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Abstract
The three-dimensional visualization of spoken or written information in Sign Language (SL) is considered a potential tool for better
inclusion of deaf or hard of hearing individuals with low literacy skills. However, conventional technologies for such CG-supported
data display are not able to depict all relevant features of a natural signing sequence such as facial expression, spatial references
or inter-sign movement, leading to poor acceptance amongst speakers of sign language. The deployment of fully data-driven, deep
sequence generation models that proved themselves powerful in speech and text applications might overcome this lack of naturalness.
Therefore, we collected a corpus of continuous sentence utterances in Japanese Sign Language (JSL) applicable to the learning of deep
neural network models. The presented corpus contains multimodal content information of high resolution motion capture data, video
data and both visual and gloss-like mark up annotations obtained with the support of fluent JSL signers. Furthermore, all annotations
were encoded under three different encoding schemes with respect to directions, intonation and non-manual information. Currently, the
corpus is employed to learn first sequence-to-sequence networks where it shows the ability to train relevant language features.
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1. Introduction
Research has shown that information conveyed using Sign
Language (SL) is much more comprehensible and acces-
sible than written information display for the majority of
native SL speakers (Traxler, 2000). However, human trans-
lation services are neither always available on demand,
nor applicable in certain settings such as internal company
meetings. The automatic display of spoken or written con-
tent by signing CG avatars or robot agents could there-
fore offer a cheap possibility to make information more
accessible to Deaf or Hard of Hearing (DHH) individuals
with lower written language literacy (Huenerfauth, 2008).
Unfortunately, automated SL generation technologies have
not yet reached a level of quality that would foster their
full acceptance by DHH users (Kipp et al., 2011b). This
is mainly due to the language’s multi-dimensional char-
acter: information is not only conveyed using single ges-
tures and finger movements, but also Non-Manual Signs
(NMSs) such as body language and facial expressions. Fur-
thermore, lexical items within a signed conversation can be
dynamically changed to express spatial and temporal infor-
mation (Huenerfauth and Hanson, 2009). This creates non-
linear, multichannel dependencies that (a) complicate the
translation of SL as compared to spoken languages and (b)
require specific descriptions for motion synthesis. As a re-
sult, temporal and spatial relations of generated signing mo-
tion sequences might easily appear artificial and unnatural
when applied to three-dimensional avatar animations (Ka-
corri et al., 2015).
To increase the acceptance of three-dimensional sign an-
imations within affected users, effort is made to develop
new methodologies that can better represent the temporal,
spatial and multimodal aspects of signed content informa-
tion (Ebling and Huenerfauth, 2015; Kacorri and Huen-
erfauth, 2016). To date, all of these methods rely on the
concatenation and interpolation of pre-recorded sample se-

quences and separate lexical items. Systems that can re-
produce natural signed utterances by intrinsic learning of
their specific lingustic features are not known to be re-
ported yet, commonly restricting existing data sources to
non-repetitive corpus collections of signs and short phrases
of specific content domains. Considering the recent success
of deep neural networks in sequence generation tasks such
as text-to-speech translations (Oord et al., 2016), one can
expect similar architectures to also be meaningful for the
synthesis of SL. To learn and evaluate respective network
models, it is essential to have access to a suitable training
corpus. In this work, we therefore present a fully annotated
Japanese Sign Language (JSL) corpus that was specifically
designed for the learning of deep sequence generation mod-
els for sign animation synthesis. Here, it is particularly im-
portant to ensure the accuracy, density and completeness
of the recorded signing data up to subtle finger and facial
movements and the repetitive occurrence of NMSs with
wide intra-feature variability. Therefore, the presented deep
JSL Corpus (JSLC) constitutes a collection of natural JSL
sentences recorded with a multi camera optical motion cap-
ture system and includes various types of NMSs as well as
variations in sentence intonations and signing speed. The
corpus is designed to offer possibilities for easy data aug-
mentation and ready to be applied under various deep net-
work models. To bring the quality of automatically gener-
ated sign animation display to a next level of realism within
the next years, it shall now be used for the development of
an appropriate network model.

