
EuroGames16: Evaluating Change Detection in Online Conversation

Cyril Goutte, Yunli Wang, Fangming Liao,† Zachary Zanussi,‡ Samuel Larkin, Yuri Grinberg
National Research Council Canada

1200 Montreal Rd, Ottawa ON, Canada
{Cyril.Goutte, Yunli.Wang, Samuel.Larkin, Yuri.Grinberg}@nrc.ca, will.liao@mail.utoronto.ca, zzanussi@shaw.ca

Abstract
We introduce the challenging task of detecting changes from an online conversation. Our goal is to detect significant changes in, for
example, sentiment or topic in a stream of messages that are part of an ongoing conversation. Our approach relies on first applying
linguistic preprocessing or collecting simple statistics on the messages in the conversation in order to build a time series. Change point
detection algorithms are then applied to identify the location of significant changes in the distribution of the underlying time series. We
present a collection of sport events on which we can evaluate the performance of our change detection method. Our experiments, using
several change point detection algorithms and several types of time series, show that it is possible to detect salient changes in an on-line
conversation with relatively high accuracy.

Keywords: social media, change detection, online conversation

1. Overview
Social media, microblogs and news sources produce mas-
sive streams of textual data. Real world events and changes
have an impact on these streams. For example, a signifi-
cant action in a sport event will result in a flurry of positive
or negative posts on twitter. Monitoring message streams
to detect these changes requires automatic methods relying
on a mixture of natural language processing and statistical
modeling.
Social media analysis typically operates from two types
of data: raw stream data and filtered stream data. Event
detection detects either emerging events or specific events
from raw stream data. In particular, the large amount of
work done on Topic Detection and Tracking (TDT) at-
tempts to detect emerging events. As a recent example,
Laban and Hearst (2017) collected 4 million news arti-
cles, generated topics from the news, merged them into sto-
ries, and visualized the stories along a timeline. For spe-
cific event detection, Atkinson et al. (2017) created a cor-
pus of security-related events extracted from news data by
learning lexico-semantic patterns, and classified events into
security-related categories.
Filtered stream data is usually generated by filtering so-
cial media using keywords related to public security, nat-
ural disaster etc. The TREC 2014 temporal summarization
track focused on monitoring events by detecting sub-events,
extracting relevant sentences and summarizing them, from
a sequence of stream data (Aslam et al., 2014). Zhao et
al. (2014) retrieved relevant documents, calculated the text
similarity of sentences within the time period, and used k-
means to cluster relevant sentences, using the cluster cen-
ters and the top sentences as summarization.
In our work, we do not address topic detection and track-
ing per se, but target the detection of significant changes,
typically within an existing topic or event. We do not sum-
marize changes like in the TREC 2014 temporal summa-
rization task, but summarization can be used as a post-

†from University of Toronto, ON, Canada
‡from Carleton University, ON, Canada

processing step. Earlier work used change point detection
techniques to detect significant changes from sensor sig-
nals (Guralnik and Srivastava, 1999; James et al., 2014),
but these do not use the textual content of message streams.
Some recent studies focus on detecting changes within a
storyline. For example, Bruggermann et al. (2016) used
the dynamic topic model (Blei and Lafferty, 2006) to iden-
tify topics from news and the changes in the word distribu-
tions from the topic model were used to represent changes
within the storyline. Also, Wang and Goutte (2017) de-
tected changes within events from the temporal profile of
hashtags in tweets and evaluated the resulting performance
on two twitter datasets.

Our approach relates to some of this prior work, with clear
distinctions. First, we target the detection of significant
changes within an existing event or storyline, rather than
detect and track events as in the TDT setup. Second, we fo-
cus on detecting the locations of significant changes from
the message stream, rather than extract descriptive phrases
from the text. Also, instead of detecting changes from
external signals obtained from sensors or signals such as
stock ticks, we use linguistically motivated signals obtained
through text analysis pre-processing.

