
A Web-based System for Crowd-in-the-Loop Dependency Treebanking

Stephen Tratz∗, Nhien Phan†
∗U.S. Army Research Laboratory, Adelphi, Maryland, USA
†University of Maryland, College Park, Maryland, USA

stephen.c.tratz.civ@mail.mil, nphan12@terpmail.umd.edu

Abstract
Treebanks exist for many different languages, but they are often quite limited in terms of size, genre, and topic coverage. It is difficult to
expand these treebanks or to develop new ones in part because manual annotation is time-consuming and expensive. Human-in-the-loop
methods that leverage machine learning algorithms during the annotation process are one set of techniques that could be employed to
accelerate annotation of large numbers of sentences. Additionally, crowdsourcing could be used to hire a large number of annotators at
relatively low cost. Currently, there are few treebanking tools available that support either human-in-the-loop methods or crowdsourcing.
To address this, we introduce CROWDTREE, a web-based interactive tool for editing dependency trees. In addition to the visual frontend,
the system has a Java servlet that can train a parsing model during the annotation process. This parsing model can then be applied to
sentences as they are requested by annotators so that, instead of annotating sentences from scratch, annotators need only to edit the
model’s predictions, potentially resulting in significant time savings. Multiple annotators can work simultaneously, and the system is
even designed to be compatible with Mechanical Turk. Thus, CROWDTREE supports not simply human-in-the-loop treebanking, but
crowd-in-the-loop treebanking.

Keywords: annotation, dependency trees, visualization, GUI, crowdsourcing, treebanking

1. Introduction
Although treebanks exist for a number of languages, they
are often quite small in size. Even some of the largest
and most useful treebanks are restricted to only a hand-
ful of sources, genres, and/or topic areas—the venerable
Penn Treebank (Marcus et al., 1993) being a prime ex-
ample of this. Unfortunately, manual annotation is expen-
sive and slow, which impedes both the expansion of exist-
ing treebanks and the creation of new ones. For example,
The Prague Dependency Treebank, which contains over 1
million syntactically connected words, cost approximately
$600,000 to create (Böhmová et al., 2003). One method
for accelerating the treebanking process is to utilize human-
in-the-loop1 methods that leverage machine learning algo-
rithms during annotation. Such algorithms could pre-parse
the data, highlight attachment decisions of greater impor-
tance, and/or suggest sentences for annotation that are most
likely to prove useful as training examples. Another useful
method is crowdsourcing, which taps into a large (and typ-
ically inexpensive) worker pool. Together, these comple-
mentary techniques hold tremendous promise for reducing
the time and cost of creating large datasets for natural lan-
guage processing, including treebanks. In order to facilitate
faster and less expensive dependency tree annotation, this
paper presents CROWDTREE, which is, to the best of our
knowledge, the first web-based treebanking tool designed
specifically for human-in-the-loop, and even crowd-in-the-
loop, tree annotation.
The system consists of two primary components, an inter-
active graphical frontend, shown in Figure 1, and a Java
servlet. The frontend, which enables users to visually con-
struct/edit dependency trees using drag-and-drop, is based
on the EASYTREE dependency tree editor (Little and Tratz,
2016) but has a variety of improvements, including an im-

1By ‘human-in-the-loop’, we mean ‘involving both human in-
teraction and machine learning’.

proved layout and various bug fixes. It is written entirely in
HTML, CSS, and JavaScript, and, thus, works with modern
browsers without the need for special plugins. The fron-
tend communicates with the second component, the Java
servlet, which, in addition to recording the annotated data,
has the option to constantly train a transition-style parsing
model (McDonald and Nivre, 2007) throughout the annota-
tion process from the work that is submitted to the server.
This model can parse a sentence as it is provided to an an-
notator, which promises to reduce the number of edits re-
quired to construct correct dependency trees. CROWDTREE
has a Mechanical Turk-compatible mode, which opens new
possibilities for large scale treebanking as well as new op-
portunities for research into the use of large numbers of
non-expert treebankers.
The remainder of this paper provides a more detailed de-
scription of the nature and capabilities of our tree annota-
tion system (Section 2), describes related tools and research
efforts (Section 3), summarizes our contributions (Section
4), and details some of our planned experimental work and
feature additions (Section 5). We are planning to release
our system open source in the near future via the U.S. Army
Research Laboratory’s GitHub site or similar repository.

2. System Description
CROWDTREE has a client-server architecture with two
components: a graphical web-based interface that annota-
tors use to create dependency trees and a Java servlet for
storing user annotations and running machine learning pro-
cesses.

