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Abstract
We present a generic deep realizer called GenDR, which takes as input an abstract semantic representation of predicate-argument relations,
and produces corresponding syntactic dependency structures in English, French, Lithuanian and Persian, with the possibility to fairly easily
add more languages. It is generic in that it is designed to operate across a wide range of languages and applications, given the appropriate
lexical resources. The focus is on the lexicalization of multiword expressions, with built-in rules to handle thousands of different
cross-linguistic patterns of collocations (intensifiers, support verbs, causatives, etc.), and on rich paraphrasing, with the ability to produce
many syntactically and lexically varied outputs from the same input. The system runs on a graph transducer, MATE (Bohnet et al., 2000;
Bohnet and Wanner, 2010), and its grammar design is directly borrowed from MARQUIS (Lareau and Wanner, 2007; Wanner et al., 2009;
Wanner et al., 2010), which we have trimmed down to its core and built upon. The grammar and demo dictionaries are distributed under a
CC-BY-SA licence (http://bit.ly/2x8xGVO). This paper explains the design of the grammar, how multiword expressions (especially
collocations) are dealt with, and how the syntactic structure is derived from the relative communicative salience of the meanings involved.
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1. Introduction
Natural language generation (NLG) is one of the rare tasks
in natural language processing (NLP) that is not yet com-
pletely dominated by statistical or neuronal methods. We
believe the main reason for this is that for real-life applica-
tions, the output of an NLG system must often be flawless,
so that extremely high precision is required, and rule-based
methods still outperform other approaches in that respect.
A number of domain-independent text realizers have been
developed to provide an easier way of producing text au-
tomatically. While some have impressive coverage, many
expect as input a syntactic structure, thus offering very little
flexibility in terms of lexical choice and structure. Others
take a more abstract input, offering more syntactic flexibility,
but their lexicalization model is rather rigid. We propose a
multilingual generic deep realizer, GenDR, that is a platform
for the modeling of the semantics-syntax interface in lan-
guages. In this paper, we will show how GenDR deals with
two crucial tasks: arborization (building a syntactic struc-
ture that reflects the semantic structure) and lexicalization
(picking the right words to express the desired meanings).

2. Previous work
Most realizers that we know of expect an input where both
lexical choice and syntactic structure have already been com-
puted, leaving the user with two particularly complex tasks.
This is the case of FUF/SURGE (Elhadad, 1993; Elhadad
and Robin, 1996), RealPro (Lavoie and Rambow, 1997; Co-
GenTex, 1998), SimpleNLG (Gatt and Reiter, 2009), its
bilingual version, SimpleNLG-EnFr (Vaudry and Lapalme,
2013) and its Spanish version, SimpleNLG-ES (Ramos-Soto
et al., 2017), JSReal (Daoust and Lapalme, 2015) and its
bilingual version, JSRealB (Molins and Lapalme, 2015), as
well as ATML3 (Weißgraeber and Madsack, 2017). KPML
(Bateman, 1996) and OpenCCG (White, 2008) both start
from a more abstract representation of the text’s meaning,
but they tend to focus on the grammar more than the lexi-
con, resulting in well-formed sentences that somehow lack

lexical flexibility. More recently, statistical approaches have
been applied to text generation from logical forms (Basile,
2015) or semantic structures (Mille, 2014), but again, lexical
choice is rather rigid. All of these realizers have a hard time
producing collocations.
MARQUIS (Lareau and Wanner, 2007; Wanner and Lareau,
2009; Wanner et al., 2010) was a multilingual data-to-text
system for the air quality domain that addressed the issues
that we are concerned with, and its linguistic realization
component has been reused in a couple of projects from
different domains, namely patents (Wanner et al., 2009;
Wanner et al., 2011) and football (Bouayad-Agha et al.,
2011; Bouayad-Agha et al., 2012). Its lexicalization model
was designed to produce natural-sounding collocations and
multiword expressions, and to be as generic as possible.
However, the range of collocations it was able to produce
was limited to the most common patterns. The system we
present here extends this coverage by a very large margin.