To establish a benchmark on detecting changes in online
conversation, we collected a dataset of 16 sport events, with
reference change points for each event. For the purpose of
this paper, we will refer to a stream of messages related to
a specific topic (e.g. a game, or a current event) as an on-
line conversation. Our purpose is to detect, from that online
conversation, the location of significant changes within the
event. We do this by analyzing the content of the messages
in order to produce one or several time series describing,
for example, the sentiment or the topic of the conversation.
We then use change point detection algorithms on these
time series in order to detect locations where the underly-
ing stochastic process changes. This typically is a change
in mean, but also e.g. in variance or other distributional
property. We apply this approach and benchmark it on the
acquired collection of sport games conversations. In partic-

1755

Game Hashtag # Eng. # Total
Croatia-Spain CROESP 52,953 115,328
England-Iceland ENGISL 191,384 209,851
France-Albania FRAALB 61,748 433,954
France-Ireland FRAIRL 172,872 665,476
France-Iceland FRAISL 158,457 720,771
Germany-France GERFRA 273,074 496,498
Germany-Italy GERITA 426,381 709,453
Germany-Poland GERPOL 82,132 232,200
Poland-Portugal POLPOR 128,079 663,612
Portugal-Austria PORAUT 72,644 170,526
Portugal-France FRAPOR 229,000 1,000,000
Portugal-Wales PORWAL 287,417 461,343
Russia-Wales RUSWAL 110,165 141,994
Switzerland-France SUIFRA 36,507 468,043
Wales-Belgium WALBEL 288,312 378,852
Wales-N. Ireland WALNIR 95,679 114,723
Total - 2.69M 7.04M

Table 1: Basic statistics on collection content.

ular, we test several change point detection algorithm and
uncover their strengths and weaknesses.
In Section 2. we describe the collection that we acquired in
order to benchmark change point detection algorithms. In
Sections 3. and 4., we describe the linguistic preprocessing
and change point detection algorithms, respectively. We
then present experimental results, testing and validating this
approach, in Section 5.

2. Collection
Our dataset contains messages related to 16 games from
the 2016 UEFA European Championship1, a continental
football (soccer) competition held from 10 June to 10 July
2016. Dedicated hashtags comprised of three letter codes
for each country were used to harvest messages from the
twitter API, e.g. #FRAPOR or #PORFRA for the France-
Portugal final game. Messages were also filtered by lan-
guage, including English for all games. In the following,
we only consider English messages, for which the relevant
sentiment analysis tool is available. Statistics on the num-
ber of messages are given in Table 1. The number of mes-
sages per game is between 100k and one million, for a total
of 7M messages. Most of the messages are posted over a
period of about two hours, starting shortly before the game
and ending shortly after.
In order to obtain a gold standard of reference events, we
obtained game reports from sport websites, from which
we semi-automatically extracted the main game events
such as start/end of each period, goals, on-target attempts,
substitutions, etc. The collection we release contains
the multivariate sentiment time series, produced as de-
scribed below, together with the reference labels for each
of the 16 games. The processed dataset is available from:
https://github.com/cyrilgoutte/EuroGames16

1https://en.wikipedia.org/wiki/UEFA_Euro_
2016

3. Linguistic Preprocessing
The first stage in our approach is to turn the stream of mes-
sages into one or several time series. This can be done
by using existing linguistic preprocessing methods such as
sentiment analysis or topic models. As a running exam-
ple below as well as in our experiments we use sentiment
analysis for that purpose. Application to other linguistic
preprocessing methods is similar.
We formalize a stream of N messages as a set C =
{(ti, ci) , i = 1 . . . N}, where ti is the time associated with
message i, and ci is its textual content. We assume that
the linguistic preprocessing produces, for each content c, a
set of scores describing the target linguistic properties. For
example, we use the NRC sentiment analyzer (Kiritchenko
et al., 2014) to produce, for each textual content c, a set
of three scores estimating the positive, negative and neutral
polarity of the message: c →

