
Building Universal Dependency Treebanks in Korean

Jayeol Chun1, Na-Rae Han2, Jena D. Hwang3, Jinho D. Choi1

Emory University1, University of Pittsburgh2, IHMC3

Atlanta GA 303221, Pittsburgh, PA 152602, Ocala, FL 325023

che.yeol.chun@emory.edu, naraehan@pitt.edu, jhwang@ihmc.us, jinho.choi@emory.edu

Abstract
This paper presents three treebanks in Korean that consist of dependency trees derived from existing treebanks, the Google UD Treebank,
the Penn Korean Treebank, and the KAIST Treebank, and pseudo-annotated by the latest guidelines from the Universal Dependencies
(UD) project. The Korean portion of the Google UD Treebank is re-tokenized to match the morpheme-level annotation suggested by the
other corpora, and systematically assessed for errors. Phrase structure trees in the Penn Korean Treebank and the KAIST Treebank are
automatically converted into dependency trees using head-finding rules and linguistic heuristics. Additionally, part-of-speech tags in all
treebanks are converted into the UD tagset. A total of 38K+ dependency trees are generated that comprise a coherent set of dependency
relations for over a half million tokens. To the best of our knowledge, this is the first time that these Korean corpora are analyzed together
and transformed into dependency trees following the latest UD guidelines, version 2.

Keywords: universal, dependency, conversion, korean, treebank

1. Introduction
The Universal Dependencies (UD) project has brought on an
increasing momentum to the research community for finding
morphological patterns and syntactic relations appropriate to
multiple languages (Zeman et al., 2017). The UD project has
facilitated collaborative work among several organizations
for 70+ languages, and inspired computational linguists to
further analyze both resource-rich and -poor languages by
suggesting universal guidelines that help them create and
augment treebanks in different languages. The UD project
has also promoted research on cross-lingual learning that
explores the possibility of adapting statistical parsing models
from one language to another (McDonald et al., 2013).
Several treebanks had been introduced for Korean, all of
which comprised annotation of morphemes and phrase struc-
ture trees (Choi et al., 1994; Han et al., 2002; Hong, 2009),
each following its own set of guidelines. Phrase structure
trees in these treebanks had been converted into dependency
trees using head-finding rules and linguistically-motivated
heuristics, and used to evaluate Korean dependency parsing
performance (Choi and Palmer, 2011; Choi, 2013). The pre-
vious efforts did not, however, focus on the compatibility
among dependency trees converted from different corpora,
resulting in the generation of a distinct set of dependency
relations for each treebank.
This paper presents three dependency treebanks in Korean,
derived from existing corpora and pseudo-annotated by the
latest UD guidelines, version 2. The motivation behind this
study is to make a comprehensive analysis between these
corpora and convert phrase structure trees across different
treebanks into dependency trees with consistent relations,
providing a large corpus of compatible dependency trees.
The contributions of this work are as follows:

• The Google UD Korean Treebank is manually assessed
and systematically corrected (Section 3.).

• Phrase structure trees in both the Penn Korean Treebank
and the KAIST Treebank are converted into dependency
trees using the UD guidelines (Sections 4. and 5.).

• Corpus analytics are provided that include statistics of
the new dependency treebanks, and remaining issues
with the current annotation (Section 6.).

To the best of our knowledge, this is the first time that these
Korean corpora are analyzed together and transformed into
dependency trees following the latest UD guidelines.

2. Related Work
Petrov et al. (2012) introduced the universal part-of-speech
tagset and provided a mapping from 25 different treebank
tagsets to this universal set. They showed that parsing per-
formance using the universal part-of-speech tagset was com-
parable to the one using the original tagsets. McDonald et al.
(2013) presented the universal dependency annotation and
provided pseudo and manually annotated dependency tree-
banks for 6 languages. They showed promising results for
cross-lingual parsing and initiated the effort for developing
universally acceptable grammars. The official UD project
started with a group of 10 languages (Nivre et al., 2015) and
has expanded to over 70 languages. Recently, this project or-
ganized the CoNLL’17 shared task on multilingual parsing,
involving over 40 languages (Zeman et al., 2017).
In addition, the Sejong Treebank, consisting of phrase struc-
tures trees for 60K sentences from 6 different genres of
text released by Hong (2009), were converted into depen-
dency trees by Choi and Palmer (2011). Despite of its large
size, the Sejong Treebank is excluded from this work due to
the license restriction. Hani corpora (Park, 2017) is also an
effort annotated under UD guidelines; however, published
exposition of this work has not yet been made available.