3. GenDR’s architecture
GenDR runs on MATE, a graph transducer (Bohnet et al.,
2000; Bohnet and Wanner, 2010). It consists of a graph
grammar and some dictionaries, which we discuss below.

3.1. Input and output structures
The input to GenDR is a semantic structure à la Meaning-
Text Theory (MTT) (Mel’čuk, 2012), which is a graph rep-
resentation of first-order logical form where predicates are
linked to their arguments by relations labelled with numbers
indicating the arguments’s position in the predicate. One of
the meanings in the structure has to be flagged as the most
salient meaning in the sentence. It is the dominant node of
the sentence’s rheme/focus (Mel’čuk, 2001) and it will be
mapped to the syntactic root.

(1) ‘owe’ ( ‘Paul’ , ‘$500k’ , ‘bank’ )

main 1

2

3

3018

http://bit.ly/2x8xGVO


The semantic structure in (1) is a simplified visualization of
the actual input structure, which is as follows:

structure Sem debt {
S {

owe {
tense=PRES
1-> Paul {class=proper_noun}
2-> "$500K" {class=amount}
3-> bank {number=SG definiteness=DEF}}

main-> owe}}

The output of the system is a set of surface syntactic depen-
dency structures (Mel’čuk, 1988). For example, with the
input in (1), GenDR produces the six structures in (2).

(2) a. Paul owes $500k to the bank

root
subj dobj

iobj
prep

det

b. Paul owes a debt of $500k to the bank

root
subj dobj

det ncomp prep

iobj

prep
det

c. Paul has a debt of $500k to the bank

root
subj dobj

det ncomp prep

ncomp
prep

det

d. Paul’s debt to the bank amounts to $500k

root

subj

obldet ncomp
prep

det prep

e. Paul’s debt to the bank stands at $500k

f. Paul’s debt to the bank totals $500k

root

subj

dobjdet ncomp
prep

det

For better readability, the sentences shown here are fully
inflected and linearized, but the actual outputs are unordered
trees with lemmas and grammatical features. They are to be
fed to a surface realizer that computes the inflected forms
and word order. GenDR focuses on the deeper tasks of
lexicalization and arborization, and as one can see from this
example, it offers a high level of lexico-syntactic flexibility.
Between the semantic and surface syntactic levels of rep-
resentation, there is a third, intermediate level: the deep
syntactic structure (Mel’čuk, 1988). At this level, there are
only meaningful lexemes and support verbs linked by two
major types of relations: complementation (labelled with
Roman numerals) and modification (labelled ATTR). Again,
these structures are ordered here only for readability.

(3) a. PAUL OWE $500K BANK

root
I II

III

b. PAUL OWE DEBT $500K BANK

root
I II I

III

c. PAUL HAVE DEBT $500K BANK

root
I II I

III

d. PAUL DEBT BANK AMOUNT $500K

root
I

IIII III

e. PAUL DEBT BANK STAND $500K

f. PAUL DEBT BANK TOTAL $500K

3.2. Multilingual grammar
At its core, GenDR is a multilingual grammar. We have di-
rectly borrowed the core rules from MARQUIS (Lareau
and Wanner, 2007; Wanner et al., 2009; Wanner et al.,
2010), which dealt with Catalan, English, French, Polish,
Portuguese and Spanish. We kept only the most basic rules,
that described very general phenomena like simple lexical-
ization, complementation, modification, etc. Almost all
of these rules are shared across languages, while a few
language-specific rules model grammatical phenomena like
auxiliaries, determiners and so on.
The mapping between semantic graphs and surface syn-
tactic structures takes place in two steps, each handled by
a different module of the grammar: the semantic module
maps the input semantic structures onto deep syntactic struc-
tures (Mel’čuk, 2013), while the syntactic module maps
deep syntactic structures to surface syntactic ones (Mel’čuk,
1988) – a layered architecture directly borrowed from MTT
(Mel’čuk, 1973; Kahane, 2003; Milićević, 2006).
The semantic module contains 21 core rules, most of which
were adapted from MARQUIS, and 132 bound lexicalization
rules (see §5.4.) implementing lexical functions; they are
documented in (Lambrey and Lareau, 2015; Lambrey, 2016).
The syntactic module is much lighter, with only 20 rules,
12 of which are language-independent. Each rule models a
linguistic phenomenon, and the grammar relies heavily on
rich dictionaries.