(
s+, s−, s0

)
. Processing the

entire collection C results in a large table containing time
and scores for each message, S =

[
ti, s

+
i , s
−
i , s

0
i

]
i=1...N

.
The posting times for messages are not uniformly dis-
tributed. In order to produce three times series for the pos-
itive, negative and neutral scores, we first bin the messages
in time intervals of equal sizes, then average the scores
within each bin. For simplicity and without loss of gen-
eralization, let us assume that posting times range from 0 to
T , i.e. 0 ≤ ti ≤ T, ∀i = 1 . . . N . Dividing the range from
0 to T into dT/∆e bins, each of width ∆, we build time
series by averaging scores within each bin:2

s+(t) =
1

|Bt|
∑
i∈Bt

s+i , Bt = {i, (t− 1)∆ ≤ ti < t∆} ,

(1)
and similarly for s−(t) and s0(t) for the negative and neu-
tral scores. We therefore obtain three time series of sen-
timent scores, or alternatively a multivariate, three dimen-
sional time series, on which we run the change point detec-
tion algorithms. We later compare it with detection from
raw message counts. This corresponds to a trivial pre-
processing where each message is associated with a single
score of 1 (performing binning and averaging as before),
resulting in the time series n(t) = |Bt|. Keyword profiles
(Sec. 5.4.) are obtained similarly by recording the number
of keywords in each bin.

4. Change Point Detection
In time series analysis, a change point is a location where
the underlying stochastic process changes. Although it may
seem superficially related, this is a different problem than
anomaly detection, where the purpose is to identify obser-
vations that do not conform to an expected pattern or dis-
tribution in the data. In change point detection, we assume
that data before the change point conforms to one distribu-
tion, while data after the change point comes from a second,
different distribution. In our case, we are interested in iden-
tifying where the change has occurred, as soon as possible
after it occurs.
Many algorithms have been proposed to detect change
points. Most work on univariate time series, and use the

2When no message falls within a bin, it yields a missing value.

1756

https://en.wikipedia.org/wiki/UEFA_Euro_2016
https://en.wikipedia.org/wiki/UEFA_Euro_2016

Figure 1: Top: Sentiment time series for the Wales v.s Bel-
gium game in green/blue/red (positive/neutral/negative);
Bottom: Posterior probability of change from bcp. At
20:42, Wales scores their third goal; at 20:50, Belgium is
awarded three consecutive corner kicks, then injury time
starts.

entire time series to detect change points. We will focus on
techniques that can be used with multivariate time series:

bcp

The Bayesian change point detection of Barry and Harti-
gan (1993) assumes that each block between two change
points arises from a (multivariate) normal distribution. It
outputs the posterior probability that a change occurred at
each point in the time series. Figure 1 illustrates this on
a short extract from the sentiment time series for one of
the games in the collection. We use the implementation
from the R package bcp (Erdman and Emerson, 2007).
The bcp algorithm runs fast: it is linear in the length of
the time series, and handles multivariate time series. The
biggest limitations are that it is designed to detect changes
in the mean of independent Gaussian observations, and that
it works off-line, once the entire time series is available.

ecp

The nonparametric, hierarchical divisive algorithm of
James and Matteson (2015) uses recursive bisections, iden-
tifying change points using a non-parametric divergence
measure from Székely and Rizzo (2005). As the divergence
measure is non-parametric, this makes ecp suitable to de-
tect changes with minimal assumptions on the underlying
distributions. The divisive approach by recursive bisections
returns a number of consecutive segments between change
points, without knowing the number of change points a pri-
ori. In addition, the implementation from the R package
ecp handles multivariate time series, as illustrated in Fig-
ure 2 on the same data as Fig. 1. One remaining limitation
is that it works only in off-line mode, once the entire time
series are available.

