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Abstract
Implicit discourse relation recognition remains a challenging task as state-of-the-art approaches reach F1 scores ranging from 9.95%
to 37.67% on the 2016 CoNLL shared task. In our work, we explore the use of a neural network which exploits the strong correlation
between pairs of words across two discourse arguments that implicitly signal a discourse relation. We present a novel approach to
Implicit Discourse Relation Recognition that uses an encoder-decoder model with attention. Our approach is based on the assumption
that a discourse argument is “generated” from a previous argument and conditioned on a latent discourse relation, which we detect.
Experiments show that our model achieves an F1 score of 38.25% on fine-grained classification, outperforming previous approaches and
performing comparatively with state-of-the-art on coarse-grained classification, while computing alignment parameters without the need
for additional pooling and fully connected layers.
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1. Introduction
Shallow discourse relation recognition refers to the auto-
matic identification of the relation between two segments
of text. For example in:

(1) I will go to Scotland after I complete my studies.

The underlined discourse connective connects the first dis-
course argument (in italic) to the second discourse argu-
ment (in bold) via a temporal relation. Connectives consti-
tute strong signals to identify discourse relations. In fact,
given two arguments and a discourse connective many dis-
course parsers at the 2016 CoNLL Shared Task on Multi-
lingual Shallow Discourse Parsing (SDP) (Xue et al., 2016)
were around 78% accurate in recognizing the discourse re-
lation on the SDP blind dataset. On the other hand, in im-
plicit relations no connective is used. This is the case in:

(2) I need to file my taxes.Tomorrow is the deadline.

In (2) the connective because is implied and the contin-
gency relation is understood by the context. Unfortunately
when the connective is absent, identifying the relation au-
tomatically becomes much more challenging. At the same
2016 CoNLL SDP shared task, the best implicit discourse
relation (IDR) score on the blind test set without connec-
tives reached 37.67% (Xue et al., 2016). In this paper we
present a model to automatically recognize implicit dis-
course relations using an encoder-decoder with attention,
a cross-argument word-pair alignment statistic in this con-
text. We show that our model, with an F1 score of 38.25,
outperforms other approaches on fine-grained classifica-
tion, while performing comparatively with the state-of-the-
art on coarse-grained classification.

2. Previous Work
Beginning with (Zhang et al., 2015a) and notably in the
past year with the CoNLL SDP (Xue et al., 2016), neu-
ral network techniques have been used for IDR. Most of

these models are based on convolutional neural networks
(CNN), inspired by (Zhang et al., 2015a) and other work
on sentence classification with CNN (such as (Kim, 2014;
Zhang et al., 2015b)). The insight into these many works is
that neural networks are better suited at capturing seman-
tic clues between the two arguments of an implicit relation
than traditional methods heavily reliant on feature engineer-
ing, as in (Pitler et al., 2009; Xue et al., 2015).

Given our correlation assumption, we sought a model that
could successfully identify and exploit word pairs across
arguments that are strong signals of a discourse relation,
leading us to explore attention models. Although several
neural network approaches have been proposed for IDR, to
our knowledge none have investigated the use of encoder-
decoder models with attention, an approach successfully
applied to many applications including machine transla-
tion (Bahdanau et al., 2015), coreference resolution (Lee
et al., 2017) and cloze-style reading comprehension (Cui et
al., 2017). To improve translation, notably for longer sen-
tences, a neural translation model is augmented with an at-
tention mechanism uniquely purposed for capturing align-
ment (Bahdanau et al., 2015). The alignment model scores
how well the input words from the source language match
output words in the target language. Inspired by recent ad-
vances in the use of attention, we used attention to detect
alignment scoring for IDR as word-pair features have be
shown to contribute to IDR (Pitler et al., 2009; Biran and
McKeown, 2013). However, unlike these methods we make
no feature engineering. (Rönnqvist et al., 2017) also uses
an attention mechanism to recognize implicit discourse re-
lations. However, their approach differs from ours in two
important ways: in (Rönnqvist et al., 2017), the two dis-
course arguments are concatenated to form a single input
and the attention mechanism is applied over the entire in-
put, which is fundamentally different to our sequence-to-
sequence approach. Furthermore, their work is evaluated
on the Chinese Discourse Treebank (Zhou and Xue, 2012).
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Top Level Nb Implicit Instances
Temporal 950
Contingency 4185
Comparison 2832
Expansion 8861
Total 16828

