g carrots, sliced” and “1 pizza dough”,
or a real estate listing in which the elements are the compo-
nents, such as “Bedrooms: 4” and “Heating: Oil-Fired Cen-
tral Heating”. In those examples the numerical values to be
calculated can be the nutrition value or the CO2-footprint of
a recipe or for the real estate example the insurance value
of a property.
An element-wise approach to calculating such values splits
the problem into sub-problems by first calculating the value
for each element individually and then computing the value
of the complete item by aggregating the values of the in-
dividual elements. For most use cases, this means that the

individual elements are matched to an LR, which then helps
to estimate their values. In the case of recipes, the LR (Ea-
ternity AG, 2017) we use contains the nutrition value and
the CO2-value for each food product. For the estimation
of real estate insurance values, a suitable LR contains the
costs of the corresponding components; e.g. the average
costs of a bathroom with a shower and a double washbasin.
This element-wise approach, however, heavily relies on the
completeness of the LR and has to use a fallback strategy
if elements are not found in the LR. In practice, the fall-
back usually means that additional entries need to be added
manually, an excessively costly option.

In the real estate example, an alternative human line of ac-
tion is often to estimate the value of a property based on
the values of other similar properties for which the value is
already known. Hence, the value is estimated based on the
whole item rather than the individual elements and thus the
problem of the incompleteness of the LR can be circum-
vented. Gonzalez and Laureano-Ortiz (1992) replicate this
process for automatic property appraisal. We propose an
item-based approach using IR technology. We claim that
this approach is applicable to many scenarios that include
the calculation of a value for a semi-structured item when-
ever a similarity between the items can be defined.

In this paper, we focus on the use case of the automatic
calculation of CO2-footprints of cooking recipes. The mo-
tivation for such a use case is that about one-third of CO2-
emissions produced by the final household demand in Eu-
rope is caused by the consumption of food (Tukker and
Jansen, 2006) and that the calculation of CO2-footprints for
cooking recipes helps to increase the awareness and trans-
parency of the environmental impact of food consumption.
However, so far the footprint of a recipe was calculated with
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a manual process (O’Connor et al., 2018) which is time-
consuming and therefore too costly to be applied to a wide
range of cooking recipes.
We describe and evaluate an element-wise, an item-based,
and a hybrid approach, combining the two, to automatically
calculate the CO2-footprints of recipes. In the context of
our CO2 use case, we call the element-wise approach “in-
gredient matching” and the item-based approach “recipe
matching”. The ingredient matching approach uses an IR
pipeline to match the instruction lines to the correspond-
ing entries in the LR through retrieval from an index. The
recipe matching approach finds the most similar recipe in a
corpus of indexed recipes for which the CO2-footprints are
already assessed. A novelty is our proposal of an adapted
version of the BM25 weighting scheme which also consid-
ers the amounts of the individual ingredients in the recipes.
Finally, the hybrid approach combines the two other ap-
proaches so that a higher accuracy and stability of the CO2-
value estimates can be achieved.
In our experiments, we compare the automatic approaches
to the manual process as well as to each other. Both the
ingredient as well as the recipe-based approaches perform
similarly, while our hybrid approach outperforms the indi-
vidual approaches. We show that the automatic approaches
lie within an acceptable range to the CO2-values calculated
manually and therefore are serious alternatives. Using the
approaches suggested in this paper, the cost of calculat-
ing CO2-footprints of recipes can be reduced dramatically,
which makes it possible to make this information available
to a large audience. The company Eaternity, which has
commercialized a CO2-calculation service based on the ap-
proaches we describe, reports that it realizes a reduction in
the calculation effort of 50-60% and an overall cost reduc-
tion of 80% compared to their old, manual process.