Figure 2: Top: Sentiment time series for the Wales v.s Bel-
gium game in green/blue/red (positive/neutral/negative);
Bottom: Segments output by ecp. At 20:42, Wales scores
their third goal; at 20:50, Belgium is awarded three consec-
utive corner kicks, then injury time starts.

ocpd

The Bayesian online change point detection algorithm of
Adams and MacKay (2007) is designed to update the de-
tection of change points sequentially as new data points
are acquired, rather than wait until the entire times series
are available. It relies on two components: a probabilis-
tic model P (rt|s(1 . . . t)) of the length of a run during
which the underlying distribution is stable, given obser-
vations until time t; and an underlying predictive model
(UPM) P (s(t + 1)|s(1 . . . t), rt) governing the stochastic
generation of new data in each run. Our basic implementa-
tion, available in the R package onlineCPD, uses a multi-
variate Gaussian UPM. Figure 3 shows the results obtained
from ocpd on the same sentiment time series as before.

ocpd+

We extend the basic ocpd algorithm beyond the simple
Gaussian assumption by using a more flexible UPM. We
model the linear trends within each run, using a multivariate
linear regression with additive Gaussian noise. This allows
modeling drifts in the time series without forcing multiple
change points. Our implementation in R will shortly be in-
cluded in the onlineCPD package.

4.1. Online vs. offline
Despite different modeling inspirations and assumptions,
the key differentiating feature of ocpd/ocpd+ is that they
work in online mode, updating the model and the detection
at each step. When analyzing short events such as sports
event in our collection, the difference may seem contrived.
However, many real-life monitoring situations span days or
months. This is the case when tracking changes in the days
after a terror attack (Wang and Goutte, 2017) or in pub-
lic health when following events related to epidemics over
months or years. In those cases, it is clearly impractical to
wait until all data acquisition is finished before running the

1757

Figure 3: Top: Sentiment time series for the Wales v.s Bel-
gium game in green/blue/red (positive/neutral/negative);
Bottom: Maximum run length probability from ocpd. At
20:42, Wales scores their third goal; at 20:50, Belgium is
awarded three consecutive corner kicks, then injury time
starts.

change detection algorithm. Section 5.5. discusses this in
more details.

4.2. Finding the number of change points
Both bcp and ecp can be used for univariate and multi-
variate time series without a priori knowledge of the num-
ber of change points. The posterior probability of change
output by bcp may be thresholded to tune the output of the
method, and in ecp, similarly, a threshold may be applied
to the p-value estimating the significance of a divergence
in distributions. However, in our experience, both meth-
ods work much better when a target number of changes is
provided. We investigate the impact of this in our experi-
mental section (Section 5.6.). On the other hand, ocpd and
ocpd+ provide a posterior distribution on the run length,
from which it is possible to automatically detect the num-
ber of change points. Light post-processing may be used to
avoid multiple detections around the same change.

5. Results
Each of the games listed above (Section 2.) was pre-
processed (as described in Section 3.) in order to produce
multivariate time series estimating the positive, negative
and neutral sentiment3 during each game. We use a bin
size of ∆ = 15s for these experiments, which yields good
performance. We first look at the results from a particular
game (Sec. 5.1.) before presenting our systematic evalua-
tion in Sections 5.2. to 5.7..

5.1. Example
We use the Wales vs. Belgium game that took place on July
1st, 2016 to illustrate what the data and the output of the
change point detection algorithm look like. Figure 4 shows
the timeline from a few minutes before the game starts to

3Time series are not independent: sentiment scores sum to one.