2. Sign Language Synthesis and JSL
Starting with the beginning of the last decade, various re-
search efforts were made to enhance communication be-
tween hearing and non-hearing individuals, and to make
information more accessible to DHH users. This led to a
constant increase of assistive language tools, such as sign
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translation software (Sun et al., 2013), dictionaries (Pro
Deaf, 2017) or even commercial devices like the Motion-
Savvy tablet app (Motion Savvy, 2017). However, most
of these technologies are not capable of processing con-
tinuous and natural sentence utterances, and even less are
concerned with the synthesis of signed expressions from
a given set of text or speech data. Current SL generation
methods are either fully synthesized from form notation
such as VRML (Kipp et al., 2011a) or semi-automatically
synthesized using a corpus of pre-captured gestures (Gibet
et al., 2016; Ebling and Huenerfauth, 2015). Most re-
cent neural network models that achieved superior results in
speech generation are not known to be reported for applica-
tions with SL. One of the main reasons for this leeway is the
multi-dimensional character of continuous signing with its
inherent use of NMSs and spatial and temporal references
that impede the use of machine translation algorithms. An-
other reason is the necessity of an extensive, highly detailed
and accurate motion data set that is very costly to obtain:
respective data is best obtained by using a multi-camera
optical motion capture system for body, finger and facial
capturing, and requires specialized post-processing proce-
dures to exclude marker occlusions and mislabeling. Be-
sides, existing SL motion capture data sets are commonly
not publicly available. This imposes the need to acquire
new data for system development.
Most current sign animation technologies were developed
for the processing of comparatively well-researched SLs
such as American Sign Language (ASL) (Lu and Huener-
fauth, 2011), German Sign Language (DGS) (Ebling and
Huenerfauth, 2015) or French Sign Language (LSF) (Gibet
et al., 2016). JSL in contrast remains a relatively unex-
plored language under both syntactic and semantic aspects.
Grammatical structures and lexical items can be undefined
or subject to regional and demographic variations. For this
reason, the generation of JSL sequences also constitutes a
rare research domain. To date, sign animations were cre-
ated for the following two fields of application: medical
content translation for enhanced doctor-patient communi-
cation (Nagashima et al., 2016) and the broadcasting of
weather forecasts in the national TV program (Umeda et
al., 2016). Both animations are based on semi-automatized
synthesis methods that utilize data from a problem-specific
corpus of optical motion capture data. These corpora con-
tain a variant number of single lexical items and few short
complete sentences that were each signed once by one sin-
gle speaker. Such sparsity in the vocabulary domain and the
absence of NMSs is likely unsuitable for the deep learning
of signed sequence connections. Therefore, we built the
present deep JSLC in a different way that is not known to
be reported similarly by any other research yet.

3. Corpus Definition
A large amount of data is necessary to train deep sequence
generation networks that could cover the full vocabulary
spectrum of JSL. However as compared to speech or text
data, the acquisition of detailed, accurate and complete SL
expressions is a very expensive and time-consuming task.
To evaluate the potential benefit of deep sequence gener-
ation techniques for natural sign display, it was consid-

ered sufficient to first train networks on a smaller subset
of JSL vocabulary that could be extended for better gener-
alization later. Therefore, we defined the proposed deep
JSLC as a collection of sentence expressions and multi-
word phrases within a dense vocabulary domain. Apart
from the choice of repetitive vocabulary and content, this
was achieved by the utilization of compound words built
from lexical items and space and size classifiers (e.g. hos-
pital signed as MEDICAL/ BUILDING and doctor signed
as MEDICAL/ MAN, or to swim signed as SWIM and pool
signed as SWIM/ PLACE).
Furthermore, the corpus should incorporate a combination
of the most important and variant linguistic features of JSL
that can hardly be reproduced by conventional generation
methods in a satisfying way (Figure 1):

• Direction: Directional modification of lexical items
conveys spatial and grammatical content information,
such as the passive voice of words (e.g. BEING SPO-
KEN AT versus TO SPEAK) or the center of actions
(e.g. TO GO and TO COME, TO SEE, TO BEG)

• Syntax: Intonation conveyed by syntactic NMSs (e.g.
a raised eyebrow or head shaking) provides informa-
tion on the sentence structure such as negation, past
tense or question

• Adjective inflection: Positive, comparative and su-
perlative forms of adjectives are expressed using a
varying amount of facial NMSs (e.g. pressing eyes
together, open mouth)

• Content separation: Lexical items are separated by
a subtle nod of the head (e.g. my mother signed as
ME/ MOTHER versus me and my mother signed as
ME (+NOD)/ MOTHER)

restricted vocabulary 
domain

interrelated linguistic 
features

JSL Sentences

machine learning optimized corpus

directional verbs

varying syntactic meaning

inflected adjectives

varying content information

W1 W2 W3 WN
…

W1 W3 WN+1=+

compound verbs

TO GO TO COME

Direction

Syntax

Inflection

Content

AFF. NEG. ? PAST

MORE MOSTNEUTR.