Table 1: Top-level breakdown of the PDTB with entrel
merged into expansion

3. Datasets & Tasks
3.1. Datasets
Following the standard in the field, we used both the
PDTB and the CoNLL SDP datasets. The PDTB
dataset (Rashmi Prasad, 2008) contains 40,600 annotated
discourse relations and their arguments over the 1 mil-
lion word Wall Street Journal (WSJ) corpus (Prasad et al.,
2008). The dataset includes four top-level classes of dis-
course relations; temporal, contingency, comparison and
expansion; as well as level 2 and lever 3 types. For ex-
ample, in the PDTB:

(3) USAir has great promise.By the second half of 1990,
USAir stock could hit 60.

is labeled as “Contingency.Cause.Reason”. A fifth top-
level relation, entrel (short for entity-based coherence), is
also defined but has no lower-level types. Table 1 shows
statistics of the PDTB dataset.
The CoNLL SDP dataset consists of the full PDTB dataset
with a minor reduction in the number of subtypes (Xue et
al., 2016). Additionally, the SDP dataset includes a blind
test set, a second test set created specifically for the 2015
and 2016 editions of the shared task. The blind test set
consists of newswire text selected from English Wikinews1

consistent with WSJ-style text and manually annotated with
discourse relations and connectives (Xue et al., 2015).

3.2. Tasks
Given the difficulty of automatic IDR, most work focuses
only on top-level classification; i.e. classifying only the
four top-level relations with entrel merged into expansion
as preferred by (Pitler et al., 2009; Rutherford and Xue,
2014; Ji and Eisenstein, 2015). The standard WSJ sec-
tion breakdown is to use sections 2-20 for training, sec-
tions 21-22 for testing, and the other sections for develop-
ment. Given the unbalanced dataset, as shown in Table 1,
the task has traditionally been formulated as four binary
classifiers. For the development and test sets, the negative
samples consist of all other relations. The training set is
evenly balanced between positive and negative where neg-
atives samples are randomly drawn from WSJ sections 2 to
20 (excluding positives).
A notable exception to only top-level IDR was the 2015
and 2016 edition of the CoNLL SDP, which included fine-
grained non-explicit discourse relation recognition.2 The
fine-grained task is to recognize the 16 low-level subtypes

1https://en.wikinews.org
2Non-explicit discourse includes types implicit, entrel, and a

third altlex, short for alternative lexicalization. Only a small frac-

with a single classifier. Additionally, the WSJ section
breakdown is different compared to the top-level dataset.
The SDP training set consists of WSJ sections 2-21, sec-
tion 22 for development, and section 23 for testing.

4. Our Model
We describe our model in two modules, the encoder-
decoder Recurrent Neural Network (RNN) with attention
and two varieties of the classifier.

4.1. Encoder-Decoder RNN with Attention
The standard encoder (Cho et al., 2014) encodes an in-
put vector x, where x is represented as a sequence of
word embedding vectors, into a single context vector c =
q(h1, . . . , hTx

) and hidden state ht = f(xt, ht−1). Func-
tions f and q are nonlinearities, in our case Bidirectional
RNN (Schuster and Paliwal, 1997) of type long short-term
memory (LSTM) (Hochreiter and Schmidhuber, 1997).
Normally, the decoder predicts a sequence of words yt
where each yt prediction is conditioned on past predictions
and context vector c, maximizing the following joint prob-
ability:

p(y) =

T∏
t=1

p(yt|{y1, . . . , yt−1}, c) (1)

In the context of RNNs, the conditional probability of each
yt in the joint probability of Eq.1 is modeled as a nonlinear
function g with input yt, context vector c and hidden state
st:

p(yt|{y1, . . . , yt−1}, c) = g(yt−1, st, c) (2)