minutes after it stopped. The shaded area in the background
represents the volume of tweets, and shows high variability.
Most spikes are associated to significant events in the game
(light green, labeled lines), but this is not always the case
(e.g. first and third yellow cards). Changes in the positive
and negative scores (blue and red curves, smoothed) during
the game also tend to match peaks in the tweet volumes, but
are quite variable everywhere.
The detections produced by ocpd+ (blue ticks) and ecp
(bottom red ticks) show very different behaviours. ocpd+
yields high precision: the detections are usually close to
reference events; but it also misses several. On the other
hand, ecp detects too many changes. As a consequence it
yields high recall, but lower precision. Note that there is
a qualitative difference between changes. Those related to
predictable events such as half time or end of game tend to
be detected early, while unpredictable game plays such as
goals or yellow cards tend to be detected with a slight de-
lay. This makes sense, as people may start tweeting about
predictable events in anticipation, before they actually oc-
cur, while unpredictable events, by definition, can not be
anticipated. More analysis would be required to check, e.g.
whether false positives correspond to notable game plays
that may not be recorded in our gold standard.

5.2. Off-line CPD
A systematic evaluation was carried out using precision, re-
call and F-score (Goutte and Gaussier, 2005) to evaluate the
performance of change point detection algorithms on the 16
games. A detected change point was considered as a true
positive if it falls into the time window 180 seconds on ei-
ther sides of a reference change point. This allows to take
into account that tweets need to be written and posted, as
well as slight inaccuracies in the real timing of the refer-
ence game plays.
In these experiments, we run all algorithms off-line, on the
entire dataset, which is the standard mode of operation for
bcp and ecp. The ocpd and ocpd+ algorithm are run
one data point at a time, as designed, simulating an on-line
operation over the entire dataset.
Table 2 shows the performance on all games for all change
point detection algorithms applied to the sentiment time se-
ries. We see that bcp performs poorly overall. This may
be due to the strong underlying Gaussian assumption, and
the fact that it is very sensitive to non normally distributed
noise, a problem we confirmed using simulated data (not
reported here). The ecp algorithm performs well, obtain-
ing the best F-score for 7 out of 16 games, often by a small
margin (e.g. ENGISL, WALBEL, WALNIR). The ocpd
algorithm behaves sometimes quite poorly, maybe due to
the Gaussian assumption again, but it is typically close to
(and sometimes better than) ecp. Finally, the more flexible
assumptions underlying the ocpd+ algorithm allows it to
get the best results for 7 games and overall (Tables 3, 4).

5.3. Detection from Message Counts
We have run the change point detection algorithms on the
three sentiment signals (positive/negative/neutral), taking
advantage of the fact that they handle multivariate data.
However, it is simple to run them on the univariate tweet

1758

Figure 4: Timeline for the Wales v.s Belgium game. Tweet volume is in grey shade, and +/- sentiment time series in
blue/red; reference events in light green, detected events in blue (ocpd+) and red (ecp).

Table 2: The F-scores of four algorithms on sentiment of
Euro games in 15 seconds time interval

Game bcp ecp ocpd ocpd+
CROESP 0.267 0.643 0.444 0.500
ENGISL 0.085 0.429 0.333 0.414
FRAALB 0.390 0.480 0.111 0.583
FRAIRL 0.290 0.240 0.250 0.400
FRAISL 0.225 0.370 0.538 0.400
GERFRA 0.186 0.462 0.231 0.467
GERITA 0.217 0.571 0.300 0.516
GERPOL 0.211 0.462 0.400 0.552
POLPOR 0.212 0.500 0.174 0.370
PORAUT 0.069 0.267 0.160 0.400
FRAPOR 0.143 0.182 0.154 0.303
PORWAL 0.367 0.563 0.435 0.389
RUSWAL 0.266 0.417 0.571 0.444
SUIFRA 0.333 0.435 0.167 0.500
WALBEL 0.419 0.703 0.370 0.684
WALNIR 0.086 0.190 0.111 0.174
Average .2354 .4315 .3047 .4428

frequency signal n(t). On datasets such as sports games
where tweet volume is correlated with significant changes,
this works surprisingly well, cf. first row of Table 3.
Pairwise comparisons (Table 4) also shows that ecp and
ocpd+ are overwhelmingly more effective than the other
two algorithms. As algorithms handle multivariate signal,
we can also add counts as a fourth time series, in addi-
tion to the sentiment scores. In that case (last row, Table
3), performance jumps above what we obtained on counts
and sentiments separately, and reaches 50.6% F-score using
ocpd+.