3. Google UD Korean Treebank
McDonald et al. (2013) provided the Google UD Tree-
banks comprising 6K sentences scraped from weblogs and
newswire, annotated under the universal dependency guide-
lines for 6 languages including Korean. Because these tree-
banks were annotated before the official UD project started,
the guidelines under which the Korean treebank was created

2194

(a) A sample dependency tree from the original GKT.

(b) After morphological analysis (Section 3.1.).

(c) After tokenization (Section 3.2.).

(d) After head ID remapping (Section 3.4.).

(e) After dependency relabeling (Section 3.5.).

Figure 1: Step-by-step illustration of our correction procedure of GKT (cc: coordinating conjunction, em: ending marker).

differed significantly from that of the version 2 of the UD
(UDv2). The Google UD Korean Treebank (GKT) was au-
tomatically converted to follow the UDv2 guidelines, and
distributed as a part of the CoNLL’17 shared task datasets.
We perform a manual check over GKT to determine whether
or not this automatic conversion generated sound depen-
dency relations and carry out systematic correction.

3.1. Morphological Analysis
Korean is an agglutinative language with highly produc-
tive verbal and nominal suffixation, and limited prefixation.
Without morphological analysis, then, any system that solely
relies on surface forms must contend with the sparsity is-

sue. As McDonald et al. (2013) points out, the automatic
tokenization carried out for the original GKT was generally
too coarse-grained; the suffixes or particles were left in with
the tokens, indicating the necessity for future improvements
through manual revision and annotation.

To help remedy this problem, we augment GKT with auto-
matic morphological analysis obtained by the KOMA tagger,
a general-purpose morphological analyzer for Korean (Lee
and Rim, 2009) that produces the morpheme tagset defined
by the Sejong Treebank (Hong, 2009). Figure 1(b) shows
the morphological analysis of the original sentence in 1(a).
The full morphological analysis is included for each token
as the last column in our dataset.

2195

3.2. Proper Tokenization
The tokenization in GKT does not split out the inflectional
and derivational particle as separate tokens, nor are the punc-
tuations tokenized. While a complete retokenization of parti-
cles in GKT is beyond the scope of this study, since improper
tokenization of punctuation can lead to inappropriate depen-
dency relations, we tackle the tokenization of symbols and
punctuation marks for the proper configuration of the de-
pendency relations. The morphological analysis from the
KOMA tagger enables us to recognize symbols as well as
particles so that they are split into separate tokens in our
corpus. This is exemplified in Figure 1(c), where the two
double quotes found in the 1st and 3rd tokens and the period
in 4th token, are retokenized. Dependency labels for these
new tokens are inferred from their morpheme tags. Over 9K
tokens with embedded punctuation are revised, resulting in
3K additional tokens.

3.3. Part-of-speech Tags Relabeling
Once properly tokenized, measures are taken to assign appro-
priate parts-of-speech (POS) tags to separated tokens based
on their morphemes. Note that the original GKT provides
two POS tags for each token (columns 4 and 5), first of which
is UDv2 compliant. Our relabeling focuses on replacing the
first set of POS tag, and for the sake of consistency with
other corpora, the secondary POS column is removed from
our corpus.

3.4. Head ID Remapping
With tokenization and POS assignment complete, the head
IDs of the separated tokens are redirected. In general, the
word inherits the original head ID while the punctuation
points to the previous token (i.e., token from which the
punctuation was split) as seen in token 8 in Figure 1(d).
An exception is made for quotations or parenthetical phrases.
Based on the observation that in general a quotation forms
a sentence, a quotation (marked by quotation marks (e.g.,
“ ”) and seen in the 1st and 3rd token in Figure 1(b)) will
feature its own sub-dependency tree where only its root will
link to an element outside of the quotation. Therefore, the
root of the sub-dependency tree is located by finding the link
from within the quotation to an outside element. Punctuation
points to the head of the quotation, as seen with 1st and 5th
tokens in the Figure 1(d).
In the case of parenthetical expressions involving (), <>, [],
‘’ and��, we found that in the vast majority of cases, the
elements within the parenthetical symbols were supplemen-
tary phrases describing a preceding token. This being so, the
head of the parenthetical phrase is assigned to the rightmost
element1. When the parenthetical expression forms a single
token with the preceding word as seen in Figure 2, the token
preceding the parenthetical expression inherits the original
head ID and becomes the head of the root of the parentheti-
cal expression. If there are any case particles attached to the
right of the parenthetical (see token 6 in the same figure),
then the case markings are also made dependent on the token
preceding the parenthetical expression.