(Bahdanau et al., 2015) propose a unique context vector ci
for each decoding time step, redefining the decoder condi-
tional probability for each word yi as:

p(yi|y1, . . . , yi−1,x) = g(yi−1, si, ci) (3)

The context vector ci is a weighted sum over all input hid-
den states (h1, . . . , hT ):

ci =

Tx∑
j=1

αijhj (4)

where weights aij = softmax(eij), eij = a(si−1, hj) and
a is a feedforward neural network.
Using attention leads to a vectorized representation of the
second argument (decoder output) which is not only in-
formed of its context but also of its alignment, unlike Gated
Relevance Networks (GRN) (Chen et al., 2016) where the
arguments are not informed of the alignment. In the case
of GRN, the two discourse arguments are vectorized with
separate RNN layers (no interaction), followed by rele-
vance layers (that compute word-pair interaction), and fi-
nally pooling and fully connected layers.

tion of the dataset, around 3%, consists of altlex. For this reason
we will not discuss altlex and consider the terms “non-explicit”
and “implicit” discourse interchangeably.
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4.2. Classifiers
Given our classification task and since the decoder inputs
(the second discourse argument words) are known and not
predicted, the model is not trained by maximizing the like-
lihood of the decoder targets, as in Eq.1, but rather by min-
imizing the cross-entropy error between the predicted label
ŷ and the true label y for all possible labels l:

E(y, ŷ) = −
l∑

i=1

yi log(ŷ) (5)

We experimented with two classifiers to predict ŷ. In the
simplest case:

ŷ = f(WhT + b) (6)

where f is the softmax function, hT is the final decoder
hidden state of size d, W ∈ Rl×d is a parameter matrix
and b ∈ Rl a bias vector. In this case the classifier only
relies on the last hidden state, minimizing the total number
of parameters at the expense of information loss. We denote
this Classifier with Attention CA, shown in Figure 1.
In the second classifier, ŷ is a function of:

p = maxT
t=1(hdec1 , . . . , hdect) (7)

h = g(Wdp+ bd) (8)
ŷ = f(Wsh+ bs) (9)

where p is a T sized concatenated vector of the maximum
values over each decoder hidden state hdec, i.e. 1D max
pooling. Wd ∈ Rv×T and Ws ∈ Rl×v are parameter ma-
trices, b ∈ Rv and b ∈ Rl are bias terms, and g a non-
linearity. In this case each decoded time step informs the
relation classification. We denote this Classifier from Se-
quence with Attention CSA, as shown in Figure 2

5. Experiments
In this section we outline our data preprocessing and ex-
periments. The raw texts from the PDTB and the CoNLL
SDP are converted to lower case and tokenized. Then we
keep only the 10,000 most common words. After forming a
dictionary of unique tokens, we substitute each token with
a dense word embedding from a pretrained model. Fol-
lowing the preferred embeddings used at the 2016 CoNLL
SDP (Xue et al., 2016), we used the 300 dimensional pre-
trained Word2Vec binaries3, trained by continuous skip-
gram (Mikolov et al., 2013) for both top-level and fine-
grained classification. While the PDTB samples contain
additional data such as part-of-speech tags and parse trees,
no additional data is used.
The top-level classification consists of four separately
trained binary classifiers, while we train a single classi-
fier for the fine-grained classification. We experiment us-
ing LSTM and GRU (Cho et al., 2014) cells, opting for
LSTM since it showed slightly better results. The number
of cell parameters were randomly searched at each train-
ing run. We randomly switched between bidirectional en-
coder or single direction. For the CSA, we additionally per-
formed hyper-parameter search on the number of hidden

3https://code.google.com/archive/p/word2vec/

Model Parameter Value

CSA
CA

batch size 32
embedding size 300
cell type LSTM
cell units 100
pooling 1D max
dense layer units 60

Table 2: Architecture parameters. Dense layer refers to the
CSA model’s fully connected layer between pooling and
softmax layers.