Table 3: Performance on raw counts (top), sentiment (mid-
dle, with/without providing the target number of change
points) and combined (bottom).

Input bcp ecp ocpd ocpd+
Count .3434 .4645 .4250 .4725
Sentiment .2354 .4315 .3047 .4428
+ # references .3918 .4860 .3047 .4380
Count+Sentiment .4251 .4645 .4010 .5062

Table 4: Pairwise comparisons of four algorithms on counts
and sentiment scores, with/without providing the target
number of change points. Cells report how many games
the row method wins/ties/loses vs. the column method.

Counts ecp ocpd ocpd+
bcp 2/0/14 5/0/11 2/0/14
ecp - 11/1/4 7/1/8
ocpd - - 4/1/11
Sentiment ecp ocpd ocpd+
bcp 1/0/15 5/1/11 0/0/16
ecp - 12/0/4 7/1/8
ocpd - - 3/0/13
+ references ecp ocpd ocpd+
bcp 0/0/16 4/0/16 0/0/16
ecp - 14/0/2 10/0/6
ocpd - - 3/0/13

5.4. Detection from Keyword Usage
Another simple comparison is with the detection of change
points from temporal profiles of keywords such as ”goals”,
”begin”, ”end”, etc. and hope that changes in the usage of
these words can be captured by change point detection al-
gorithm. There are two serious issues with this approach,
however. One is obviously that it requires specific do-
main knowledge to pick the appropriate keywords: obvi-

1759

Table 5: Performance of change point detection algorithms
on temporal profiles of specific keyword usage.

Time Interval bcp ecp ocpd ocpd+
5 mins 0.3748 0.2413 0.1692 0.1773
1 min 0.1495 0.2046 0.1107 0.112

Table 6: Performance of change point detection algorithms
in on-line mode, with different time intervals for binning.

Time Interval bcp ecp ocpd ocpd+
60 seconds 0.4799 0.3274 0.2012 0.3826
30 seconds 0.4693 0.4260 0.2996 0.4810
15 seconds 0.4391 0.4313 0.3625 0.4624

ously “goal” of “red card” would not be very useful key-
words when tracking health- or security-related document
streams. Another is that even domain-related keywords will
be sparse in the collection. This may require to use larger
bin sizes in order to capture any statistics at all on keyword
usage patterns, leading to short temporal profiles and little
information for the CPD algorithms to work with. We will
see below (Sec. 5.5.) that this tends to yield inferior perfor-
mance for most algorithms. Despite these objections, we
benchmarked this baseline on the same 16 games. Table
5 presents the results using 1min and 5min time intervals.
The pattern in the result is similar to what we saw in Table
6: bcp performs better on the larger time interval, ecp per-
forms better on the shorter time interval, while ocpd and
ocpd+ do not perform well on these large intervals and
short time series. Overall, the performance is clearly much
lower than what we obtained with our approach.

5.5. On-line CPD
In practice, it is often more useful to run the change point
detection on-line. As discussed above, it would be inconve-
nient to wait until all data is acquired before the analysis is
run. Since bcp and ecp are off-line change point detection
methods, we simulate on-line operation by running sequen-
tially over a sliding window on the time series: We do a
first run on the first 50 minutes, then offset the window by
25 minutes and run the algorithms again on the data from
minute 25 to minute 75, and so on until the end of the time
series. In principle, this provides change point detections
with at most a 25 minute delay. Although the ocpd and
ocpd+ algorithms are on-line by design, we run them over
the same sliding window in order to have a fair comparison
and evaluate the impact on performance.
Further, we investigate the impact of the time interval used
for binning messages in order to produce the time series.
In addition to the 15 seconds interval used earlier, we ex-
periment with 30 seconds and 60 seconds. Note that this
has a direct impact on the length of the time series: with
a 15s interval, times series have 240 points per hour, ver-
sus 60 with a 60s interval. Experiments were run on the
Count+Sentiment time series, which produced the best per-
formance in Table 3.
Table 6 suggests that the performance of bcp is impacted
favourably by running in a sliding window. Its performance
increases slightly with larger time window. The three other