4. Arborization
As shown above, one node in the input structure has to be
marked as the main node, i.e., the most salient. This is be-
cause a semantic graph has no inherent hierarchy. Consider
for instance the structure in (4).

(4) ‘small’ ‘cat’ ‘lie’ ‘sofa’ ‘red’
1

1 2

1

Any of the predicates ‘small’, ‘lie’ and ‘red’ is a root. In a
tree, however, there can only be one root, so we have to pick
one. Picking ‘small’ yields The cat lying on the red sofa is
small, while picking ‘lie’ produces The small cat is lying on
the red sofa, and ‘red’, The sofa on which the small cat is
lying is red. This choice can be left to GenDR, but typically
one wants to control the communicative organization of the
sentence by specifying the main node. The deep syntactic
tree is then built in a top-down fashion, starting from this
main node and using the semantic graph as a blueprint. This
algorithm is inspired by (Wanner and Bateman, 1990; Wan-
ner, 1992; Polguère, 2000) and is similar to the one used in
MARQUIS. We provide a step-by-step example in §6.

1. We build the root of the syntactic tree and make it cor-
respond to the main node of the semantic structure. In
this step, we only create the node without lexicalizing
it, but we do add some constraints to it. The main con-
straint is that it must be a verb in the indicative mood
(though we could add alternative rules to handle, say
nominal headlines, or languages with adjectival roots).

2. After a node has been created and constrained, we look
for a lexicalization rule that can satisfy these constraints
while expressing the desired meaning, cf. §5.

3019



3. After lexicalization has taken place, we look at the
edges attached to the corresponding semantic node.
Edges leaving it point to its arguments, which must
be realized as syntactic complements. Edges entering
it lead to predicates that apply to it, which must be
realized as modifiers. If we have a modifier, we create
a dependent attached with the relation ATTR. If it is
a complement, then we look up the government pat-
tern (GP) of the governor in a dictionary, as explained
in §5.1. The GP models the mapping between seman-
tic, deep, and surface syntactic actants of a word. It
also specifies the part of speech of the complements,
as well as prepositions. It can also constrain certain
grammatical features (e.g., impose a certain mood on a
verbal complement) (Mel’čuk, 1995; Mel’čuk, 2014).
This step creates new nodes that have not been lexical-
ized but that have some constraints. Now, for each of
these nodes, we go back to step 2.

5. Lexicalization
Lexicalization in GenDR involves three levels of represen-
tation: semantics, deep syntax and surface syntax. The
first step is to pick a deep lexical unit to express a given
semanteme; this is deep lexicalization (or δ-lexicalization).
It introduces meaningful words and support verbs. Then,
surface lexemes are chosen to express the deep lexical units;
this is superficial lexicalization (or σ-lexicalization). It in-
troduces function words.
GenDR performs six types of lexicalization: simple lexi-
calization for lexemes, template lexicalization for idioms,
bound lexicalization for collocations, class-based lexicaliza-
tion for proper nouns, numbers and such, fallback lexicaliza-
tion for unknown words, and grammatical lexicalization for
function words. Though idioms and collocations are often
conflated in a vague “multiword expressions” category, they
really are distinct linguistic phenomena and, accordingly,
are treated differently.
To make this text hopefully easier to read, we will refer
to the nodes involved in the lexicalization process as α for
semantic nodes, β for deep syntactic ones, and γ for the ones
in surface syntax. These nodes bear a labelling feature: sem
for α nodes, dlex for β nodes, and slex for γ nodes.
Lexicalization is supported by three types of dictionaries: a
semantic and a lexical dictionary for each language, and one
language-independent dictionary of lexical functions (LFs).
All are feature structures represented in a straighforward
JSON-like format. We will first briefly introduce these lexical
resources before explaining how lexicalization takes place.