2. Related Work
Processing and more specifically choosing, designing,
adapting and comparing cooking recipes has proven popu-
lar with case-based reasoning (CBR) researchers ever since
the two automated meal recommendation systems CHEF
(Hammond, 1986) and Julia (Hinrichs, 1989) have been
presented. Many efforts are related to the Computer Cook-
ing Contest, which runs since 2007. We distinguish be-
tween work to automatically process the ingredients of
cooking recipes and work that deals with the similarity of
recipes.
Several publications deal with automatically constructing a
process flow graph of a given recipe (Hamada et al., 2000),
(Walter et al., 2011). Hamada et al. (2000) create domain-
specific dictionaries and match the keywords in the recipe
to the words in the dictionaries. Based on the structure of
the sentences they then construct the process flow graph.
Walter et al. (2011) preprocess and annotate the recipes
with GATE, a natural language processing (NLP) frame-
work. Based on rules created from a domain expert the
ingredients, as well as the actions, are linked to a work-
flow. Moreover, Müller et al. (2012) automatically match
the ingredients of a recipe to a nutrition database in order to
estimate the nutritional value of the recipe. The similarity
of recipes is mostly investigated for content-based recom-

mender systems (Teng et al., 2012), (van Pinxteren et al.,
2011).
The CO2-database that we use in our experiments as well
as the whole CO2-application is described by O’Connor
et al. (2018), while other CO2-reduction experiments that
are conducted using the automatic ingredient matching ap-
proach are described by Itten et al. (2018).
Gonzalez and Laureano-Ortiz (1992) propose a CBR sys-
tem that automatically estimates the value of a property
based on similar real estates handled in past experiences.
If the markets for particular properties are too sparse, they
use heuristic knowledge.
The K-nearest neighbor (kNN) approach is usually applied
to solve classification problems where the only prerequisite
is the definition of a similarity of feature vectors. It was first
mentioned in a technical report in 1951 (Fix and Hodges Jr,
1951). Since then, kNN is also used for text classification
amongst others by Yang (1999) and Sebastiani (2002). In
this paper, we do not classify the recipe but only use the
idea of nearest neighbors in order to estimate the CO2-value
based on them.

3. Methods
The case of calculating CO2-footprints is interesting for
IR research on multiple fronts. As described above, in
an element-wise approach the value is retrieved by either
manually or automatically matching all the ingredient de-
scriptions in the recipe to the appropriate food products in
an LR. However, this matching is more challenging than it
may appear at first glance. The difficulty stems from the
fact that recipes are usually written in natural language and
are therefore not restricted to use the fixed vocabulary used
in the food product database. The following challenges are
all very well known in NLP and IR.
The first challenge is that the authors might use synonyms
in order to describe the ingredient; e.g. the ingredient de-
scription for “chard” in German might be either “Mangold”
or “Krautstiel”. In the cooking domain, synonyms are fre-
quently used due to regional differences. The second chal-
lenge is the specificity of the ingredient description; both
cases, very unspecific descriptions and overly specific de-
scriptions are hard to handle correctly. For example, the
unspecific description “fillet of fish” has a lot of different
options to be interpreted by the cook and therefore the cor-
rect assignment to a food product in the database is a non-
trivial choice. On the other hand, the description “Pinot
Noir” may be too specific and in order to correctly match
it to a food product in the database, the fact that this is a
red wine has to be known. The third challenge is the han-
dling of combined products, such as a pizza dough, which
themselves consist of several other products.
In order to match the combined products to the food prod-
ucts in the database, the database either needs to contain
them as well or a process to recursively split them into
their base food products has to be defined. In addition to
the three challenges described, we have to handle differ-
ent word forms, word compounds, special characters, etc.
Moreover, the food products used in recipes worldwide are
manifold and it has been shown that most of them only ap-
pear in very few recipes (Müller et al., 2012). Also, new
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Figure 1: Visualization of the manual as well as the automatic ingredient matching approach on an explanatory excerpt of
a recipe. Note that the CO2-values are simplified for this example. In the real application, they differ depending on the
season and the origin of the ingredients.

products are continuously introduced to the marketplace.
According to these facts, a food product database is basi-
cally never complete.
In the following sections, we propose three approaches to
automatically calculate the CO2-value of cooking recipes
using NLP and IR methods. Section 3.1. describes our first
approach, which we call ingredient matching. It reproduces
an automatic version of the traditional manual process of
assigning CO2-values to ingredient descriptions. Section
3.2. describes the recipe matching approach, which esti-
mates the CO2-value of a recipe based on similar recipes
rather than the individual ingredients. Therefore, it does not
depend on the completeness of the food product database.
Our third approach, the hybrid approach, combines the in-
gredient and the recipe matching approaches and therefore
benefits from the advantages of both. It is described in Sec-
tion 3.3.