AND

Figure 1: Signed expressions are difficult to convey in a nat-
ural way using virtual avatars. The fundamental structure
of the corpus was designed specifically to enable a more
reliable and accurate machine learning of contextual inter-
relation within JSL sentence expressions.

For use in deep neural network models, the previous con-
straints were used to define JSL sentences of large varia-
tions within every single linguistic feature and in between
all features. In concrete, the main corpus was built as fol-
lows: to account for the dense domain criteria, 69 daily
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conversation samples of 5-10 lexical items each were cho-
sen as fundamental corpus sentence patterns from a set of
intermediate-level SL practice sentences. These 69 sen-
tence patterns were then modified to define 4 to 6 pattern
variations by a random combination of dense-domain com-
pound verbs and the previous linguistic features. The fol-
lowing sentences A, B, C and D for example constitute vari-
ations of one sentence pattern, whereas PT1 denotes a ref-
erence to oneself, PT2 denotes a pointing to the opponent
person (respectively conversation partner) and PT3 denotes
a pointing to a third person, object or place:

A PT3/ MOVIE/ BUILDING/ PT3/ INTERESTING/
MOVIE/ WATCH/ PAST (translating as ’I watched an
interesting movie in this cinema.’)

B MOVIE/ BUILDING/ PT3/ VERY INTERESTING/
MOVIE/ WATCH/ PAST/ PT2? (translating as ’You
watched a very interesting movie in the cinema?’)

C PT3/ MOVIE/ BUILDING/ PT3/ PT1/ SATO/ MAN/
MOVIE/ WATCH/ NO (translating as ’I did not watch
an interesting movie in this cinema with Mr. Sato.’)

D MOVIE/ BUILDING/ PT3/ PT1/ SATO/ WOMAN/
PRETTY INTERESTING/ MOVIE/ WATCH/ PAST
(translating as ’I watched a pretty interesting movie in
the cinema with Ms. Sato.’)

Utilizing this sentence pattern variation strategy, a collec-
tion of 430 JSL sentences were defined to build the basic
framework for corpus collection. These sentences consti-
tute natural JSL expressions as expressed by native sign-
ers and therefore contain a very unbalanced word distri-
bution: especially lexical items that support the semantic
understanding within a signed sentence such as PT3 (pro-
viding contextual references to objects and persons) occur
frequently within a JSL sentence. To reduce their impact on
the network learning, we defined an additional set of 260
short training phrases. These phrases were built from the
basic sentences and constituted a semantically meaningful
succession of 3 to 6 less frequent words. Phrase variations
taken from the sample sentences A, B, C and D were for ex-
ample INTERESTING/ MOVIE/ WATCH/ PAST, MOVIE/
WATCH/ NO and SATO/ WOMAN/ PRETTY INTEREST-
ING/ MOVIE/ WATCH.

4. Corpus Acquisition
All basic sentences and phrases were signed between one
to three times in varying speed and sentence intonation by
one Child Of Deaf Adults (CODA), leading to 931 corpus
sentences and 502 corpus phrases with varying spatial and
semantic content information. The data acquisition was fur-
thermore assisted by a deaf native JSL speaker who super-
vised the grammatical correctness and naturalness of the
signed corpus content.
During signing, the displacement of 123 markers attached
to the signer’s body was captured using an optical Vi-
con camera system of 48 cameras with a sampling rate of
120Hz. Additional data for extensive corpus annotation
or the learning of sentence recognition networks was ac-
quired using a Microsoft Kinect (sampling rate 30Hz) and

a consumer video camera (sampling rate 60Hz). All cap-
ture modalities were synchronized via an external trigger
and recorded a total of 10.384 signed utterances within a
vocabulary of 197 lexical items.
To ensure sufficiently dense data for subsequent natural
signing avatar generation, 92 out of the 123 optical motion
capture markers were utilized for the acquisition of detailed
finger and facial movements such as the blinking of eyes
or the raise of eyebrows (Figure 2). These markers were
of 3mm size, with 24 markers placed on each hand up to
the wrist and 44 makers attached to the face of the signer.
All Vicon recordings were post-processed to ensure correct
marker labeling and to eliminate missing frames caused by
marker occlusions during data recording.

Figure 2: A set of 48 optical cameras was used to record the
signed motion sentences. Marker were densely placed on
body, finger and face of the sign speaker to obtain a highly-
dimensional collection of sign motion data.

