
PALMYRA: A Platform Independent Dependency Annotation Tool
for Morphologically Rich Languages

Talha Javed, Nizar Habash, Dima Taji
Computational Approaches to Modeling Language Lab

New York University Abu Dhabi
{talha.javed, nizar.habash, dima.taji}@nyu.edu

Abstract
We present PALMYRA, a platform independent graphical dependency tree visualization and editing software. PALMYRA has been
specifically designed to support the complexities of syntactic annotation of morphologically rich languages, especially regarding easy
change of morphological tokenization through edits, additions, deletions, splits and merges of words. PALMYRA uses an intuitive drag-
and-drop interface for editing tree structures, and provides pop-up boxes and keyboard shortcuts for part-of-speech and link label tagging.

Keywords: Annotation, Interfaces, Syntax, Morphologically Rich Languages

1. Introduction
Producing high-quality natural language syntactic annota-
tion is expensive. Well-known large-scale syntactic anno-
tation projects, such as the Penn Treebank (Marcus et al.,
1993) and the Prague Dependency Treebank (Böhmová et
al., 2003), relied on expert linguists to produce carefully an-
notated data. This process is rather costly, and as a result,
such annotation projects have been undertaken for only a
handful of important languages.

Efficient annotation tools play an important role in low-
ering treebank development costs and enabling the creation
of larger, higher quality treebanks. The typical approach
is to automatically create syntactic annotations, which are
then manually corrected. In this scenario, a goal of the an-
notation tool is to lower the annotation burden on the an-
notators as much as possible. For morphologically rich
languages (MRLs), such as Arabic and Hebrew, syntactic
annotation includes morphological ambiguity resolution as
well as tokenization adjustment. The change of tokeniza-
tion affects the total token count of a sentence and requires
adding or deleting tree tokens. For example, the word
AëYg. ð wjdhA1 may be automatically analyzed as Aë+Yg. ð

wjd/VERB+hA/PRON ‘he found her’, but needs to be cor-
rected to Aë+Yg. +ð w/CONJ+jd/NOUN+hA/PRON2 ‘and
her grandfather’ (or vice versa). Since an automatic parser
may select an incorrect analysis and tokenization that will
need to be corrected, an interface that facilitates such cor-
rections during syntactic annotation would be most helpful.

PALMYRA is an annotation tool intended to help with the
annotation of MRLs in general. However, we focus on Ara-
bic here as a representative language for the type of chal-
lenges we are interested in addressing. We are primarily in-
terested in dependency treebanking and thus the discussion
of related work will be focused on dependency representa-
tions.

1Arabic transliteration is presented in the Habash-Soudi-
Buckwalter scheme (Habash et al., 2007).

2For more information on Arabic morphology and natural lan-
guage processing, see (Habash, 2010).

2. Design Aims
The following are the design aims for the PALMYRA edi-
tor interface. First, we want the editor to provide an easy
and direct way to modify the form of a word: by chang-
ing it, splitting it, or merging it with other words. Second,
we want the editor to allow easy switching between syntac-
tic annotation and morphological tokenization to allow the
annotators to make these decisions jointly and avoid error
propagation. Third, we want the editor to be platform in-
dependent, and require no installation effort. Fourth, we
want the editor to be language-independent and easily con-
figurable. Finally, we want the editor to be open source so
it can be easily extended for other projects without restric-
tions.

3. Related Work
Much work has been done on improving dependency pars-
ing and thus many tools for annotation have been created.
The most famous and commonly used tool is TrEd. BRAT
and WebAnno are web-based tools for text annotation, de-
signed mainly for collaboration. EasyTree is another light-
weight tool designed to be run in browsers and consists of
only a front-end. These tools have some great features but
also lack key features which do not make them completely
suitable for annotating MRLs. In particular, changing the
tokenization of a word is not easy to do in these systems.
We discuss these tools next to highlight their advantages
and shortcomings.