1Note that Korean is a head-last language.

Figure 2: Example dependency tree with a parenthetical
expression (tpc: topic marker).

3.5. Dependency Relabeling
Since the CoNLL’17 shared task, UDv2 has undergone
changes that were not reflected in GKT. Thus, we apply
morpheme-level rules to GKT and relabel all dependency
relations to reflect the latest updates in UDv2. In Figure 1(e),
the 2nd and 3rd tokens translate to Olympics+in and partici-
pate, respectively. Previous UDv2 considers Olympics+in
an adverbial modifier (advmod) of participate, which is
relabeled as an oblique (obl) in our corpus, as specified in
the newest version of UDv2.

3.6. Lexical Correction
We manually assess the entire GKT for spelling errors. So-
cial media is one of the main sources for GKT, which include
a disproportionately large number of misspellings. Some are
common incorrect spellings (e.g., 왠만하면 → 웬만하면)
or deliberate non-standard forms known as ‘netspeak’ (e.g.,
시른→싫은), while the rest are simple errors. Additionally,
the HTML entity symbols are replaced with corresponding
lexical symbols (e.g, &→ &). The corrected spellings,
146 tokens in total, are provided in the lemma column.

4. Penn Korean Treebank
Han et al. (2006) created the Penn Korean Treebank (PKT)
consisting of manual annotation of morphemes and phrase
structure trees for 15K sentences from newswire in Korean.
PKT is the only Korean treebank including annotation of
empty categories, which enables to generate non-projective
dependencies. The previous version of PKT (Han et al.,
2002), which included phrase structure trees for 5k sentences
from a military corpus—known as the Virginia corpus, is
excluded from our conversion due to the lack of generality
in its source, the military domain.

4.1. Empty Categories
Empty categories denote nominal units that point to the loca-
tion of their antecedent syntactic elements found elsewhere
in the sentence. In dependency structure, they serve to cap-
ture long-distance dependencies at the cost of introducing
non-projective dependencies in the resultant tree. PKT fea-
tures four empty categories exemplified in Figure 3: (1) trace
T seen on line 3, (2) dropped subject *pro* seen on line
1, (3) empty operator *op* seen on line 0, and (4) ellipsis
? seen on line 7.

4.1.1. Trace
An argument that precedes its subject leaves in its place a
trace *T*. Given a terminal node that represents a trace
like (NP-OBJ *T*-1) in line 3 in Figure 3, we find its

2196

antecedent, (WHNP-1*op*) in line 1. Then we reorder the
sentence in such a manner that the subtree with the non-
terminal node as a root is extracted out of its position and
inserted in place of the trace node, resulting in Figure 4.

0: (S (NP-SBJ (S (WHNP-1 *op*)
1: (S (NP-SBJ *pro*)
2: (VP (NP-ADV 어제/NNC)
3: (VP (NP-OBJ *T*-1)
4: 사/VV+은/EAN))))
5: (NP 아이폰/NPR+은/PAU))
6: (ADJP (NP-COMP 어디/NPN+에/PAD)
7: (VJ *?*))
8: ?/SFN)

Figure 3: Examples of 4 types of empty categories:
op, *pro*, *T*, *?*.

0: (S (NP-SBJ (S (S (NP-SBJ *pro*)
1: (VP (NP-ADV 어제/NNC)
2: (VP (NP-OBJ (WHNP-1 *op*))
3: 사/VV+은/EAN))))
4: (NP 아이폰/NPR+은/PAU))
5: (ADJP (NP-COMP 어디/NPN+에/PAD)
6: (VJ *?*))
7: ?/SFN)

Figure 4: The example in Figure 3 after trace mapping.

4.1.2. Empty Assignment and Empty Operator
Dropped arguments are represented by *pro* and relative
clauses are represented by *op*. No explicit steps are taken
to reorder sentence structures with these empty categories.