ID Author Blind Test Dev
ecnucs Wang 34.18 40.91 46.40
tbmihaylov Mihaylov 34.51 39.19 40.32
tao0920 Qin 35.38 38.20 46.33
gtnlp n/a 36.75 34.95 40.72
ttr Rutherford 37.67 36.13 40.32
CSA ours 35.07 28.05 36.58
CA ours 38.25 35.63 39.42

Table 3: F1 scores of fine-grained IDR compared to top 5
teams. (Wang and Lan, 2016; Mihaylov and Frank, 2016;
Qin et al., 2016; Rutherford and Xue, 2016)

units. Our main parameters that produced the best perfor-
mance are listed in Table 2. Our models were optimized
with the Adam algorithm (Kingma and Ba, 2015). Models
evaluated on the test sets are based on optimal validation
set F1 score.

6. Results & Analysis
Given the unbalanced datasets, performance is evaluated
solely on F1 scores. Table 3, summarizes our top-level clas-
sification results on the PDTB dataset in comparison with
other authors and Table 4 our fine-grained classification re-
sults4 on the CoNLL SDP dataset.
As shown in Table 3, our CA model scored 38.25% on the
fine-grained classification, over state-of-the-art F1 score of
37.67%. Observing the blind test set results in Table 3 we
note how our model generalizes well to a different dataset
(Wikinews). Other top models such as “gtnlp” and “ec-
nucs” have a more than 10 point difference between the de-
velopment score and blind test score compared to 2 points
in the CA case.
For the top-level classification, our CA model (see Table 4)
scored well in the case of expansion with 80.72% F1 score,
the largest relation class, and contingency, whiletemporal
was better than most other approaches. The F1 of 30.56%
for comparison was far from the top result in Table 4, likely
due to the small dataset size.
It is interesting to note that the results achieved by the CA
model are based on a relatively shallow, single bidirectional
RNN encoder layer and single RNN decoder layer with at-
tention. It is possible that the chosen input embedding had
a minor impact on our results. We would have liked to
measure the embedding effect to compare with (Chen et al.,
2016), but to our knowledge the embedding is not publicly
available.

4We used the official CoNLL scorer for comparison:
https://github.com/attapol/conll16st
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Figure 1: Our classifier with attention (CA): an encoder-decoder recurrent neural network with attention with the last
hidden state used for classification. In the doted rectangles, the forward and backward hidden states are concatenated. Note
there is no backpropagation through time from output predictions at each time step. Only the final cross-entropy error is
backpropagated through time.

Figure 2: Our classifier with sequence of attention (CSA): encoder-decoder recurrent neural network with attention. The
decoder hidden states are used for classification. Note that there is no backpropagation through time from output predictions
at each time step.
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Author Comp. Cont. Exp. Temp.
Pitler 21.96 47.13 76.42 16.76
Zhou 31.79 47.16 70.11 20.30
Park 31.32 49.82 79.22 26.57
Rutherford 39.70 54.42 80.44 28.69
Ji 35.93 52.78 80.02 27.63
Chen 40.17 54.76 80.62 31.32
CSA 27.02 49.86 77.45 24.43
CA 30.56 54.80 80.72 27.15

Table 4: F1 scores of top-level IDR for: comparison, con-
tingency, expansion, temporal. Note that entrel is merged
into expansion, as done in previous works. (Pitler et al.,
2009; Zhou et al., 2010; Park and Cardie, 2012; Rutherford
and Xue, 2014; Ji and Eisenstein, 2015; Chen et al., 2016)

We were surprised by the CSA’s lower performance in all
cases. We believed the model would be more robust if
the classification layer had inputs from all decoded hidden
states directly. However, using only the final state vector
resulted in higher classification score while using less pa-
rameters. This may be due to overfitting. We would need
to reevaluate the model on a larger dataset.

7. Conclusion
We presented an efficient encoder-decoder model with at-
tention for implicit discourse relation recognition. Our
model computes attention between discourse argument
word pairs without feature engineering and without the
need for additional fully connected layers, minimizing the
number of trainable parameters. Finally, we show that our
model generalizes well to unseen datasets on fine-grained
classification, outperforming state-of-the-art without large
variance in scoring between development and test sets, and
outperforms in two categories in the coarse-grained case.
In future work we would like to explore in more detail au-
tomatically learned alignment for IDR and text generation
based on these models.
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