3.1. Ingredient Matching
The ingredient matching approach matches all ingredient
descriptions individually to the corresponding food prod-
uct in the CO2-database (Eaternity AG, 2017) and the es-
timate is computed by the sum of the CO2-values of each
food product multiplied with the corresponding amount. As
shown in Figure 1, the input is a semi-structured recipe and
the output is a mapping of the ingredients to the food prod-
ucts in the CO2-database as well as the total CO2-value of
the recipe per serving.
For each ingredient description in the German input
recipes, we find the best matching food product in the
database. Therefore, we create an index of food prod-
ucts using a traditional IR pipeline including stemming,
stopword removal, decompounding and synonym handling.
Apart from the commonly used stopwords, we also use sev-
eral domain-specific stopwords such as pasteurized, portion
and minced. To ensure a high precision for the match-
ing, we use a light stemmer (Savoy, 2002). Since the

experiments are based on German recipes, we employ a
decompounding component that splits compound words
such as “Zitronensaft” (lemon juice) into their components
“Zitrone” (lemon) and “Saft” (juice) using a dictionary-
based n-gram decompounder with a minimum word size of
10 and a minimum and maximum word constituent size of 4
respectively 12. Along with the original food products, we
also index their synonyms with the same CO2-information.
Moreover, we also add combined products to the index, for
which the CO2-values are manually pre-calculated.

Table 1: Notation used for BM25 and our adaptations
thereof.
dj single document
q single query
Φ indexing vocabulary
ϕk single indexing feature
lj length of document
∆ average document length
Φ(dj) set of features representing document dj
Φ(q) set of features representing query q
w(ϕk, dj) weight of feature ϕk for document dj
w(ϕk, q, dj) weight of feature ϕk for query q and dj
ff(ϕk, dj) feature frequency of feature ϕk for dj
df(ϕk) document frequency of feature ϕk

The search in the index is performed using an adaptation
of the BM25 weighting scheme (Robertson and Zaragoza,
2009) that ignores the inverse document frequency. Unlike
in most other IR applications, the fact that a term appears
often in the collection does not mean that it is less impor-
tant. For example, the database might contain several prod-
ucts containing the term “apple”, such as apple, apple juice,
and apple puree. However, the terms juice and puree should
not be weighted heavier than apple, since a match to one of
the three food products containing apple is already a much
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better fit than a match to for example orange juice. On the
other hand, the term frequency is needed since some ingre-
dient descriptions contain the same stemmed term multiple
times and thus we assume that it is indeed more important
than others. Since the number of terms in the ingredient de-
scription varies, we apply a document length normalization.
Hence, we use the retrieval status value (RSV) of document
dj w.r.t. query q according to BM25

w(ϕk, dj) :=
ff(ϕk, dj)

k1((1− b) + b
lj
∆ ) + ff(ϕk, dj)

· log

(
0.5 +N − df(ϕk)

0.5 + df(ϕk)

)
(1)

w(ϕk, q) := ff(ϕk, q) (2)

RSV(q, dj) :=
∑

ϕk∈Φ(q)∩Φ(dj)

w(ϕk, dj) · w(ϕk, q), (3)

where we set df(ϕk) = 1 for all features ϕk. Table 1
shows an overview of the notation used. Apart from the ig-
nored inverse document frequency, we employ BM25 with
the commonly used term frequency saturation parameter
k1 = 1.2 and document length normalization parameter
b = 0.75. The default parameters are used due to the lack
of suitable training data and to avoid overfitting. For the
ingredient descriptions for which no food product can be
retrieved from the index, we assign an artificial food prod-
uct that has an average CO2-value.