2.1. User Interface
The user interface, shown in Figure 1, is written using
standard web technologies—HTML, CSS, and JavaScript.
The interactive Support Vector Graphics-based dependency
tree widget is implemented using the popular D3.JS2 data

2https://d3js.org/

2189

visualization and manipulation JavaScript library. Anno-

Figure 1: In CROWDTREE, blue “drop zones” highlight
possible attachment sites when dragging word nodes.

tators alter the dependency tree structure by clicking on
word nodes and dragging them to their appropriate attach-
ment sites. When the dragging process begins, circular
“drop zones” appear around the potential attachment sites,
as shown in Figure 1. When the dragged node is dropped,
the layout of the tree adjusts in a smooth, animated fash-
ion. The code is derived from the EASYTREE dependency
tree editor (Little and Tratz, 2016) but the visual layout is
modeled after the layout used in the tree editor TRED (Pa-
jas and Štěpánek, 2008), with the words maintaining their
original left-to-right order on the horizontal axis. One of the
challenges with the EASYTREE layout is that the horizontal
ordering of word nodes is not maintained across the entire
sentence, and, hence, a noun phrase like the little brown
flower pot would have the last two words brown and flower
appear to the right of the word pot instead of to its left.
Both labeled and unlabeled dependency annotation are sup-
ported by the system, which can be configured to either hide
or show the dependency labels and part-of-speech tags of
the word nodes. Plugging in one’s own dependency labels
and part-of-speech tags can be accomplished easily with
just a text editor.
CROWDTREE includes pan and zoom capabilities to enable
users to easily work with very large trees. Zooming in and
out is accomplished using the mouse scrollwheel, and the
user can reposition the entire tree by clicking on the back-
ground and dragging the mouse in the desired direction.

2.2. Java Servlet
The Java servlet, in addition to handling some important
input and output functions, is in charge of running ma-
chine learning processes. It currently has the option of
training either a SWAP parser (Nivre, 2009) or an EASY-
FIRST style parsing model (Goldberg and Elhadad, 2010)
with support for non-projectivity via swapping (Tratz and
Hovy, 2011). The servlet runs a model training thread that

continuously iterates over the annotations that have been
received; thus, the model tends to improve as annotation
proceeds. Whenever an annotator requests a sentence from
the servlet, the parser processes the sentence using its cur-
rent model weights and sends the resulting parse to the an-
notator for correction. The same parsing model is shared
across all annotators, which enables them to benefit from
each other’s work. This promises to accelerate the entire
annotation process by minimizing the number of edits an-
notators need to make in order to construct correct parse
structures. 3

2.3. Input and Output
One of the significant limitations of the EASYTREE depen-
dency tree editor, which our system is derived from, is that
the default method for getting data into and out of the ed-
itor is to copy and paste an individual sentence, make any
needed changes, and then save out a file containing the an-
notation. This process is, of course, rather tedious, not to
mention disruptive to the annotator’s concentration. With
our tree editor, the locations of the input and output files
are specified in a system configuration file. The sentences
contained in the input file are loaded by the Java servlet and
are sent, as requested, to the web client via HTTP/HTTPS
in JavaScript Object Notation (JSON). The annotations pro-
duced by the annotator(s) are then returned to the servlet
in a similar fashion. When the servlet receives annotated
trees, it writes them out to the file specified in the configu-
ration and adds them to the pool of training instances that
the server-side parser learns from.
CROWDTREE includes Java classes for reading files in dif-
ferent input formats, including plain text, CoNLL-U, and
our own format. To support as many formats as possible,
it is also possible to implement a custom reader Java class
and plug it in. The frontend is capable of displaying both
left-to-right and right-to-left scripts, and UTF-8 encoding is
used throughout the system, so it can support a wide variety
of different languages.

2.4. Mechanical Turk Mode
One of the most notable features of CROWDTREE is that it
was designed from the beginning to be able to run in con-
nection with the Amazon Mechanical Turk crowdsourcing
platform. This is accomplished via Mechanical Turk’s Ex-
ternalQuestion Human Intelligence Tasks (HITs). HITs are
the basic unit of work on Mechanical Turk; essentially, they
are questions to be answered, with a monetary award at-
tached. In the case of ExternalQuestion HITs, the requester
provides Amazon with the URL of a web site located ex-
ternally to the main Mechanical Turk website. As shown
in Figure 2, when the workers on Mechanical Turk view
and work on the HITs, they see a web page hosted on the
main Mechanical Turk website with an internal frame (an
HTML iframe) that points to the external website hosting
the CROWDTREE system. When the worker submits his/her
work, it is sent both to the external server, where it can be

3Of course, submission of erroneous annotations will likely
degrade the performance of the model. Mechanisms for mitigating
this negative effect may be necessary, depending on the use case.