4.1.3. Ellipsis
Elided elements are indicated with *?* in PKT, which can
result from a dropped predicate in a matrix clause (Figure
3) or when two clauses are coordinated with an implicitly
shared predicate (Figure 5). In the first case, resolving the
predicate will involve contextual information and therefore
is outside of our project’s scope. In the second scenario,
mapping ellipsis must be performed intra-sententially: the
first step is locating the predicate that has been ‘deleted’,
and point to it as a head. PKT however does not provide
an index that links the ellipsis token and its antecedent like
it does with empty operators, presumably due to the fact
that not all ellipses have in-sentence antecedents. To remedy
this, we represent this relationship as a fixed conjunct, as
seen with the 3rd and the 7th token in Figure 5. The relation-
ship is established through simple heuristics of matching
constituency tags at phrasal and morpheme level as well as
functions tags if they exist.

Figure 5: Example dependency tree with Ellipsis (obj: ob-
jective case particle).

4.2. Coordination
Following the guideline of Choi and Palmer (2011), each
conjunct points to its right sibling as its head so that the right-
most conjunct becomes the head of the phrase. Because PKT
does not offer the conjunctive function tag, our conversion
discovers coordination structure by applying a set of heuris-
tics2. An example of the coordination structure is shown
in Figure 4.2., where호박 (pumpkin) is the head of its left
sibling양파와 (Onion+tpc), and오이가 (Cucumber+tpc)
is made the head of the entire noun phrase involving the
coordinated structure.

Figure 6: Sample PKT dependency tree with coordination.

4.3. Part-of-speech Tags
The POS tags are manually mapped from PKT to UDv2;3

for the most part, this mapping is categorical. One excep-
tion is DAN, determiner-adnominal, which encompasses two
semantically distinct subgroups: (1)demonstrative prenom-
inals (e.g.,이 (this),그 (the),저 (it)) and (2)attribute adjec-
tives that lack predicative counterparts (e.g., 새 (new), 헌
(old)). The former is mapped to DET (determiner); the latter
to ADJ (adjective). Additionally, we identify nominal and
verbal particles whose function are to encode conjunction
and assigned them to the appropriate UDv2 POS tags. PCJ
(conjunctive post-position) is singled out and assigned to
CCONJ (conjunction), while the remaining post-position cat-
egories (PCA, PAD, PAU) are mapped to ADP (adposition).
The ECS (coordinate, subordinate, adverbial) verbal endings
require additional attention to context: they are categorized
as CCONJ when they are considered coordinating verbs or
verb phrases, and as SCONJ when considered coordinating
clauses. All remaining verbal endings are categorized as
PART (particle) along with copula (CO) and suffixes (X*).

4.4. Dependency Relations
The establishment of dependency relations starts with han-
dling empty categories, discussed in Section 4.1. Then each
node is assigned its head with head-percolation rules based
on Table 1. The dependency relationship between the node
and its head is inferred by investigating the function tags,
phrasal tags and morphemes.

5. Kaist Treebank
Choi et al. (1994) created the KAIST Treebank (KTB) con-
taining phrase structure trees for 31K sentences from var-
ious sources including literature, newswire, and academic
manuscripts. Trees in this corpus were converted into depen-
dency trees and used as a part of the shared task on parsing

2A simpler version of the heuristics used for PKT is exemplified
by Algorithm 1, that is, coordination heuristics for KAIST.

3The mappings between the POS tagsets from PKT, KTB, and
UDv2 can be found from our project site.

2197

morphologically rich languages (Choi, 2013). Unlike PKB,
KTB does not include empty categories and function tags,
which renders the dependency conversion more challenging.

5.1. Coordination
Coordination in KTB is discovered and handled by Algo-
rithm 1, which calls Algorithm 2 to check whether a given
phrase or a sentence contains a coordination. However, the
lack of empty categories in KTB, and hence the lack of rep-
resentation of verb ellipsis, is the most notable difference
between the two corpora. As it was for PKT, the rightmost
conjunct becomes the head of the coordination.

Algorithm 1: find coordination(C, R)
Input :A constituent C; the headrule R of C
child, head← null, null;
children← C’s children list;
type← contains coordination(C, children);
switch type do

case 0 do
return false;

case 1 do
foreach c ∈ children do

if child = null then
child, head← c, c;

else
if c is sp then

c.set head(child, punct);
else if c ends with jcj then

child.set head(c, conj);
child, head← c, c;

else if c is maj then
c.set head(C’s right sibling, cc);

else
child.set head(c, conj);
child, head← c, c;

case 2 do
foreach c in children do

if child is null then
child, head← c, c;

else
child.set head(c, conj);
child, head← c, c;

if type > 0 then
C.update head(head);

5.2. Part-of-speech Tags
Similarly to PKT, the KTB POS tag mapping, for the most
part, is categorical; exhibiting many-to-one mappings from
KTB to UDv2. In some cases, KTB and UDv2 take a differ-
ent slice through the semantics of what these tags represent.
For example, while the KTB’s case particles generally map
to the UDv2’s adpositions (ADP), the conjunctive case par-
ticles (jcj) in KTB functionally align with the UDv2’s
conjunctions (CONJ). Much like PKT, the ending particles
(x*) in KTB are analyzed on the basis of semantic context:
adveribial derivational suffixes (xsa) signal assignments
to the UDv2’s adverbs (ADV), while the rest of the ending
particles in KTB are considered PART in UDv2.