3.2. Recipe Matching
The goal of our recipe matching approach is to estimate the
CO2-footprint of an arbitrary recipe from the most similar
recipe in a database of recipes for which the CO2-footprints
are already known. Hence, we exploit the knowledge we
already gathered with either a manual or a semi-automatic
process that allocates the CO2-values. Unlike the ingredi-
ent matching, the recipe matching does not rely on assign-
ing the individual ingredients to a database entry. There-
fore, this nearest neighbor approach overcomes the long tail
problem introduced by the incompleteness of the ingredient
database.
An approach using IR techniques to find the most similar
recipe is to run a textual search with the description of the
ingredients in the query recipe against an index in which the
recipes are indexed with all their ingredient descriptions.
However, the similarity used in this approach does not re-
flect the amounts of the ingredients in the recipes, e.g. a
recipe with 500g flour and 3g salt would be similar to a
recipe with 500g salt and 3g flour.
Therefore, we suggest a method that also considers the
amounts as an additional information, so that recipes have
a higher similarity if the difference between the amounts
of their respective ingredient descriptions is small. Our ap-
proach is based on an adjustment of the BM25 weighting
scheme although other popular weighting schemes such as
language models or divergences from randomness could be
used. We adapt the weight of the query terms so that the
difference between amounts of the ingredients in the query
recipe and the document recipes is considered. A query
term, i.e. an ingredient description, is weighted with the
reciprocal difference between the amounts of the two the

ingredients. Hereby, we choose the formula so that a dif-
ference of zero leads to a weight of one. Therefore, we also
store the amounts of each term in each recipe, so that we
can quickly retrieve the amount of a term in a given recipe
when comparing recipes. In case an ingredient description
consists of several terms, the amount of the ingredient will
be assigned to each of its terms.
The retrieval status value (RSV) of document dj w.r.t.
query q of the adjusted BM25 that considers the amounts
of the ingredients is therefore defined as:

w(ϕk, dj) :=
ff(ϕk, dj)

k1((1− b) + b
lj
∆ ) + ff(ϕk, dj)

· log

(
0.5 +N − df(ϕk)

0.5 + df(ϕk)

)
(4)

w(ϕk, q, dj) :=
ff(ϕk, q)

|a(ϕk, q)− a(ϕk, dj)|·α+ 1
(5)

RSVBM25(q, dj) :=
∑

ϕk∈Φ(q)∩Φ(dj)

w(ϕk, dj) · w(ϕk, q, dj), (6)

where a(ϕk, r) is the amount of the term k in the recipe
r and α is a tuning parameter to weight the difference be-
tween the amounts. The tf saturation parameter k1 and the
document length normalization parameter b are used as in
the original definition of BM25. Note, that only the defi-
nition of w(ϕk, q, dj) is different to the one in the original
BM25, where it is equal to ff(ϕk, q).
Once the most similar recipe is known, we can use its CO2-
value as an approximation of the CO2-value of the input
recipe.

3.3. Hybrid Matching
The use of a hybrid approach is motivated by the fail-
ure analysis of the two individual approaches. Our goal
is to obtain a more robust estimate that reduces the num-
ber of outliers, where the automatically generated value is
far from the correct, manual assessment. Table 2 summa-
rizes the reasons why the ingredient matching and recipe
matching approaches produce inaccurate estimates which
are outside of an acceptable range with respect to the man-
ually computed value. The ingredient matching results
in a bad estimate when one or several ingredient descrip-
tions can not be matched to the correct food product in the
database. The reason is either that the correct food prod-
uct does not exist in the database (long tail problem) or
that the IR pipeline fails to retrieve the correct food prod-
uct. Generally, the estimates do not lie within an accept-
able range either if many ingredient descriptions are not
correctly matched; i.e. the error accumulates; or if a few in-
gredient descriptions with a high CO2-impact are matched
to food products with a low CO2-impact or vice versa.
There are three main reasons for the recipe matching to
produce an estimate that does not lie within an acceptable
range. The first reason is that the search space in which the
recipe matching approach finds the nearest neighbor often
has regions in the vector space in which it is not dense. In
these regions, the distance between the recipe and its near-
est neighbor is bigger than in other regions where the search
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Table 2: Summarized reasons for estimation errors.
Ingredient Matching Recipe Matching