5.1. Lexical resources
The semantic dictionary (semanticon) of a language maps
semantemes onto simple lexemes or idioms in that language.
A semanteme may be mapped onto several lexical units,
which yields lexical paraphrases. This is not limited to
synonymy, but also applies across parts of speech (POS).
For example, the meaning ‘cause(x, y)’ may be realized
as x causes y, x is the cause of y, y (happens) because
of/due to x, y is due to x, etc., so the mapping is ‘cause’ →
{BECAUSE, DUEADJ, DUEADV, CAUSEN, CAUSEV, . . .}.

The lexical dictionary (lexicon) of a language should give
detailed information about every lexical unit in that language.
Obviously, in practice we have to make do with a subset of
that. Both simple lexemes and idioms have entries in this
dictionary. An entry provides information about the POS of
the word, its diathesis (mapping of its semantic to syntactic
actants), its subcategorization (including any constraints it
imposes on its actants: POS, preposition, mood, definiteness,
etc.), and the collocations it controls. Collocations (e.g.,
make a decision) are described in the entry of the base (in
this example, decision), which is linked to its collocates
via lexical functions (e.g., Oper1(DECISION)=MAKE, see
boxed text). Currently, GenDR has basic lexical dictionaries
for the ∼1500 most common words in English and French
(most of which have not been disambiguated yet), and demo
dictionaries for Lithuanian (∼180 entries from the crime
news domain) (Dubinskaite, 2017) and Persian (∼60 entries).

The lexical function dictionary (LF dictionary) describes
the semantics and syntax of ∼37,000 simple and (mostly)
complex LFs. For example, the LF Oper1 (used for support
verbs like make a decision) has the description {dpos=V,
gp={1=I, L=II}} (where dpos stands for deep part of
speech and gp for government pattern). This means that
the collocate returned by Oper1 is a verb that has no (or
negligible) meaning in itself (it lacks a sem attribute) and
that takes the first argument of the base as its first syn-
tactic actant (1=I) and the base itself as its second ac-
tant (L=II). This is equivalent to the algeabric notation
(

#
V[1,#]) proposed by (Kahane and Polguère, 2001). The LF
Magn has the entry {sem=Magn, dpos=(Adj∣Adv),
gp={L=ATTR}}, equivalent to ( #ˆMagn

(Adj∣Adv)[#ˆ]). For more de-
tails, see (Lambrey and Lareau, 2015; Lambrey, 2016).

Lexical functions (LFs)

Collocations tend to be instances of recurrent
patterns across languages. For example, strong
preference, gravely ill, intense flavour and win
hands down are all instances of the same pattern
where a base is intensified by a syntactic modi-
fier (the collocate). What defines a collocation
is not really its apparent lack of compositional-
ity, but the special relationship that exists between
the base and the collocate it selects. This rela-
tionship is modeled as a function. Intensifica-
tion collocations, for instance, are described with
the Magn function: Magn(PREFERENCE)=STRONG,
Magn(FLAVOUR)=INTENSE, etc. Over the years,
∼60 basic LFs have been identified, and they com-
bine to form a large number of complex LFs. For
detailed discussions of LFs and their use in NLP,
see (Žolkovskij and Mel’čuk, 1967; Mel’čuk, 1995;
Mel’čuk, 1996; Mel’čuk, 1998; Wanner, 1996;
Apresjan, 2000; Kahane and Polguère, 2001; Apres-
jan et al., 2002; Mel’čuk, 2007; Polguère, 2007;
Jousse, 2010; Mel’čuk, 2014; Lambrey, 2016; Fon-
seca et al., 2016b).
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5.2. Simple lexicalization: lexemes
This is the most basic and most common form of lexicaliza-
tion. During δ-lexicalization, we look at the entry for α.sem
in the semanticon and retrieve the set of lexical units that
can express this meaning. For each item in this set, we look
at its POS in the lexicon and keep only the ones that match
the constraint present on β, if any. We create as many output
structures as there are elements left, and set β.dlex to a
different lexical unit in each. This is an important source
of paraphrasing. During σ-lexicalization, we just recopy
β.dlex as γ.slex if it is a simple lexeme; if it is an idiom,
we branch to template lexicalization.