TrEd (Pajas and Štěpánek, 2008) is a graph visualiza-
tion and manipulation program written in Perl. It has been
used as an annotation tool for several treebank projects, in-
cluding the Prague Dependency Treebank (Böhmová et al.,
2003), Prague Arabic Dependency Treebank (Hajic et al.,
2004) and Columbia Arabic Treebank (CATiB) (Habash
and Roth, 2009). It supports macros to automate frequently
repeated operations and has a substantial number of fea-
tures. It can be unintuitive at times and difficult to learn;
thus, it may not be a good choice for less experienced an-
notators. A notable limitation of TrEd is that it is a stan-
dalone application and thus cannot be run through a web-
browser. PALMYRA is designed to run in web browsers,

2185



making it simple to use and appropriate for web-based an-
notation tasks. TrEd does not provide any simple option for
word tokenization.

BRAT (Stenetorp et al., 2012) is a web-based annotation
tool with a focus on collaborative annotation. BRAT is
designed in particular for structured annotation, where the
notes are not freeform text but have a fixed form that can
be automatically processed and interpreted by a computer.
The way BRAT displays text, on a single line, makes fol-
lowing the dependency arcs somewhat difficult, and thus,
this tool is probably more appropriate for other tasks, such
as marking events and named entities. Furthermore, BRAT
is slow when processing documents of more than 100 sen-
tences and has limited support for different file formats. It
also does not allow for web-based configuration of tag sets.

WebAnno (Yimam et al., 2013) is also another general-
purpose web-based annotation tool mainly meant for dis-
tributed teams. To visualize the text and annotations, it uses
the JavaScript based annotation visualization from BRAT,
thus facing the same display issues. WebAnno supports
type specification through the import/export of tag sets.
Similar to TrEd, WebAnno and BRAT have no support for
word tokenization.

EasyTree (Little and Tratz, 2016) is a light-weight tool
designed for annotating dependency trees in browsers. It is
limited to a front-end only and does not provide any in-
terface to integrate parsers for pre-annotation. EasyTree
has multiple intuitive features, such as color-coded part-of-
speech (POS) indicators and optional translation displays.
EasyTree allows the customization of POS tags but does
not maintain sentence order of nodes. It has no functional-
ity for splitting or merging of words. PALMYRA’s design is
highly influenced by EasyTree and uses some of its code.

4. PALMYRA Design Specifications
Design and Implementation PALMYRA was written en-
tirely in JavaScript, CSS, and HTML. As such it can run
in modern web browsers and is platform independent and
requires no special installation process.3 For the interac-
tive graphical display, PALMYRA leverages D3, a popular
open source data visualization library written in JavaScript.
PALMYRA utilizes UTF-8 encoding, which enables it to
work with characters from different languages. PALMYRA
is built on top of the base code of EasyTree (Little and
Tratz, 2016) and makes use of its drag-and-drop function-
ality. Figure 2 shows the main Palmyra interface.

Input Files For input, PALMYRA supports a basic de-
pendency file format containing five columns; ID, word,
POS, parent, and relation. PALMYRA input files may con-
tain a number of independent trees, which can be browsed
through. Editing is performed on one tree at a time. Fig-
ure 1 shows the five columns used to represent the depen-
dency tree shown in Figures 2 and 4. The columns, in order,
correspond to (i) a unique word index, (ii) the word, (iii) the
CATiB POS tag (Habash and Roth, 2009), (iv) the word’s
parent, (v) the relation (link) label. The words in this tree

3Try PALMYRA online at https://camel.abudhabi.
nyu.edu/palmyra/.

ID Word POS Parent Relation
1 +ð PRT 3 MOD

2 ÕË PRT 3 MOD

3 Õ
�
æK
 VRB 0 ---

4 ÈA
�
®
�
J«@ NOM 3 SBJ

5 Yg

@ NOM 4 IDF

6 +H. PRT 3 MOD

7 I. �k NOM 6 OBJ

8
�
é£Qå

�
�Ë @ NOM 7 IDF

9 . PNX 3 MOD

Figure 1: The tree for the sentence
�
é£Qå

�
�Ë @ I. �m�'

. Yg

@ ÈA

�
®

�
J«@ Õ

�
æK
 ÕËð wlm ytm AςtqAl ÂHd

bHsb AlšrTh̄ ‘and no one was arrested according to the
police.”

are tokenized according to the Penn Arabic Treebank tok-
enization scheme (Maamouri et al., 2004), but other Arabic
tokenization schemes can be used just the same (Habash,
2010). The format shown is produced by CamelParser
(Shahrour et al., 2016).