Figure 5: Average computational time of change point de-
tection algorithms in on-line mode over 16 games, for 60s,
30s and 15s intervals (150, 300 and 600 data points).

algorithm suffer when the large time window is used, pos-
sibly because this reduces the length of the time series and
limits the amount of statistics the underlying model can
work with. On the other hand, bcp does better on larger
time intervals, possibly because averaging scores over more
messages makes the resulting data points more Gaussian
(according to the central limit theorem). The performance
of ecp improves with decreasing time interval. This may
be due to more robust permutation tests when more data is
available. ocpd+ performs best on the 30s and 15s time in-
terval, and the best F -score of 48.1% is obtained at 30s. It
also does better than ocpd (see also Tables 2, 4), which is
consistent with the fact that the underlying predictive model
is more flexible in ocpd+. All algorithm apart from bcp
do somewhat worse with the sliding window than in off-
line mode. This suggest that it is beneficial to run in true
on-line mode, one data point at a time, as ocpd and ocpd+
are designed to do.

5.6. Number of Changepoints
Although changepoint detection algorithms try to guess the
correct number of changes, they usually work better if the
target number of changes is given. We evaluate this effect
by running experiments in which we provide the correct
number of reference changes. Results reported in the 3rd
line of Table 3 should be compared to the average of Table
2 (also second line in Table 3). bcp and ecp clearly benefit
from knowing how many changes to detect, and ecp now
yields the best results, and wins over ocpd+ in the majority
of cases (Table 4). It is understood, however, that this is an
unrealistic scenario: in practice, we do not know the correct
number of changes. In addition, ocpd and ocpd+provide
a key functionality that the other two do not have: they pro-
cess the data online, one point at a time, and can detect
changes as soon as (or soon after) they occur instead of
waiting for the entire collection to be acquired.

5.7. Computational Time
The computational time of online change point detection al-
gorithms is another important factor for real-time CPD. We

1760

use the same sliding windows as before (50 minute win-
dows in steps of 25 minutes) to assess the computational
time of the four CPD algorithms. The average computa-
tion time needed to analyze all 16 games is shown in Fig-
ure 5 for increasing time series lengths corresponding to
decreasing time intervals. This shows that ocpd and bcp
are much faster than ocpd+ and ecp. This reflects the
computational cost of running permutation tests repeatedly
in ecp, although computational effort can be adjusted by
lowering the number of permutations. For ocpd+, this re-
flects that the added flexibility in the linear model fitting the
trend comes with the increase in computational cost. Note
that despite theoretical upper bounds suggesting quadratic
runtime for some of these algorithm, actual runtime seems
to increase linearly.

6. Conclusion
We introduced a framework for detecting significant
changes from on-line streams of messages. It relies on lin-
guistic preprocessing producing semantically or linguisti-
cally relevant times series, which we run through a multi-
variate change point detection algorithm. The EuroGame16
collection was used to benchmark this approach, showing
that we can detect around half the significant game plays
in sports events, from the content of the twitter messages
alone. The collection is made available to allow researchers
to try other approaches to improve on our results. In addi-
tion, we contribute two variants of change point detection,
ocpd and ocpd+. They show competitive performance
with the state of the art ecp package. In addition, they
can be used in a fully on-line mode, which allows the de-
tection of changes soon after they occur instead of waiting
until the entire time series can be processed. This is a key
feature when monitoring social media streams in real time.