Algorithm 2: contains coordination(C, N)
Input :A constituent C;

An ordered list N of child constituents of C
Output :The conjunct-flag, either 0, 1, 2 or 3
if C is NP then

foreach c in N do
if c is maj or sp then return 1
if c ends with ecc or jcj then return 1

if C is VP or ADJP then
foreach c in N do

if c ends with ecc then return 2
return 0;

5.3. Dependency Relations
KTB dependency conversion follows the procedure outlined
for PKT where the head of nodes is located with head-
percolation rules based on Table 2.
While the dependency label inference benefits from the rich
morphological analysis of KTB, the small number of phrasal
tags and the absence of function tags has led to complica-
tions such as mapping of noun phrases ending with jxt to
dislocated. Similarly to PKT, where -SBJ function tag
denotes a subject node, KTB offers three morpheme tags
for the same purpose: jcs, jcc, and jxt. However, while jcs
and jcc roughly correspond to nsubj and csubj, jxt
suggests that the phrase is the topic of the phrase or clause,
but offers nothing informative in distinguishing whether it is
in fact a subject (which it frequently is) and, if so, whether
it is a clausal or nominative subject. Although UDv2 offers
dislocated for topical elements ubiquitous in languages
like Korean and Japanese, KTB offers no systematic way of
distinguishing dislocated from its subject counterparts
in nsubj or csubj.

Phrase D Headrules
S r VP;ADJP;S;NP;ADVP;*
VP r VP;ADJP;VV|VJ;CV;LV;V*;NP;S;*
NP r N*;S;N*;VP;ADJP|ADVP;*
DANP r DANP|DAN;VP;*
ADVP r ADVP;ADV;-ADV;VP;NP;S;*
ADJP r ADJP;VJ;LV;*
ADCP r ADC;VP;NP|S;*
ADV r VJ;NNC;*
VX r V*; NNX;*
VV r VV;NNC;VJ;*
VJ r VJ;NNC;*
PRN r NPR;N*|NP|VP|S|ADJP|ADVP;*
CV r VV;*
LV r VV;J;*
INTJ r INTJ;IJ;VP;*
LST r NNU;*
X r *

Table 1: Headrules for PKT. Phrase lists all phrasal tags in
PKT. D denotes the search direction, r denotes searching
for rightmost constituent, * denotes any tag headed by what
follows, and | denotes logical or. Each Headrule gives
higher precedence to the left tag on the list.

2198

0

0.1

0.2

0.3

0.4

ADJ ADP ADV AUX CCONJ DET INTJ NOUN NUM PART PRON PROPN PUNCT SCONJ SYM VERB X

GOOGLE
PENN
KAIST

Figure 7: Distributions of part-of-speech tags for all three treebanks.

0

0.04

0.08

0.12

0.16

ac
l

ad
vc
l

ad
vm

od
am

od
ap
po
s

au
x

ca
se cc

cc
om

p cl
f

co
m
po
un
d

co
nj

co
p

cs
ub
j

de
p

de
t

di
sc
ou
rs
e

di
sl
oc
at
ed

ex
pl

fix
ed fla
t

go
es
w
ith io
bj lis
t

m
ar
k

nm
od

ns
ub
j

nu
m
m
od ob
j

ob
l

or
ph
an

pa
ra
ta
xi
s

pu
nc
t

re
pa
ra
nd
um ro
ot

vo
ca
tiv
e

xc
om

p

GOOGLE
PENN
KAIST

Figure 8: Distributions of the dependency labels for all three treebanks.

Phrase D Headrules
S r VP;ADJP;S;NP;ADVP;*
VP r pv*|pa*|n*|VP|NP;ADJP;S;*
NP r n*|f|NP|S|pv*|VP|pa*|ADJP;ADVP|MODP;*
ADJP r ADJP|pa*|n*;ADVP;VP;NP;S;*
ADVP r ADVP;VP;ma*;NP;S;*
AUXP r AUXP;NP;p*;n*;px;*
MODP r mm*;VP;ADJP;NP;*
IP r ii;p*;n*;ADVP;m*;*
X r *

Table 2: Headrules for KTB (see Table 1 for tabular details).