5.3. Template lexicalization: idioms
This type of lexicalization is only relevant to σ-lexicalization
and may take place regardless of how β was lexicalized
during δ-lexicalization. It is triggered when the entry for
β.dlex in the lexicon has an attribute idiom. Its value
is a feature structure that specifies the type of idiom, the
lexemes that make it up, and the syntactic relations between
them. Each type of idiom is echoed by a rule in the syntactic
module that builds a template subtree with placeholders that
will be filled with the lexemes and relation labels found in
the lexicon entry’s idiom attribute.

5.4. Bound lexicalization: collocations
The most complex type of δ-lexicalization is bound lexical-
ization, which produces collocations. A collocate is a lexical
unit that has a certain meaning only when used in the context
of a specific base (some collocates being more restrictive
than others). Collocations are best described as LFs in the
base’s entry in the lexicon, because for a lexicographer, it
is much easier to think of all the collocates controlled by a
common base than the other way around.
Each LF used in the lexicon must have an entry in the LF
dictionary that describes the semantics and syntax of the
collocation pattern it corresponds to. The information in the
LF dictionary is actually a set of parameters that are used by
rules of the semantic module. Similarly to how the syntactic
structure of idioms is described in the syntactic module,
the LF rules of the semantic module are templates with
placeholders for deep lexical units and names of syntactic
relations. However, these templates are a lot more intricate
and diverse. We have 132 rules for bound δ-lexicalization,
each corresponding to a family of LFs, so that in total, our
rules, combined with the LF dictionary, implement ∼26,000
LFs (some of the ∼37,000 LFs described in the LF dictionary
have not been implemented in the rules yet). Each LF itself
is a generic pattern that may be used to describe thousands
of instances of actual collocations in a given language. We
do not have the space in this abstract to explain how these
rules are implemented; see (Lambrey and Lareau, 2015;
Lambrey, 2016). The good news is that the user does not
need to understand these rules to use them. All one needs to
do is list LFs in the entries of the lexicon, like so:

fear_n { ...
lf={name=Magn value=great}
lf={name=Oper1 value=have}
lf={name=CausFunc1 value=instill}
lf={name=Propt value="out of"} ... }

When GenDR encounters a meaning in the input structure
that corresponds to the meaning of a LF as per the LF dic-
tionary (say, intensification or causation), it treats it as a
potential collocation. It knows where to find the base in
the semantic structure because that information is in the LF
dictionary. Then it looks for the corresponding LFs in the
base’s entry in the lexicon. If a value is specified, it uses it
to produce idiomatic forms like dirt cheap, sharp increase,
bleed profusely, etc. If no value is specified, it falls back
to a generic value, selected according to the base’s POS
(and possibly its semantic properties), to produce generic
expressions like very cheap, big increase, bleed a lot.

5.5. Class-based lexicalization: numbers, etc.
There are meanings for which we don’t want to have an entry
in the semanticon and lexicon because their number is large
and their behaviour is predictable: numbers, proper nouns,
dates, etc. For such meanings, we use an attribute class
on α. Its value points to a matching entry for the class in
the lexicon, where information on POS and grammatical
features may be provided. When α.class has a value, then
α.sem is copied to β.dlex and any feature specified in the
lexicon for the class is copied to β. During σ-lexicalization,
we copy β to γ as is.

5.6. Fallback lexicalization: unknown words
When α.sem has no entry in the semanticon, and it is not
the meaning of a known LF, and α.class is not defined,
then we have to guess. If there is an entry in the lexicon for
this label, we suppose it was just omitted in the semanticon
and proceed with simple δ-lexicalization (taking into ac-
count POS constraints that may exist on β)—in other words,
meanings with trivial one-to-one δ-lexicalization need not
be listed in the semanticon. If the word is not in the lexicon
either, then we take a shot in the dark. We recopy α.sem to
β.dlex, but we have no way of verifying that it matches the
POS constraints on β. If there are such constraints however,
we treat the word as if it belonged to that POS. This triggers
the default GP for that POS (given in the lexicon). If there
are no constraints on β, we bet it is probably a noun and
treat it as such. Guessed words are flagged with a special
feature in the output structures, so that they can be filtered
out or sent to an external program for further processing.