The cleaned data was made available in C3D and BVH for-
mat, which are two common data formats for the storage
and processing of optical motion capture data. Whereas
C3D contains the raw three-dimensional point clouds of
all marker positions as obtained during the motion capture
process, BVH contains kinematic information of a virtual
character’s body joints. To obtain such higher-level data,
the raw C3D data was rigged onto the skeleton of a virtual
avatar (Figure 3) and the three-dimensional joint position
and rotation of 107 relevant skeleton joints (including fin-
ger joints and controllers for facial expression) saved as the
file’s main motion data streams. For the given problem, the
BVH format should be considered particularly useful since
newly generated motion streams can be directly transferred
onto the corresponding virtual avatar for visual display and
evaluation.

5. Corpus Annotation
The fundamental content of the deep JSLC was annotated
in gloss notation with the support of the signer and the su-
pervising native speaker during the process of corpus defi-
nition. Throughout data acquisition, the gloss notation was
actively refined in real-time to ensure that every sentence
was expressed in the most natural way of signing. Fur-
thermore, every corpus sentence was annotated as a visual
markup with the help of the JS Pad dictionary (Lab, 2016)
for the creation of Japanese Sign Writing (Matsumoto et al.,
2009) and the additionally captured video data. A sample
annotation of the previous sentence variation A is shown in
both gloss notation and visual markup in Figure 4.
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Figure 3: 3D model used to rig the raw motion capture data
onto an avatar skeleton to provide joint position and rota-
tion data in BVH format.

A major advantage of deep sequence generation models
such as Recurrent Neural Networks (RNNs) is that they do
not require the training data to be pre-segmented (Graves,
2013). However for eventual use in baseline networks or
automatic sentence segmentation models, additional time
annotations for separation of all lexical items in the corpus
were determined. These were based on changes in hand
and finger shapes as well as motion directions using the
synchronized video data.

5.1. Encoding
Three different types of encoding were chosen for subse-
quent corpus deployment in potential neural network mod-
els. Here, the idea was to provide different types of en-
coding to evaluate whether the presence of specific linguis-
tic feature information could reproduce non-manual sign-
ing aspects in a better way.
The first encoding constitutes a simple one-hot encoded
representation of all occurring lexical items and does not
contain any additional information on the linguistic fea-
tures incorporated within the deep JSLC. The second en-
coding constitutes the simple one-hot encoded representa-
tion plus additional information on all linguistic features
as additional elements of the one-hot encoded vectors for
each respective sign. In concrete, these additional vector
elements represent information on:

1. Use of left or right hand to convey primary sentence
meaning

2. Start location of the primary hand within a position
segment defined in relation to the upper body

3. End location of the primary hand within a position
segment defined in relation to the upper body

4. Signing in active or passive form (if applicable, else
none)

5. Stage of adjective inflection (if applicable, else non)

6. Inclusion of interrogation (if applicable, else non)

7. Inclusion of negation (if applicable, else non)

The third encoding was based on the visual markup annota-
tion, following the representation of Sign Writing Markup
Language (SWML) (Costa et al., 2001). Here, every lexi-
cal item was encoded as the combination of its Sign Writ-
ing components in SWML. For example the lexical item
MOVIE is built by one head icon with the SWML index 04-
01-001-01-01-01, two handshape icons (left and right hand)
with the SWML indices 01-05-001-01-01-03 and 01-05-
001-01-01-11 and two directional icons (for left and right
hand) with the SWML indices 02-03-006-01-01-13 and 02-
03-006-01-02-01.