Long Tail Problem Sparse Space Problem
IR Pipeline Problem IR Pipeline Problem

Granularity Problem

space is less sparse. In the recipe domain, the different re-
gions in the vector space might also correspond to cultural
differences. For example, our test collection contains a lot
of Swiss menus and not so many Asian recipes; therefore,
in general, the estimates for Asian menus are less accurate
than for Swiss menus. The second reason for bad estimates
is that the true nearest neighbor can not be retrieved since it
uses a different vocabulary. The third reason for estimates
that are far from the manually calculated value can be sum-
marized as granularity problems. This means that the recipe
matching, which operates on the whole recipe rather than
on the individual elements, fails to produce a good estimate
if the nearest neighbor recipe is similar to the input recipe,
although there are small but decisive differences in the in-
gredients that lead to a completely different CO2-footprint.
The different kinds of failures of the two approaches lead
to situations where either only one of the approaches pro-
duces an estimate that is rather far from the ground truth
or that one overestimates and the other underestimates the
CO2-value. Therefore, we propose a hybrid matching ap-
proach that uses the average of the two CO2-estimates of
the ingredient matching and the recipe matching as a new
estimate, as shown in equation 7.

estimatehybrid =
estimateingredient + estimaterecipe

2
(7)

This flattens the outliers produced by the individual ap-
proaches and makes sure the system can provide a CO2-
estimate for more recipes.

4. Test Collections and Language Resources
For the experiments, we use two collections of recipes that
were created specifically for this task. The first collec-
tion, the so-called hobby collection, consists of 243 veg-
etarian and vegan recipes from chefkoch1, an online plat-
form for recipes. The second collection, the catering col-
lection, contains 600 recipes from the catering company
“Compass Group (Schweiz) AG”, a subsidiary of Compass
Group PLC, the largest caterer worldwide. The recipes in
both collections are in German and are in a semi-structured
form given by either chefkoch or the catering company’s
enterprise resource planning system. This means, each in-
struction line is provided with separate fields for amount,
unit and ingredient description, hence no information ex-
traction is needed. Different units, such as the number of
teaspoons, are converted to grams using a simple set of
rules.
The ingredient matching approach matches the ingredient
descriptions to a product index that contains 3,121 food
products that was generated from the LR (Eaternity AG,

1http://www.chefkoch.de/

2017). The LR contains base food products with their
CO2-values as well as synonyms that are linked to the base
food products. The LR contains a lot of very region spe-
cific food products, such as “Cervelat” and “Roesti” which
are frequently used in cooking recipes in Switzerland. The
recipe matching approach searches for the nearest neigh-
bor recipes in a recipe index that contains approximately
50,000 recipes. Most of the recipes are from catering com-
panies others are from chefkoch and various other sources.
Both the product index and the recipe index are primarily
in German.
We manually built a ground truth for both the hobby and the
catering collections. That means that for each ingredient in
each recipe we manually assigned the best matching food
product in the product index. Based on this ground truth it
is possible to calculate the CO2-footprint of each recipe in
the collection. For example, “spaghetti carbonara” has an
expected CO2-value of 774g. There are also recipes with
a much larger CO2-value such as “schnitzel with french
fries” which has a CO2-value of 2,366g. Table 3 shows
the range of the CO2-values of the recipes in these collec-
tions. The hobby collection has a significantly smaller av-
erage CO2-value per recipe (1,100g) than the catering col-
lection (1,700g) since the hobby collection only contains
vegan and vegetarian recipes.