7. Bibliographical References
Adams, R. P. and MacKay, D. J. (2007). Bayesian online

changepoint detection. arXiv:0710.3742.
Aslam, J. A., Ekstrand-Abueg, M., Pavlu, V., Diaz, F., Mc-

Creadie, R., and Sakai, T. (2014). TREC 2014 tempo-
ral summarization track overview. In Voorhees and Ellis
(Voorhees and Ellis, 2014).

Atkinson, M., Piskorski, J., Tanev, H., and Zavarella, V.
(2017). On the creation of a security-related event cor-
pus. In Proceedings of the Events and Stories in the
News Workshop, pages 59–65. Association for Compu-
tational Linguistics.

Barry, D. and Hartigan, J. (1993). A bayesian analysis for
change point problems. Journal of the American Statis-
tical Association, 35(3):309–319.

Blei, D. M. and Lafferty, J. D. (2006). Dynamic topic mod-
els. In Proceedings of the 23rd International Conference
on Machine Learning, ICML ’06, pages 113–120, New
York, NY, USA. ACM.

Bruggermann, D., Hermey, Y., Orth, C., Schneider, D.,
Selzer, S., and Spanakis, G. (2016). Storyline detection
and tracking using dynamic latent dirichlet allocation. In
Proceedings of 2nd Workshop on Computing News Sto-
rylines, pages 9–19. Association for Computational Lin-
guistics.

Erdman, C. and Emerson, J. (2007). bcp: An R package
for performing a bayesian analysis of change point prob-
lems. Journal of Statistical Software, 23(1):1–13.

Goutte, C. and Gaussier, E. (2005). A probabilistic inter-
pretation of precision, recall and f-score, with implica-
tion for evaluation. In D.E. Losada et al., editors, Ad-
vances in Information Retrieval - 27th European Confer-
ence on IR Research, pages 345–359.

Guralnik, V. and Srivastava, J. (1999). Event detection
from time series data. In Proceedings of the Fifth ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, KDD ’99, pages 33–42, New
York, NY, USA. ACM.

James, N. A. and Matteson, D. (2015). ecp: An R package
for nonparametric multiple change point analysis of mul-
tivariate data. Journal of Statistical Software, 62(1):1–
25.

James, N. A., Kejariwal, A., and Matteson, D. S. (2014).
Leveraging cloud data to mitigate user experience from
”breaking bad”. eprint arXiv:1411.7955.

Kiritchenko, S., Zhu, X., and Mohammad, S. M. (2014).
Sentiment analysis of short informal texts. Journal of
Artificial Intelligence Research, 50:723–762.

Laban, P. and Hearst, M. (2017). newslens: building and
visualizing long-ranging news stories. In Proceedings of
the Events and Stories in the News Workshop, pages 1–9.
Association for Computational Linguistics.

Székely, G. J. and Rizzo, M. L. (2005). Hierarchical
clustering via joint between-within distances: Extending
ward’s minimum variance method. Journal of Classifi-
cation, 22(2):151–183.

Ellen M. Voorhees et al., editors. (2014). Proceedings
of The Twenty-Third Text REtrieval Conference, TREC
2014, Gaithersburg, Maryland, USA, November 19-21,
2014, volume Special Publication 500-308. National In-
stitute of Standards and Technology (NIST).

Wang, Y. and Goutte, C. (2017). Detecting changes in twit-
ter streams using temporal clusters of hashtags. In Pro-
ceedings of the Events and Stories in the News Workshop,
pages 10–14. Association for Computational Linguistics.

Zhao, Y., Yao, F., Sun, H., and Yang, Z. (2014). BJUT at
TREC 2014 temporal summarization track. In Voorhees
and Ellis (Voorhees and Ellis, 2014).

1761

	Overview
	Collection
	Linguistic Preprocessing
	Change Point Detection
	Online vs. offline
	Finding the number of change points

	Results
	Example
	Off-line CPD
	Detection from Message Counts
	Detection from Keyword Usage
	On-line CPD
	Number of Changepoints
	Computational Time

	Conclusion
	Bibliographical References