2190

Figure 2: Screenshot of CROWDTREE working in the Mechanical Turk sandbox.

accessed by the parsing model training thread (or any ma-
chine learning processes implemented in the future), and to
the Mechanical Turk website so that the worker can proceed
to the next HIT, have his/her work approved, and receive
payment.

2.5. Standalone Mode
As mentioned above, CROWDTREE was designed with Me-
chanical Turk in mind. It is possible, however, for annota-
tors to connect directly to the server hosting the Java servlet
instead. In this use case, annotators work on each sentence
in the order that they appear in the input file. In the future,
we would like to add more sophisticated methods for as-
signing particular sentences to specific annotators as well as
tools that would help supervisors review annotators’ work.

3. Related Work
3.1. Treebanking Tools
Perhaps the best known tool for treebanking is the tree ed-
itor TRED (Pajas and Štěpánek, 2008). TRED is a pro-
grammable graphical user interface for editing and view-
ing parse trees, including both constituent and dependency
trees, and has been used for several treebanking projects,
including the Prague Arabic Dependency Treebank (Hajič
et al., 2004). It has a wide array of functionality—more
than our system—but can be difficult to set up and learn.
One of TRED’s greatest limitations is that it is a standalone
application written in Perl. In contrast, CROWDTREE is
designed to run in modern web browsers, making it com-
paratively simple to deploy, especially for geographically
distributed annotators. Some aspects of the visual layout
and styling of CROWDTREE were inspired by TRED.

Another web-based tool that can be used for treebanking
is WEBANNO (Yimam et al., 2013; Yimam et al., 2014;
de Castilho et al., 2016). It builds upon the BRAT inter-
face (Stenetorp et al., 2012) and supports multiple layers
of annotation across a variety of linguistic annotation tasks.
Additionally, WEBANNO is designed to support annotation
across geographically distributed sites and has an integrated
machine learning model for suggesting span annotations. It
may, however, be more appropriate for semantic labeling
tasks, such as word sense disambiguation (WSD) and se-
mantic role labeling (SRL), than for syntactic annotation;
although compact, we hypothesize that its horizontal word
layout, an example of which is depicted in Figure 3, is
slower for treebanking and more exhausting to annotators
because they have to follow curved arcs with their eyes and
pay attention to the arrowheads at the ends in order to un-
derstand the directionality of the dependencies.
Three other dependency tree editors with horizontal layouts
similar to WEBANNO but designed with a more focused
range of functionality are ARBORATOR (Gerdes, 2013),
UD ANNOTATRIX (Tyers et al., 2018), and DGANNOTA-
TOR4.

Figure 3: Screenshot showing the type of horizontal lay-
out used in BRAT, WEBANNO, and most other dependency
annotation tools.

4http://medialab.di.unipi.it/Project/QA/Parser/DgAnnotator/

2191

3.2. Crowdsourcing Parsing
To date, there have been very few efforts to crowdsource
parsing and no efforts, to the best of our knowledge, to do
so directly with a full parse tree editor like CROWDTREE
outside small classroom studies like that of Gerdes (2013).
In one notable ongoing effort, researchers have built and de-
ployed a Game With a Purpose (GWAP) (Von Ahn, 2006)
called ZOMBILINGO in order to crowdsource a French tree-
bank (Fort et al., 2014; Guillaume et al., 2016; Fort et al.,
2017). ZOMBILINGO participants work on one attachment
decision at a time, using the metaphor that the governing
word is devouring the child just as zombies seek out brains.
Participants must complete a training phase for each depen-
dency relation they work on and can not work on the rela-
tions deemed more difficult until they have demonstrated
some skill on less challenging dependency relations. ZOM-
BILINGO relies entirely on volunteers and is a standalone
website5 not designed for integration with Mechanical Turk
or similar crowdsourcing platforms.
Another notable effort is that of He et al. (2016), who,
in a first step toward human-in-the-loop parsing, crowd-
source individual attachment annotations by asking annota-
tors multiple choice questions automatically generated us-
ing parse trees produced by an existing parser. For exam-
ple, to resolve the attachment of a relative clause with a root
verb of sells, the question posed to the annotators would be
something like, “What sells something?”, and the available
answers would be the list of noun phrases that appear prior
to the relative clause. He et al. are able to achieve some
modest gains, improving by 0.2 F1 on their in-domain cor-
pus and 0.6 F1 on their out-of-domain corpus.