6. Corpus Deployment
We evaluated the corpus usability for the learning of JSL
sentence structure with a straightforward modification of
the sequence to sequence model (Seq2Seq) for English-
French translation (Sutskever et al., 2014). However, the
determination of generated sequence quality is a difficult
task that is commonly performed by rigging the generated
sequences on a virtual character, and by subsequently as-
sessing their naturalness and understandability in user stud-
ies. For this reason, we used the corpus in a reversed recog-
nition scenario here: the acquired motion data streams were
first encoded by a RNN cell and then passed to a decoder
RNN cell providing an output expectation of the expressed
sentence. Since the Seq2Seq model is bidirectional, evalu-
ation of corpus efficiency can be expected to also hold valid
for generation scenarios.
Using a smaller subset of 810 of the full corpus sentences
only, we first learned several variations of a basic Seq2Seq
network with 1 to 3 hidden layers and a varying number of
cells per layer for all three encodings. Here, it should be
noted that deep networks are commonly trained on much
larger data sets. However since SL data collections can-
not be acquired as easily as text or image data, the number
of available training data can already be considered numer-
ous for the given data content. The optimizer used dur-
ing network training was an Adagrad optimizer, and both
Gated Recurrent Units (GRUs) and Long Short-Term Mem-
ory Units (LSTMs) were used as cell types. Results indi-
cate a constant decrease of training loss over time within
all network models, whereas the Sign Writing based en-
coding performed slightly better than the two simpler, gloss
based encodings. Best results with maximal test accuracy
of ≈ 20% after 2000 training epochs were achieved with
1 hidden unit of 256 LSTM cells (Figure 5). However,
all network architectures showed significant overfitting and
did not generalize well on unknown test data: especially
rare words were easily misclassified and labeled as frequent
words of little discriminative character (e.g. PT3, MAN or
WOMAN). Given the unbalanced word distribution within
JSL sentences, this is not surprising, and a better balanced
corpus should improve network quality considerably.
To test eventual effects of an enlarged data collection, we
included the 502 additional phrases in the training data and
learned a new recognition network using the same encoding
and network parameter in the next step. Test accuracy of
the network raised to ≈ 40% after 2000 training epochs,
while overfitting was significantly decreased. The subset of
underrepresented word phrases that can be freely added to
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PT3/ MOVIE/ BUILDING/ PT3/ INTERESTING/ MOVIE/  WATCH/   PAST

Figure 4: Visualization of previously introduced sentence variation A in Japanese Sign Writing and its corresponding gloss
annotation.

Figure 5: Evolution of training and testing accuracy and
loss for sentence recognition as obtained with a standard se-
quence to sequence model and 1 hidden layer of 256 LSTM
cells for a smaller subset of the full corpus sentences only.
Over 2000 epochs, a recognition network of ≈ 20% test
accuracy was learned. The network is strongly overfitting.

the main training data should therefore be considered as an
useful extension of the full sentence collection.

7. Discussion
Previous results suggests that the presented corpus is gen-
erally capable to train a Seq2Seq network that understands
common multi-modal interrelation within JSL utterances.
Test accuracies of ≈ 40% do not appear sufficient for ap-
plication in real-life scenarios yet, but reach the best ob-
tained accuracies of similarly continuous and weakly super-
vised sentence recognition scenarios (Koller et al., 2016).
To date, no specific modifications of the model parameters
were performed, and we expect to achieve better results of
improved accuracy and smaller loss by adding a suitable
data embedding and an attention model. Moreover, it was
shown that a higher number of training data is beneficial for
network learning. Better recognition and generation net-
works should therefore be achieved by further augmenting
the corpus size and balancing out the general word distri-
bution. Thanks to the corpus design with its repetitive oc-
currence of identical sentences and phrases, respective data
can be synthesized relatively easily from the existing data
in the following, using sequence alignment methods such
as squeezing, stretching or undersampling.
All in all, we believe that the specific characteristics of its
corpus design and content make the present deep JSLC a
very valuable collection of JSL motion data. It shall now

Figure 6: Evolution of training and testing accuracy and
loss for sentence recognition as obtained with a standard
sequence to sequence model and 1 hidden layer of 256
LSTM cells using a larger number of corpus data for net-
work training. Over 2000 epochs, a recognition network of
≈ 40% test accuracy was learned that generalizes better to
unknown data.

be used to define suitable network parameters and varia-
tions such as attention models, and to subsequently learn
a wide variety of sequence generation networks. In a last
step, the usability and eventual benefit of the trained gen-
eration networks shall be evaluated with respect to realism
and naturalism of the resulting animations.

8. Conclusion
We presented a new corpus of JSL sentence expressions for
application in advanced data-driven deep neural networks.
This corpus was defined so that it can easily be applied to
advanced sequence generation models for the synthesis of
Sign Language animations. As opposed to previous SL cor-
pora of similar application purpose, the corpus was built
from randomized variations of pre-defined sentence pat-
terns only. It incorporates many spatial and temporal ref-
erences as well as non manual signs to intrinsically learn
interrelations of relevant linguistic features within signed
expressions or conversations. The corpus is extensively an-
notated in gloss and visual mark up, and its signed data
content made available using three different motion sens-
ing modalities (motion capture, depth images and video
images) that can be utilized in various additional corpus
works. First experiments showed the general applicability
of the presented corpus in sequence to sequence networks
for sentence recognition. In the following, these networks
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shall be enhanced and modified to provide intelligent net-
works that can help to generate naturally signing avatars in
the future.
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