Table 3: Statistics of the test collections.
Collection Catering Hobby

Number of recipes 600 243
Minimum CO2-value 32g 113g
Maximum CO2-value 13,513g 1,732g
Average CO2-value 1,700g 1,100g

5. Experiments
5.1. Ingredient Matching
The ingredient matching approach matches the ingredient
descriptions to the food products in the database. Table 4
shows the precision, the fraction of correctly matched in-
gredient descriptions, as well as the mean absolute error
(MAE) and the Pearson correlation between the CO2-value
estimate from the ingredient matching and the CO2-values
from the manual matching. Hereby, correctly matched
means that the automatic matching is strictly equal to the
manual matching. The mean absolute error is the average of
all the absolute errors in the test collection, where the abso-
lute error of a recipe is the difference between the expected
CO2-value and our estimate. For example, “spaghetti car-
bonara” has an expected CO2-value of 774g and an esti-
mate of 684g which results in an absolute error of 90g.
The Pearson correlation measures the linear dependence
between two variables, in our case the manually assessed
CO2-values and the estimates from the automatic process.
The possible values are between 1 and -1, where 1 is the
maximal positive correlation, 0 means no correlation and
-1 is the maximal negative correlation.
The precision for the catering collection is slightly higher
than for the hobby collection, mostly since the food prod-
uct database was mainly designed for catering recipes. At
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Table 4: Matching results using the ingredient matching
approach on the two test collections catering and hobby.

Collection Catering Hobby

Precision 0.72 0.68
Mean absolute error 336g 163g
Pearson correlation 0.81 0.73

first glance, the achieved precisions of 0.72 respectively
0.68 are not that encouraging. However, given that other
studies show that even the consensus of human assessors
is smaller than 75% for 23% of the recipes (Müller et al.,
2012), the achieved precision is at least acceptable. Hav-
ing a closer look at some of the wrongly matched ingredi-
ents descriptions, we indeed find many examples which are
within the margin of human disagreement. For example,
“celery large” is wrongly matched to “celery root” instead
of “celery stalks” as denoted in the ground truth, although
both seem to be valid options. There are however also some
IR specific issues. For example, “red trout fillet (breed)”
is wrongly matched to “salmon trout (breed, fillet)” rather
than “trout”.
The significantly smaller average CO2-value per recipe in
the hobby collection, as shown in Table 3, is the main rea-
son why the MAE of the hobby collection is smaller than
the MAE of the catering collection.

5.2. Recipe Matching
The recipe matching approach, in which we estimate the
CO2-value of an input recipe by its most similar recipe,
heavily relies on the size of the recipe corpus from which
the similar recipes are retrieved. Our retrieval system is
built on top of Lucene and is using the built-in BM25
weighting scheme with the default saturation parameter
k1 = 1.2 and the document length normalization param-
eter b = 0.75.
Table 5 shows the MAE and the correlation between the
CO2-value estimate from the recipe matching and the CO2-
values from the manual matching. For the experiments, we
use α = 0.02 as the tuning parameter of the weight of
the difference between the amounts. Note that our ground
truth does not include the closest neighbor of the recipes,
but only the manually assigned food products and the to-
tal CO2-value of each recipe, thus we do not specify the
precision for the recipe matching approach.

Table 5: Matching results using the recipe matching ap-
proach on the two test collections catering and hobby.