3.3. Crowdsourcing combined with Machine
Learning

Even though using crowdsourcing to collect data for
processing with machine learning algorithms has been
widespread for a number of years, it is still relatively rare
to run machine learning algorithms at the same time that
the crowd is actively annotating. This is especially true in
the field of natural language processing (NLP). One notable
exception to this rule is the work of Laws et al. (2011), who
ran active learning processes while crowdsourcing Named
Entity Recognition (NER) and sentiment detection tasks on
Mechanical Turk. To the best of our knowledge, no one
has utilized machine learning in any similar fashion while
crowdsourcing parse trees.

4. Conclusion
In this paper, we introduce CROWDTREE, an interactive
graphical editor for dependency tree annotation. Based
upon standard web technologies, the system is compatible
with modern browsers and, thus, easy to deploy to geo-
graphically distributed annotators. Our system’s integrated
back end parsing model makes it suitable for human-in-
the-loop or even crowd-in-the-loop annotation, where the
integrated parsing model learns as the annotation proceeds
so that, ideally, the amount of effort required per sentence

5https://zombilingo.org/

decreases as time goes on. CROWDTREE supports left-
to-right and right-to-left scripts, labeled and unlabeled de-
pendency annotation, and can run in conjunction with Me-
chanical Turk (via ExternalQuestion HITs) or in standalone
mode. To the best of our knowledge, it is the first de-
pendency tree editor designed for use with a large online
crowdsourcing platform; thus, we expect it to prove useful
to the wider computational linguistics research community
and intend to release the code open source in the near fu-
ture, likely as a repository on the U.S. Army Research Lab-
oratory’s GitHub site 6.

5. Future Work
We built CROWDTREE to explore the feasibility of crowd-
sourcing dependency parse annotation and to demonstrate
the value of utilizing human-in-the-loop machine learning
during the parse annotation process. Accordingly, we will
be posting HITs on Mechanical Turk with a variety of pa-
rameterizations and publishing our findings. We hope to
show that annotators without extensive linguistic training
(e.g., Turkers) can quickly, cheaply, and accurately con-
struct dependency trees and that integrated machine learn-
ing greatly benefits the overall process.
Furthermore, we intend to expand the system’s machine
learning capabilities by adding support for one or more ac-
tive learning schemes. One obvious option would be to host
multiple parsing models on the server and to select sen-
tences for annotation based upon the level of disagreement
between the parsers. We are considering the possibility of
training one (or perhaps more) models per annotator dur-
ing the annotation process, although implementing this in
such a way as to avoid overtaxing available memory and
computational resources may be a challenge.
A number of other extensions could be made to improve the
tool’s versatility in order to support a greater range of tree-
banking projects. We envision supporting empty nodes in
order to handle traces and other phenomena, and we would
like to support multiple syntactic word nodes for a given
surface token, which would be valuable functionality for
languages that make frequent use of clitics, such as Ara-
bic. Finally, we hope to eventually expand the capabilities
of CROWDTREE to support use cases beyond dependency
parsing, such as part-of-speech tagging, semantic role la-
beling, or even language learning.

Acknowledgements
We wish to thank the anonymous reviewers for their
comments and the Army Educational Outreach Program
(AEOP) for the College Qualified Leaders (CQL) under-
graduate internship program.

References
Böhmová, A., Hajič, J., Hajičová, E., and Hladká, B.

(2003). The Prague Dependency Treebank. In Anne
Abeillé, editor, Treebanks: Building and Using Parsed
Corpora, pages 103–127. Springer Netherlands.

de Castilho, R. E., Mujdricza-Maydt, E., Yimam, S. M.,
Hartmann, S., Gurevych, I., Frank, A., and Biemann, C.

6https://github.com/usarmyresearchlab/

2192

(2016). A Web-Based Tool for the Integrated Annotation
of Semantic and Syntactic Structures. In Proceedings of
the Workshop on Language Technology Resources and
Tools for Digital Humanities (LT4DH), pages 76–84.

Fort, K., Guillaume, B., and Chastant, H. (2014). Cre-
ating Zombilingo, a Game With A Purpose for depen-
dency syntax annotation. In Proceedings of the First In-
ternational Workshop on Gamification for Information
Retrieval, pages 2–6.

