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Abstract
Multimodal representations are distributed vectors that map multiple modes of information to a single mathematical space, where
distances between instances delineate their similarity. In most cases, using a single unimodal representation technique is sufficient for
each mode in the creation of multimodal spaces. In this paper, we investigate how different unimodal representations can be combined,
and argue that the way they are combined can affect the performance, representation accuracy and classification metrics of other
multimodal methods. In the experiments present in this paper, we used a dataset composed of images and text descriptions of products
that have been extracted from an e-commerce site in Brazil. From this dataset, we tested our hypothesis in common classification
problems to evaluate how multimodal representations can differ according to their component unimodal representation methods. For this
domain, we selected eight methods of unimodal representation: LSI, LDA, Word2Vec, GloVe for text; SIFT, SURF, ORB and VGG19
for images. Multimodal representations were built by a multimodal deep autoencoder and a bidirectional deep neural network.
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1. Introduction
In the real world, multiple modes of information are gath-
ered to create knowledge in a way humans can understand.
From structured language, we can express abstract ideas
in a standardized fashion; while visualization can help us
to detect and observe objects and intention. However, in
mathematical terms, each kind of data has different intrin-
sic statistical features that cannot be compared in a trivial
way.
To analyze these features, we use distributed representa-
tion models to map real-world unimodal data to mathe-
matical vectors with reduced dimensionality (Van Gelder,
1992). This idea is based on the distributional hypothe-
sis (which states that “items with similar distributions have
similar meanings”) to discover non-trivial patterns and re-
lationships between data instances (Harris, 1954).
The challenge of melding different data domains into a sin-
gle conceptual space is the goal of multimodal representa-
tions. A multimodal representation model is a function that
maps objects that have multiple representations to a single
vectorial space, combining the semantic implications that
are expressed by distance similarities in unimodal repre-
sentations (Atrey et al., 2010). Using a multimodal model,
we can correlate words in a textual description of an object
to the visual features of an image representing it, learning
its “concept”. For example, a multimodal model could take
as input the image of a sofa and return words that have sim-
ilar meaning such as “chair” and “armchair”, or take one
of these words as input and output a related image. The
hypothesis of a multimodal model is that it can find fea-
tures that are invariant to information modality, intrinsic to
the concept, and can be subsequently used in any machine
learning task (e.g. e-commerce product classification).
In this paper, we explore unimodal and multimodal rep-
resentations and measure their performance in a classifi-
cation task using real-world data. Our hypothesis is that
multimodal representations are directly influenced by the
underlying unimodal representations used in its creation.
Previous works on the area have already used multimodal

techniques to increase accuracy in multimedia classifica-
tion tasks (Ngiam et al., 2011). In our work, we want to ex-
pand these previous works by assessing new combinations
of representations.

2. Related Works
Early multimodal methods focused on representation fu-
sions, either by combining representations before classifi-
cation (feature level fusion) or by combining the results of
classifications performed in single-mode representations in
another analysis (decision level fusion) (Atrey et al., 2010).
Feature level fusion has been used in multimodal pedestrian
tracking using multiple detection algorithms (Yang et al.,
2005) and traffic surveillance with multiple video sources
(Wang et al., 2003). Decision level fusion can be compared
to ensemble learning (Dietterich, 2000), combining differ-
ent algorithms and data sources to create a more accurate
representation.
One of the first multimodal model-based representation ap-
proaches is the one described by Ngiam et al. (2011), ap-
plying Restricted Boltzmann Machines (RBM) (Salakhut-
dinov and Hinton, 2009) and autoencoders (Bourlard and
Kamp, 1988) for video-audio joint representations. The
unimodal representations are first used to pre-train the in-
put layers of the multimodal autoencoder network via RBM
unsupervised training. The initial weights are then used
in the complete autoencoder network trained using single-
modality data and multi-modality data. In that paper, the
grayscale image is cropped in a specific region of interest
(the mouth), rescaled into a 60 × 80 pixel matrix and then
translated to a reduced dimensionality space (32 dimen-
sions) by Principal Component Analysis (PCA) whitening
(Friedman, 1987). The audio was represented by spectro-
gram signals with temporal derivatives, resulting in a 483
dimension vector further reduced (100 dimensions) by PCA
whitening. Using digit images from the MNIST dataset
(LeCun and Cortes, 2010) and noisy variants as a second
mode, multimodal features performed better on an image
classification task when compared to single-mode feature
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representations.

Expanding on the multimodal approach introduced above,
Andrew et al. (2013) use two different autoencoders and
align the projections generated by maximizing the canon-
ical correlation between the features. This model assumes
that the projection of a vectorial space into the other is suffi-
cient to portrait the features shared by two different modali-
ties. This model was not tested in a classification task, only
the correlation of the generated features was taken into ac-
count. The databases used (MNIST and XRMB (Westbury,
1994)) did not undergo any preprocessing or representation
methods. This model creates correlated projections of data
that share information between modalities without needing
both modes to be calculated.