PALMYRA also accepts sentences for input when anno-
tating from scratch. Every input line is considered as a sep-
arate tree. It tokenizes a sentence on spaces, and assumes
all nodes are siblings under the root with default POS tag
and link labels.

Output Files PALMYRA has two output formats: the de-
pendency format discussed above, and PNG image.

Configuration File PALMYRA takes as input an optional
configuration file, which specifies the various configuration
and annotation options for the tool. The config files consist
of key-value pairs, each specifying a property of the editor.
The most important use of the config file is to specify the
options for POS tags, link labels, and keyboard shortcuts.

5. Tree Node Editing
Dependency Tree Display Figure 2 presents a screenshot
of a dependency tree in PALMYRA. The words are shown at
the bottom in a straight horizontal line, and the tree nodes
are aligned horizontally directly above the corresponding
words, and vertically according to the structure of the tree.
PALMYRA leverages D3-hierarchy module which includes
layout algorithms for visualizing hierarchical data. The
POS of a word is displayed next to it, and the relation link
is shown half-way on the edge connecting two tree nodes.
The direction of display of the tree can be changed to be
left-to-right or right-to-left.

Drag-and-Drop and Zoom Tree editing in PALMYRA
is straightforward; users simply click on word nodes and
move them around using drag-and-drop. When the user be-
gins dragging a node, red circles appear around the remain-
ing nodes. These ‘drop zones’ indicate where the node may
be re-attached. Figure 2 displays the tree during editing,
when the node �

é£Qå
�
�Ë @ is being dragged. When the dragged

node is eventually dropped onto a drop zone, a link repre-
senting a syntactic dependency is created between the two
nodes with the dropped node as the child. The re-attached

2186

https://camel.abudhabi.nyu.edu/palmyra/
https://camel.abudhabi.nyu.edu/palmyra/


Figure 2: PALMYRA Interface while editing a tree using the drag-and-drop functionality

Figure 3: POS Tag and Link Label Selection

node is inserted such that it and its new siblings remain
sorted according to the original word order of the sentence.
The tool also includes tree zoom-in and zoom-out options.

Keyboard Tree Node Navigation Tree node selection
can be done by directly clicking on the node of interest.
But PALMYRA also allows the user to move from one node
to another using keyboard arrows. Node-highlighting pro-
vides feedback on the selected node and facilitates fast di-
rected movement within the tree: to go up or down a parent
connection or jump to siblings’ subtrees using keyboard ar-
rows.

Part-of-Speech Tag and Link Label Clicking on the
"TAGS" button opens two sub-menus with the available op-
tions for POS tags and link labels (Figure 3). The user must
select a node before being able to change the POS tag or
link label. A node can be selected by either clicking on
the node or navigating to it through keyboard arrow keys.
Once selected, the user can change the POS tag or link la-
bel either through keyboard shortcuts or by clicking on the
displayed buttons in the TAGS sub-menus using a mouse.

Adding and Deleting Trees The user can also add a new
tree to the file using the "+ TREE" button. The tree starts
with only a root, and the user can use the word insertion
functionality (discussed in the next section) to add nodes to
the tree. The "- TREE" button can be used to delete a tree.

6. Sentence Token Editing
The sentence token editing mode is toggled when clicking
the "EDIT" mode button in the upper interface bar. Within
this mode, the annotator can delete, insert, change, split or
merge tree nodes. Figure 4 displays the tree in sentence
token editing mode.

Deletion In the "EDIT" mode, PALMYRA displays a red
"x" sign under nodes, which can be clicked to delete nodes.
If the deleted node has children, they are all promoted to be
the children of the deleted node’s parent.

Insertion Similarly, a green "+" sign is shown between
nodes to provide the ability to add a new node in the re-
spective position. Inserted nodes are linked to the root and
given the word form New/YK
Yg. .

Substitution and Word Splitting Clicking the word in
edit mode causes a word edit pop-up to appear. The word
can be rewritten for a simple substitution. A word can also
be split into multiple words that will then be represented as
different nodes in the tree. This is done by simply adding
spaces in the middle of the word where the splits should
take place.