Collection Catering Hobby

Mean absolute error 310g 360g
Pearson correlation 0.83 0.14

In order to explain the different performances of the algo-
rithm on the two datasets, we first have a look at the two
collections. As already stated previously the hobby col-
lection only contains vegan and vegetarian recipes from a
hobby cooking platform, while the catering collection con-
tains recipes from several canteens in Switzerland. Having

a closer look shows that the two collections are quite differ-
ent regarding the number of ingredients used in each recipe.
An average recipe in the hobby collection consists of 12.7
ingredients and an average recipe in the catering collection
has 20.5 ingredients. However, not only the number of in-
gredients is different but also the ingredients themselves.
Therefore the most similar recipe from which the CO2-
value is used as an estimate is most likely a recipe from the
same category (hobby or catering) as the input recipe. The
corpus used to retrieve the recipes with already allocated
CO2-values consists of approximately 50,000 recipes from
which only around 1% are recipes from the hobby domain,
while all the others stem from the catering domain. The
lack of close neighbors; i.e. too few recipes from the hobby
domain, therefore explains the small correlation (0.14) of
estimates in the hobby collection. Even though the perfor-
mance of the recipe matching for the hobby collection is
not as good as for the catering collection, the MAE for the
hobby collection (360g) is still in the same range as for the
catering collection (310g) due to the smaller average CO2-
value of the vegan and vegetarian hobby recipes.

5.3. Hybrid Matching
The hybrid matching approach combines the ingredient
matching and recipe matching by averaging the two esti-
mates and therefore is able to account for their individual
shortcomings. Table 6 shows the MAE and the correlation
between the CO2-value estimate from the hybrid matching
and the CO2-values from the manual matching.

Table 6: Matching results using the three matching ap-
proaches on the two test collections catering and hobby.

Method Measure Catering Hobby

Ingredient Precision 0.72 0.68
Mean absolute error 336g 163g
Pearson correlation 0.81 0.73

Recipe Mean absolute error 310g 360g
Pearson correlation 0.83 0.14

Hybrid Mean absolute error 279g 206g
Pearson correlation 0.90 0.55

For the catering collection the hybrid matching approach
achieves a better result for both measures (MAE and cor-
relation) than the other approaches individually. In spite of
the significantly worse performance of the recipe matching
for the hobby collection the hybrid matching only achieves
a slightly worse result as the ingredient matching. These
results show that in the case in which both individual ap-
proaches achieve an acceptable performance the hybrid
matching results in more reliable estimates.

6. Conclusions
We proposed three approaches using IR to automatically
compute a single numerical value of a semi-structured item
that consists of a list of textual elements based on the use
case of calculating CO2-footprints of cooking recipes,
The first approach, ingredient matching, calculates the
CO2-footprint on an element-basis; i.e. the ingredients.
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Our experiments show that the CO2-value estimates of the
ingredient matching lie within an acceptable range com-
pared to the estimate of the manual calculation. The sec-
ond approach estimates the CO2-values based on similar
recipes rather than individual ingredients. Since the esti-
mate is no longer based on the individual ingredients, this
recipe matching approach overcomes the long tail problem
of the ingredient matching, i.e. that the food product LR is
most likely not complete.
For the similarity of recipes, we proposed an adaptation
of the BM25 weighting scheme that takes the different
amounts of the ingredients into account. We showed that
the recipe matching slightly outperforms the ingredient
matching, if the recipe corpus is large enough. We have rea-
son to believe, that the effectiveness of matching would in-
crease as the size of the collection of recipes that is searched
against increases.
Combining both the ingredient matching and the recipe
matching with our hybrid approach allows us to estimate
the CO2-value even more accurately. It is therefore able
to balance the shortcomings of the individual approaches.
The achieved correlation of 0.9 between the CO2-value es-
timates of the hybrid matching and the CO2-value estimates
of the manual matching shows that the automatic calcula-
tion is a serious alternative to the manual calculation and
therefore the costs of a manual calculation can be reduced
dramatically by instantiating the automatic calculation. In-
deed, first experiences from using the approaches in the
commercial CO2-calculation service of our partner Eater-
nity indicate a reduction in effort for the calculations in the
range of 50-60%, with an even higher overall cost reduction
of 80%.
As a next step, the accuracy of the estimates of the hy-
brid matching approach could possibly be further improved
by weighting the estimates of the ingredient and the recipe
matching based on an estimate of their reliability. The relia-
bility of the CO2-estimates of the recipe matching could for
example be predicted using the distance between the input
recipe and its nearest neighbor.
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