Fort, K., Guillaume, B., and Lefebvre, N. (2017). Who
wants to play Zombie? A survey of the players on
ZOMBILINGO. In Proceedings of Games4NLP: Using
Games and Gamification for Natural Language Process-
ing.

Gerdes, K. (2013). Collaborative dependency annotation.
In Proceedings of the Second International Conference
on Dependency Linguistics (DepLing 2013), pages 88–
97.

Goldberg, Y. and Elhadad, M. (2010). An Efficient Algo-
rithm for Easy-First Non-Directional Dependency Pars-
ing. In Human Language Technologies: The 11th An-
nual Conference of the North American Chapter of the
Association for Computational Linguistics (HLT-NAACL
2010).

Guillaume, B., Fort, K., and Lefebvre, N. (2016). Crowd-
sourcing Complex Language Resources: Playing to An-
notate Dependency Syntax. In Proceedings of the 26th
International Conference on Computational Linguistics
(COLING), pages 3041–3052.

Hajič, J., Smrz, O., Zemánek, P., Šnaidauf, J., and Beška, E.
(2004). Prague Arabic Dependency Treebank: Develop-
ment in Data and Tools. In Proceedings of the NEMLAR
International Conference on Arabic Language Resources
and Tools, pages 110–117.

He, L., Michael, J., Lewis, M., and Zettlemoyer, L. (2016).
Human-in-the-Loop Parsing. In Proceedings of the 2016
Conference on Empirical Methods in Natural Language
Processing (EMNLP 2016), pages 2337–2342.

Laws, F., Scheible, C., and Schütze, H. (2011). Active
Learning with Amazon Mechanical Turk. In Proceed-
ings of the 2011 Conference on Empirical Methods in
Natural Language Processing (EMNLP 2011), pages
1546–1556.

Little, A. and Tratz, S. (2016). EasyTree: A Graphical Tool
for Dependency Tree Annotation. In Proceedings of the
Tenth International Conference on Language Resources
and Evaluation (LREC 2016).

Marcus, M. P., Marcinkiewicz, M. A., and Santorini, B.
(1993). Building a Large Annotated Corpus of En-
glish: The Penn Treebank. Computational Linguistics,
19(2):330.

McDonald, R. and Nivre, J. (2007). Characterizing the
Errors of Data-Driven Dependency Parsing Models. In
Proceedings of the 2007 Joint Conference on Empiri-
cal Methods in Natural Language Processing and Com-
putational Natural Language Learning (EMNLP-CoNLL
2007), pages 122–131.

Nivre, J. (2009). Non-projective dependency parsing in
expected linear time. In Proceedings of the Joint Con-

ference of the 47th Annual Meeting of the ACL and the
4th International Joint Conference on Natural Language
Processing of the AFNLP (ACL-IJCNLP 2009), pages
351–359.

Pajas, P. and Štěpánek, J. (2008). Recent Advances in a
Feature-Rich Framework for Treebank Annotation. In
Proceedings of the 22nd International Conference on
Computational Linguistics (COLING 2008), pages 673–
680.

Stenetorp, P., Pyysalo, S., Topić, G., Ohta, T., Ananiadou,
S., and Tsujii, J. (2012). brat: a Web-based Tool for
NLP-Assisted Text Annotation. In Proceedings of the
Demonstrations at the 13th Conference of the European
Chapter of the Association for Computational Linguis-
tics (EACL 2012).

Tratz, S. and Hovy, E. (2011). A Fast, Accurate, Non-
Projective, Semantically-Enriched Parser. In Proceed-
ings of the 2011 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1257–
1268.

Tyers, F. M., Sheyanova, M., and Washington, J. (2018).
UD Annotatrix: An Annotation Tool for Universal
Dependencies. In Proceedings of the 16th Interna-
tional Workshop on Treebanks and Linguistic Theories
(TLT16), pages 10–17.

Von Ahn, L. (2006). Games with a Purpose. Computer,
39(6):92–94.

Yimam, S. M., Gurevych, I., Eckart de Castilho, R., and
Biemann, C. (2013). WebAnno: A Flexible, Web-based
and Visually Supported System for Distributed Annota-
tions. In Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (ACL 2013):
System Demonstrations, pages 1–6.

Yimam, S. M., Biemann, C., de Castilho, R. E., and
Gurevych, I. (2014). Automatic Annotation Suggestions
and Custom Annotation Layers in WebAnno. In Pro-
ceedings of 52nd Annual Meeting of the Association for
Computational Linguistics (ACL 2014): System Demon-
strations, pages 91–96.

2193