Merge Words Merging neighboring words can be ac-
complished by clicking on the arrows to the right or left of
a word. The node for whom the merge arrows are clicked
is deleted and its name (word) is added to the name (word)
of the respective neighbor node (on left or right given the
clicked arrow). The original node loses its POS tag and link

2187



Figure 4: PALMYRA Interface in sentence token editing mode

label, and its children are assigned to the node it merged
with. At the end, only one node remains with its word being
the concatenation of the words of the two original nodes.

7. Conclusion and Future Work
In this paper, we described PALMYRA, a platform inde-
pendent graphical dependency tree visualization and edit-
ing software. PALMYRA has been specifically designed to
support the complexities of syntactic annotation of morpho-
logically rich languages, especially regarding easy change
of morphological tokenization. Being built entirely using
standard web technologies, PALMYRA runs on all major
web browsers and is ideal for online annotation efforts,
such as crowdsourcing efforts.

In the future, we will be using PALMYRA heavily as part
of a treebanking annotation project. We plan to continue
enhancing PALMYRA’s capabilities. In particular, we are
interested in linking it to a state-of-the-art Arabic parser
(Shahrour et al., 2016) to support online syntactic analysis.

8. Bibliographical References
Böhmová, A., Hajič, J., Hajičová, E., and Hladká, B.

(2003). The Prague dependency treebank. In Treebanks,
pages 103–127. Springer.

Habash, N. and Roth, R. M. (2009). Catib: The Columbia
Arabic treebank. In Proceedings of the ACL-IJCNLP,
Stroudsburg, PA, USA.

Habash, N., Soudi, A., and Buckwalter, T. (2007). On Ara-
bic Transliteration. In A. van den Bosch et al., editors,
Arabic Computational Morphology: Knowledge-based
and Empirical Methods. Springer.

Habash, N. (2010). Introduction to Arabic Natural Lan-
guage Processing. Morgan & Claypool Publishers.

Hajic, J., Smrz, O., Zemánek, P., Šnaidauf, J., and Beška, E.
(2004). Prague Arabic dependency treebank: Develop-
ment in data and tools. In Proc. of the NEMLAR Intern.

Conf. on Arabic Language Resources and Tools, pages
110–117.

Little, A. and Tratz, S. (2016). Easytree: A graphical tool
for dependency tree annotation. In Proceedings of the
Tenth International Conference on Language Resources
and Evaluation LREC 2016, Portorož, Slovenia, 2016.

Maamouri, M., Bies, A., Buckwalter, T., and Mekki, W.
(2004). The Penn Arabic Treebank: Building a Large-
Scale Annotated Arabic Corpus. In NEMLAR Confer-
ence on Arabic Language Resources and Tools, pages
102–109, Cairo, Egypt.

Marcus, M. P., Marcinkiewicz, M. A., and Santorini, B.
(1993). Building a large annotated corpus of english:
The penn treebank. Comput. Linguist., 19(2):313–330.

Pajas, P. and Štěpánek, J. (2008). Recent advances in a
feature-rich framework for treebank annotation. In Pro-
ceedings of the 22Nd International Conference on Com-
putational Linguistics - Volume 1, COLING ’08, pages
673–680, Stroudsburg, PA, USA. Association for Com-
putational Linguistics.

Shahrour, A., Khalifa, S., Taji, D., and Habash, N. (2016).
Camelparser: A system for Arabic syntactic analysis and
morphological disambiguation. In COLING (Demos),
pages 228–232.

Stenetorp, P., Pyysalo, S., Topić, G., Ohta, T., Ananiadou,
S., and Tsujii, J. (2012). Brat: A web-based tool for nlp-
assisted text annotation. In Proceedings of the Demon-
strations at the 13th Conference of the European Chapter
of the Association for Computational Linguistics, EACL
’12, pages 102–107, Stroudsburg, PA, USA.

Yimam, S. M., Gurevych, I., Eckart de Castilho, R., and
Biemann, C. (2013). Webanno: A flexible, web-based
and visually supported system for distributed annota-
tions. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics: System
Demonstrations, pages 1–6, Sofia, Bulgaria.

2188


	Introduction
	Design Aims
	Related Work
	PALMYRA Design Specifications
	Tree Node Editing
	Sentence Token Editing
	Conclusion and Future Work
	Bibliographical References