5.7. Grammatical lexicalization: function words
This type of lexicalization only happens in σ-lexicalization.
It introduces two types of function words: the ones that ex-
press a grammatical meaning appearing as features on β, and
the ones that are imposed by the GP of a word. Auxiliaries
and determiners are of the first type. They do not appear
as nodes in deep syntax, but as grammatical features on the
verb or noun they apply to, and they have to be introduced
as an extra node in surface syntax. These words belong to
closed classes with a small number of items, so we have a
specific rule for each of them in a language. Governed prepo-
sitions and complementers are of the second type. They also
do not appear as nodes in deep syntax. They are introduced
in surface syntax as an extra node γf between a governing
word γg and its dependent γd. The label γf.slex is retrieved
from the GP of γg.slex in the lexicon.
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6. Step-by-step example
In this section, we will show how the semantic graph in
(1) gets realized as the deep syntactic trees in (3). The
formalism used for GenDR rules is explained in full detail
in the accompanying manual, as well as in MATE’s manual.
Introducing it here again would take too much space and
bring little to the discussion, so we will only provide below
a textual explanation of what the most important rules do.

6.1. Lexical information
The semanticon provides two lexicalizations for ‘owe’:

owe {lex=owe lex=debt}

It does not contain information on ‘Paul’ (a proper noun)
or ‘$500k’ (an amount), both of which are candidates for
class-based lexicalization need not be in the semanticon.
These nodes are marked in the semantic graph with a class
attribute. For illustration purposes, we also ommitted ‘bank’
from the semanticon to trigger fallback lexicalization.

The lexicon contains the following entries:

owe {
dpos=V spos=verb
gp = { // X owes Y to Z

1=I 2=II 3=III // trivial diathesis
I={dpos=N rel=subj}
II={dpos=Num rel=dobj}
III={dpos=N rel=iobj prep=to} } }

debt {
dpos=N spos=noun
gp = { // X’s debt of Y to Z
1=II 2=I 3=III // special diathesis
I={dpos=Num rel=ncomp prep=of}
II={dpos=N rel=det case=GEN}
III={dpos=N rel=ncomp prep=to} }

lf={name=Oper1 value=have}
lf={name=Oper13 value=owe}
lf={name=Func2 value=amount_v_1}
lf={name=Func2 value=stand_v_2}
lf={name=Func2 value=total_v} }

There are also entries for every lexical unit linked to these
two: OF, TO, HAVE, AMOUNTV 1, STANDV 2, TOTALV. Their
content, however, is not relevant to our discussion.

The LF dictionary contains entries for each of the LFs.
The ones relevant to us are the ones used in DEBT above:

Oper1 { // e.g., X has a debt
dpos = V
gp = { 1=I L=II } }

Oper13 { // e.g., X owes a debt to Z
dpos = V
gp = { 1=I L=II 3=III } }

Func2 { // e.g., the debt amounts to Y
dpos = V
gp = { L=I 2=II } }

The meaning of these instructions is explained in §5.1. Note
that these entries are not specific to DEBT: the description
provided here for, say, Oper1 is valid for any instance of
that LF in any language (take a walk, make a choice, etc.).

6.2. Semantics⇒ deep syntax
Now, let us see how (1) gets realized in deep syntax.

1. A new deep syntactic tree is created with only an empty
root in it, marked as corresponding to the main node of
(1), ‘owe’. It is not lexicalized but it is constrained to
be a verb in the indicative mood (at least in English).
At this point, the output structure is:

XV, IND

root

2. We try to lexicalize ‘owe’ in this syntactic position.
The semanticon provides two competing simple lexi-
calizations, OWE and DEBT, only one of which is a verb
and thus compatible with the constraints on the syntac-
tic node. This yields only one simple δ-lexicalization.
Now, the output structure gets updated with this label,
and the tense feature is carried over:

OWEV, IND, PRES

root

3. We now look for edges leaving ‘owe’ in the in-
put structure. There are three semantic argu-
ments, that we will realize syntactically according
to the diathesis of OWE as encoded in the lexicon
(gp = {1=I 2=II 3=III}, meaning that the first se-
mantic argument becomes the first syntactic actant, and
so on). The GP also constrains actants I and III to
be nouns (I={dpos=N}, III={dpos=N}), and actant
II to be a number/amount (II={dpos=Num}). Three
more nodes are created in the output structure:

OWEV, IND, PRES XN Y NUM ZN

root

I
II

III

4. These nodes need to be lexicalized but none of them
has an entry in the semanticon (remember we removed
‘bank’), so simple lexicalization is not possible. Since
‘Paul’ and ‘$500k’ bear a class feature, class-based
δ-lexicalization applies, as explained in §4. The label
of the semantic node is just copied and we check that
the constrains on the node match the POS specified in
the lexical entries for the classes (not shown here, but
they are trivial: proper nouns are subtypes of nouns,
and amounts are subtypes of numbers).

OWEV, IND, PRES PAULN $500KNUM ZN

root

I
II

III

5. Finally, since we have nothing on ‘bank’ in the seman-
ticon, we use fallback lexicalization. If BANK exists
in the lexicon, we can match the POS. If not, then we
assume it must be a noun and just copy the input label
and carry its grammatical features:

OWEV, IND, PRES PAULN $500KNUM BANKN, SG, DEF

root

I
II

III

2′. At this point, we have a full deep syntactic structure.
But there are alternative lexicalizations that we have
not considered. Let us backtrack to step 2. We need a
verbal lexicalization and the semanticon only provides
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OWE, the other one being DEBT, a noun. However, the
lexicon entry for DEBT contains several support verbs,
with values for LFs Oper1, Oper13 and Func2. This
allows the bound lexicalization rules to apply, where
a single semantic node, in this case ‘owe’, is realized
in deep syntax by two nodes linked with a specific
construction (say, DEBT + AMOUNTV1). Because there
are five support verbs and that all of them are com-
patible with the current state of the output structure,
we create five copies of the structure and use a differ-
ent support verb in each, so that at this point we have
six output structures (these five and the simple one
from step 2 above. Below, we show only the one for
Func2(DEBT)=AMOUNTV1. (The sg feature on DEBT
is a default value, and the Num constraint on Y comes
from the GP of AMOUNTV1 in the lexicon.)

DEBTN, SG AMOUNTV1 IND, PRES Y NUM

root
I II

3′. We apply class-based lexicalization, as above, yielding:

DEBTN, SG AMOUNTV1 IND, PRES $500KNUM

root
I II

4′. There are two semantic arguments of ‘owe’ that have
not been lexicalized, so we open positions for them
in the syntactic tree, as in step 3. This time, however,
the lexeme controlling the diathesis is DEBT, not OWE.
Its diathesis is gp = {1=II 2=I 3=III}, meaning
that the first semantic argument becomes the second
syntactic actant, and vice-versa. The GP also constrains
the POS of the actants and imposes the genitive case
on its second actant. So, the semantic arguments 1 and
3 of ‘owe’ become, respectively, the syntactic actants
II and III of DEBT. It has no actant I because what
could have filled this slot has already been realized as
an actant of the support verb. Now, we have:

XN, GEN DEBTN, SG ZN AMOUNTV1 IND, PRES $500KNUM

root
II III

I
II

5′. Finally, class-based and fallback lexicalizations are
applied, as in steps 4 and 5 above:

PAULN, GEN DEBTN, SG BANKN, SG, DEF AMOUNTV1 IND, PRES $500KNUM

root
II III

I
II

The treatment of Oper1 and Oper13 differs only in how
some of the semantic arguments are attached to the support
verb, as per the patterns described in the LF dictionary.
As one can see, arborization and lexicalization are inter-
twined: choosing a lexeme imposes a GP, which in turn
imposes restrictions on the part-of-speech and potentially
other features on its actants, hence restricting what lexemes
can be chosen to fill the slot. Support verbs provide a way
to fill a verbal slot with a nominal lexeme, thus giving more
flexibility in lexico-syntactic choices.
Our top-down approach has a slight bias towards syntax.
Every time a node is created, it is immediately constrained
(either by the GP of its governor or by the rule that builds
the root), limiting the range of lexemes that can be used in a
given position. This is desirable of course, to avoid putting,
say, a verb where a noun is needed. However, the downside

is that there is no guarantee that such a lexicalization exists
for a given node that satisfies the constraints, so we might
end up with a dead-end structure. It is easy however to filter
these out, and since the system usually produces several
outputs, there is usually at least one valid output structure.