6. Corpus Analytics
6.1. Statistics of the New Dependency Treebanks
At approximately 26 dependency nodes per sentence, PKT
includes on average the longest and complex sentences
among the three corpora. This is likely reflective of the
news domain PKT represents. KTB is by far the largest cor-
pus in this study with its sentence complexity comparable
to that of GKT at approximately 12 dependency nodes per
sentence.

Number GKT PKT KTB Total
Sentences 6,339 5,010 27,363 38,712

Nodes 80,392 132,041 350,090 562,523

The frequencies of the POS tags in the three corpora are
shown in Table 3. The three corpora shared NOUN, VERB,
ADV and PUNCT as the top parts-of-speech (Figure 7). Be-
yond these four, no other POS reaches double-digit %, and
the relative rankings start to diverge. In both PKT and GKT,

PROPN (proper noun) is the fifth-highest ranking POS, while
it is seen ranking much lower in KAIST, which instead has
ADJ (adjective) taking the spot. NUM (number) is promi-
nent in PKT which is likely a reflection of its news domain.
Absence of the SCONJ in GKT is due to the tokenization
that does not analyze particles as separate tokens. Notably,
AUX (auxiliary)4 and PART (particle)5, which were entirely
lacking in the original GKT , were partially introduced into
the revised GKT as the result of tokenization of symbols
and punctuation marks as discussed in Section 3.2..
The frequencies of dependency labels in the three corpora
are shown in Table 4. The distributions of the dependency
labels display intriguing trends across all treebanks (Figure
8). PKT and KTB appear consistent except in compound,
nummod, dislocated and nsubj. As briefly mentioned,
compound and nummod are likely domain-specific partic-
ularities. As for dislocated and nsubj, the discussion
of 5.3. likely explains the discrepancy. GKT’s abundant an-
notation of flat is a remnant of coarse tokenization that
led to embedded tokens labeled flat as a whole.

6.2. Discussion
GKT While a number of salient errors has been handled
in this work, our analysis show that there are a number of
remaining issues with GKT that we strongly recommend be
addressed in a future release of the data. The errors include
structural problems, incorrect argument attachment, and in-

4All verbs were uniformly categorized as VERB in the original
GKT. Given that auxiliary verb is a well-established category in
Korean grammar, we find this a rather puzzling design decision.

5Particles were not tokenized in the original GKT.

2199

Tag Description GKT PKT KTB
ADJ Adjective 2,760 3,431 14,223
ADP Adposition 1,791 1,251 1,498
ADV Adverb 11,361 15,174 49,204
AUX Auxiliary 74 2,263 12,906

CCONJ Coordinating Conjunction 223 2,453 19,368
DET Determiner 573 685 4,824
INTJ Interjection 3 0 56
NOUN Noun 32,345 46,866 105,193
NUM Numeral 847 7,931 4,848
PART Particle 31 464 268
PRON Pronoun 682 857 7,712
PROPN Proper Noun 490 12,257 12,366
PUNCT Punctuation 10,440 13,428 38,925
SCONJ Subordinating Conjunction 0 9,780 18,466
SYM Symbol 328 376 260
VERB Verb 18,431 13,855 59,273
X Other 13 970 700

Total 80,392 132,041 350,090

Table 3: Frequencies of part-of-speech tags in the final resulting corpora.

correct dependency labelling.6 Additionally, GKT shows a
(mostly) consistent tendency to go with a head-first analysis
in cases of conjunction (i.e., talking is the direct depen-
dent of reading for conjunction talking and reading) and
noun-noun compounds7, both of which represent inconsis-
tent treatments of a verb-final language.
Additionally, the GKT currently contains duplicates in the
dataset, many of which are fairly complex sentences. Out
of the 195 duplicates present in the data (out of total 6,339
sentence tokens), 113 duplicates appear verbatim in both the
training and test sets (represents over 11% of the test data)
and 28 duplicates cross over training and development sets
(represents 3% of the development set), which indicates a
flawed data sampling process.

PKT and KTB The conversion and error-analysis for
PKT has undergone various iterations and the UDv2 com-
pliant PKT data is now complete. PKT has been praised for
its strong annotation consistency; that coupled with well-
publicized documentation has enabled a quick and reliable
implementation of the targeted conversion strategies.
KTB, our newest converted treebank, is near completion,
however, there are still a few lingering issues that require
attention. One issue that often came up was the treatment
of grammaticalized multi-word expressions such as -ㄹ것
이다 (-l kesita) and -ㄹ수있다 (-l swu issta). On the face
of it, they involve dependent nouns것 (kes, ‘thing’) and수
(swu, ‘way’) respectively to literal translations of ‘... will be
a thing’ and ‘there is a way to ...’. On the whole, however,
they are grammaticalized forms that encode future/irrealis

6We suspect these errors were present in the original annota-
tion of the corpus and propagated to the current distribution of
CoNLL’17 shared task data.

7This is true even in a noun-noun compound where one of the
noun explicitly case marked such as “샐러드바-를먹을수있다”
(tr. salad bar-obj can eat), where salad is assigned the head even
though bar is marked with the accusative case.

and epistemic modality, respectively: PKT acknowledges
this and marks them as multi-word auxiliaries in annota-
tion which facilitated our conversion process. In KTB, these
forms had to be individually and lexically targeted to ensure
parallel treatment. The Google Treebank, however, does not
make such provision; as a matter of fact, it lacks AUX as a
POS category altogether, which means this corpus remains
disparate on this issue. This illustrates difficulty in achiev-
ing uniformity across multiple corpus resources by way of
automatic and semi-automatic conversion.

7. Conclusion

We present the manual assessment and revision process
for the GKT, and the phrase-structure to UD conversion of
Penn Korean and KAIST treebanks, discussing some of the
statistics and the current issues relating the three presented
treebanks. To the best of our knowledge, this is the first
time that these three Korean corpora are converted together
into dependency trees following the latest UD guidelines,
resulting in a total of 38K+ dependency trees.

It is our expectation that the compilation of these treebanks
will help facilitate further research in dependency parsing
in Korean, where the lack of training data has remained
an obstacle. Furthermore, we expect that the conversion
methodologies described in this paper will serve as helpful
resources to those wishing to carry out phrase-structure to
dependency conversion for other corpora.

Future directions include further enhancements to the quality
of treebanks established in this study and the development
of parsers based on this dataset to aid further research in
Korean NLP. All our resources including source codes and
links to the corpora are provided at: https://github.
com/emorynlp/ud-korean.

2200

Tag Description GKT PKT KTB
acl Clausal Modifier of Noun 3,198 1,488 21,468

advcl Adverbial Clause Modifier 4,515 11,636 20,487
advmod Adverbial Modifier 8,810 2,964 19,102
amod Adjectival Modifier 1,566 1,595 16,584
appos Appositional Modifier 1,544 1,182 1,059
aux Auxiliary 64 4,807 18,935
case Case Marking 1,624 1,548 1,343
cc Coordinating Conjunction 223 785 5,234

ccomp Clausal Complement 651 9,858 15,655
clf Classifier 0 0 1

compound Compound 0 28,908 24,696
conj Conjunct 3,863 9,960 20,774
cop Copula 102 418 303

csubj Clausal Subject 21 8,014 1,202
dep Unspecified Dependency 2,437 609 3,019
det Determiner 3,077 685 4,824

discourse Discourse Element 0 0 47
dislocated Dislocated Elements 0 0 20,964

expl Expletive 0 0 0
fixed Fixed Multiword Expression 13 528 3,186
flat Flat Multiword Expression 12,252 18 803

goeswith Goes With 0 0 0
iobj Indirect Object 108 222 967
list List 0 0 0
mark Marker 372 1,003 799
nmod Nominal Modifier 1,761 5,555 22,045
nsubj Nominal Subject 8,290 4,012 17,444
nummod Numeric Modifier 489 154 3,295
obj Object 5,801 9,823 23,605
obl Oblique Nominal 2,784 3,357 11,577

orphan Orphan 0 0 0
parataxis Parataxis 0 0 0

punct Punctuation 10,494 13,073 39,016
reparandum Overridden Disfluency 0 0 0

root Root 6,332 5,036 27,363
vocative Vocative 0 0 15
xcomp Open Clausal Complement 1 4,803 4,278

Total 80,392 132,041 350,090

Table 4: Frequencies of dependency labels in the final resulting corpora.