7. Conclusion and future work
GenDR is a multilingual deep realizer that provides a plat-
form for modeling the semantics-syntax interface in lan-
guages. Its salience-driven arborization algorithm ensures
high syntactic flexibility. The main strength of this system
is its approach to lexicalization, especially its handling of a
very wide range of collocation patterns. We have formally
described the semantics and syntax of ∼37,000 LFs in a
dictionary, ∼26,000 of which have also been implemented
in grammar rules that are ready to be used. This makes it
relatively easy to develop resources for new languages that
produce texts with rich idiomatic expressions, as the process
boils down to lexicography and requires little knowledge of
formal grammars.
In lieu of an evaluation, we put this system to the test in a
seminar where graduate linguistics students without prior
experience in NLG had to generate texts in a domain and
language of their choosing. In less than two months, they
successfully adapted the system to generate syntactic trees
for wedding ring descriptions, speech pathologist reports,
weather forecasts and flight details in French, soccer game
descriptions in English, and lexicographic illustrative sen-
tences for the lexical field of emotions in Mandarin, all with
very satisfying results. To be clear, they only developed the
lexical and grammatical resources for the mapping between
manually written semantic representations and automatically
generated surface syntactic structures, not the whole genera-
tion pipeline. But this “experiment” showed that the system
is flexible enough to handle very different kinds of texts
and can be easily and quickly adapted to a new domain or
language. GenDR also proved to be a potent pedagogical
tool for teaching formal linguistics and lexicography.
Our coverage of LFs is by far the most comprehensive that
we know of, the closest being Lexfom (Fonseca et al., 2016a;
Fonseca et al., 2016b; Fonseca, 2018) with ∼600, Ayeye
(Lareau et al., 2011; Dras et al., 2012; Lareau et al., 2012)
with ∼220, and MARQUIS with ∼30. Our lexical cover-
age, however, is limited to the ∼1500 most common words
for English and French, and demo dictionaries for a pair
of other languages. Obviously, we will work on increas-
ing these figures. In terms of grammatical coverage, the
core phenomena relevant to the semantics-syntax interface
(lexicalization, complementation, modification) are imple-
mented, but relative clauses and coordination were hastily
implemented and require more serious work. Also, GenDR
only properly handles active voice at the moment.
In order to address the problem of grammatical voice, more
fine-grained control over the communicative/information
structure is needed. In particular, one must be able to control
what the theme/topic of the sentence is. A shift of thematic
structure has a big impact on the syntactic structure (the
theme is often expressed as the grammatical subject in many
languages), which impacts lexical choice. We are starting to
investigate this aspect.
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We have nearly finished weaving VerbNet’s (Kipper Schuler,
2006) syntactic frames into our English grammar and we
plan to do the same with its French equivalent, Verb∋Net
(Pradet et al., 2014). This will drastically reduce the amount
of work necessary to add new verbs to these languages, and
since verbs control most of the syntax of a sentence, it will
greatly increase the coverage of our system.
We also plan to map our current output structures to Uni-
versal Dependency structures (Nivre et al., 2016) as well as
SimpleNLG (English, French and Spanish versions) (Gatt
and Reiter, 2009; Vaudry and Lapalme, 2013; Ramos-Soto
et al., 2017) for surface realization.
Finally, we want to merge GenDR with FORGe (Mille et
al., 2017; Mille and Wanner, 2017), which has fared pretty
well on a recent WebNLG challenge (Gardent et al., 2017).
Both systems share a common ancestor, so they should be
reasonably compatible.
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Dubinskaite, I. (2017). Développement de ressources litu-
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