8. Bibliographical References
Choi, J. D. and Palmer, M. (2011). Statistical Dependency

Parsing in Korean: From Corpus Generation To Auto-
matic Parsing. In Proceedings of IWPT workshop on
Statistical Parsing of Morphologically Rich Languages,
SPMRL’11, pages 1–11.

Choi, K.-S., Han, Y. S., Han, Y. G., and Kwon, O. W.
(1994). KAIST Tree Bank Project for Korean: Present
and Future Development. In In Proceedings of the Inter-
national Workshop on Sharable Natural Language Re-
sources, pages 7–14.

Choi, J. D. (2013). Preparing Korean Data for the Shared
Task on Parsing Morphologically Rich Languages. Tech-
nical Report 1309.1649, ArXiv.

Han, C.-H., Han, N.-R., Ko, E.-S., Palmer, M., and Yi,

H. (2002). Penn Korean Treebank: Development and
Evaluation. In In Proceedings of the 16th Pacific Asia
Conference on Language, Information and Computation,
PACLIC’02.

Han, N.-R., Ryu, S., Chae, S.-H., yun Yang, S., Lee,
S., and Palmer, M. (2006). Korean Treebank Annota-
tions Version 2.0. https://catalog.ldc.upenn.
edu/LDC2006T09.

Hong, Y. (2009). 21st Century Sejong Project Results and
Tasks (21세기 세종 계획 사업 성과 및 과제). In New
Korean Life (새국어생활). National Institute of Korean
Language.

Lee, D.-G. and Rim, H.-C. (2009). Probabilistic Modeling
of Korean Morphology. IEEE Transactions on Audio,
Speech, and Language Processing, 17(5):945–955, July.

2201

McDonald, R., Nivre, J., Quirmbach-Brundage, Y., Gold-
berg, Y., Das, D., Ganchev, K., Hall, K., Petrov, S., Zhang,
H., Täckström, O., Bedini, C., Bertomeu Castelló, N., and
Lee, J. (2013). Universal Dependency Annotation for
Multilingual Parsing. In Proceedings of the 51st Annual
Meeting of the Association for Computational Linguistics,
ACL’13, pages 92–97.

Nivre, J., Bosco, C., Choi, J., de Marneffe, M.-C., Dozat, T.,
Farkas, R., Foster, J., Ginter, F., Goldberg, Y., Hajič, J.,
Kanerva, J., Laippala, V., Lenci, A., Lynn, T., Manning,
C., McDonald, R., Missilä, A., Montemagni, S., Petrov,
S., Pyysalo, S., Silveira, N., Simi, M., Smith, A., Tsarfaty,
R., Vincze, V., and Zeman, D. (2015). Universal Depen-
dencies 1.0. LINDAT/CLARIN digital library at Institute
of Formal and Applied Linguistics, Charles University in
Prague.

Park, J. (2017). Universal dependencies for korean: Hani
(ver1.0) [data set].

Petrov, S., Das, D., and McDonald, R. (2012). A Universal
Part-of-Speech Tagset. In Proceedings of the 8th Interna-
tional Conference on Language Resources and Evalua-
tion, LREC’12, pages 2089–2096.

Zeman, D., Popel, M., Straka, M., Hajic, J., Nivre, J., Gin-
ter, F., Luotolahti, J., Pyysalo, S., Petrov, S., Potthast,
M., Tyers, F., Badmaeva, E., Gokirmak, M., Nedoluzhko,
A., Cinkova, S., Hajic jr., J., Hlavacova, J., Kettnerová,
V., Uresova, Z., Kanerva, J., Ojala, S., Missilä, A., Man-
ning, C. D., Schuster, S., Reddy, S., Taji, D., Habash,
N., Leung, H., de Marneffe, M.-C., Sanguinetti, M.,
Simi, M., Kanayama, H., dePaiva, V., Droganova, K.,
Martı́nez Alonso, H., Çöltekin, c., Sulubacak, U., Uszkor-
eit, H., Macketanz, V., Burchardt, A., Harris, K., Marhei-
necke, K., Rehm, G., Kayadelen, T., Attia, M., Elkahky,
A., Yu, Z., Pitler, E., Lertpradit, S., Mandl, M., Kirchner,
J., Alcalde, H. F., Strnadová, J., Banerjee, E., Manurung,
R., Stella, A., Shimada, A., Kwak, S., Mendonca, G.,
Lando, T., Nitisaroj, R., and Li, J. (2017). CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text to Uni-
versal Dependencies. In Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text to Uni-
versal Dependencies, CoNLL’17, pages 1–19.

2202