Wang et al. (2016) present an overview of multimodal
techniques, including the ones described by Ngiam et al.
(2011) and Andrew et al. (2013), expand on their objec-
tive functions and propose new architectures fusing these
objective functions. In particular, the Deep Canonical Cor-
related Autoencoder (DCCAE) uses both objectives from
previous works simultaneously to increase correlation be-
tween obtained features and fidelity to original data. This
architecture is then tested and compared with others in un-
supervised classification tasks in noisy MNIST and XRMB
datasets: accuracy was measured by how the representa-
tions were clustered together, and multimodal representa-
tions had the best results.

Vukotić et al. (2016) present a new approach to multimodal
fusion using paired crossmodal neural networks (BiDNN).
Two neural networks are created, each mapping one modal-
ity to another directly, with the weights of hidden layers of
both networks tied. The result of this training is a central
layer in both networks that maps any given modality to a
shared representation space between the two given modal-
ities. This architecture is compared to others using met-
rics obtained from analyzing the MediaEval 2014 dataset
(Eskevich et al., 2014) using audio transcripts and video
segments to link a video to a specific concept (anchor), ob-
taining superior results in this classification task. The tran-
scripts were represented with Word2Vec embeddings, and
the video was transcribed to human visual concepts.

3. Methodology

In this section, we describe the representations used for
comparison in our experiments. Four methods of each
modality were chosen. For texts, we used: (1) Latent
Semantic Indexing (Landauer et al., 1998) and (2) La-
tent Dirichlet Analysis (Blei et al., 2003) for topical rep-
resentation, and (3) Word2Vec (Mikolov et al., 2013) and
(4) Global Vectors for word representation (Pennington et
al., 2014). For images, we applied: (1) Scale-Invariant
Feature Transform (Lowe, 2004), (2) Speeded-Up Robust
Features (Bay et al., 2008), (3) Oriented FAST and Ro-
tated BRIEF (Rublee et al., 2011) for Bag-of-Visual-Words
(Yang et al., 2007) vector generation, and (4) neural fea-
tures obtained from the VGG19 pre-trained network (Si-
monyan and Zisserman, 2014).

3.1. Textual Representation
Textual distributed representation is based on the aforemen-
tioned distributional hypothesis (Harris, 1954) which states
that similar statistical distributions denotes semantic simi-
larity between two items. In the textual domain, this means
that words that appear in the same context have similar se-
mantic meaning.
In this paper, we review methods of textual representation
from two ways: one by topic representation, obtaining
vectors that encode the pertinence of words in sentences
if they appear together in a corpus, and one by word em-
beddings, creating word representations based on their oc-
currence context and combining them in a single document
vector. Thus, the methods for textual representation inves-
tigated in this paper are:

• Latent Semantic Indexing (LSI) (Landauer et al.,
1998): This method uses the term-document matrix
that encodes the frequency of each term by document
and its eigenvalues and eigenvectors to decompose this
data and find a new representation. This is accom-
plished by Singular Value Decomposition, selecting
only the highest eigenvalues and their correspondent
eigenvectors to recompose the term-document matrix,
leading to a reduced topic-document matrix.

• Latent Dirichlet Analysis (LDA) (Blei et al., 2003):
Similar to LSI, this method codifies a topical distri-
bution of words using a term-document matrix. But,
instead of matrix operations to simplify the original
data, it uses probability and parameter estimations to
find word-topic and topic-document distributions.

• Word2Vec (W2V) (Mikolov et al., 2013): This neu-
ral model uses a shallow neural network to create dis-
tributed representations based on the context of each
word. This model can be trained in two ways: train-
ing the model to find the context of a given word
(Skipgram) or find the central word of a given context
(CBoW). Either way, the model codifies a representa-
tion of a word in its hidden layer. The simplest way
of codifying a document vector from its words is to
add all present vectors and divide them by the num-
ber of words in it, as the semantic information is kept
on this vector combination. This document vector per-
forms poorly in large texts, as it loses semantic infor-
mation shared between contexts the same way as the
standard Bag-of-Words representation does. Another
way of codification of document vectors that circum-
vents the aforementioned limitation is Doc2Vec (Le
and Mikolov, 2014), adding a document identification
token to each context and then calculating its embed-
ding.

• Global Vectors for Word Representation (GloVe)
(Pennington et al., 2014): This statistical model
uses a term co-ocurrence matrix and ratios of co-
ocurrence to find word vectors with distances between
words relative to their co-ocurrence ratios. In the
example given by the proposing paper, the ratio of
P(solid|ice)/P(solid|steam) is much higher than 1,
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meaning that “solid” is more semantically related to
“ice” than “steam”. The objective function of this
model reflects this ratio in the distances between these
word vectors.

3.2. Visual Representation
A digital image is represented by a matrix of pixels (tuples
of numbers with intensities of particular color channels).
Albeit great for visualization, this matrix often has highly
correlated neighboring pixels, creating redundant data. To
extract meaningful mathematical information from an im-
age, we must first find regions of interest that uniquely de-
fine it, and map these to a vector space where they can be
compared.
This paper uses two different ways to generate features
from an image: hand-crafted descriptors, which are pre-
defined ways to find regions of interest and encode them
into vectors; and neural features, automatically extracted
and selected by an ImageNet pre-trained neural network.
Thus, the methods for visual representation investigated in
this paper are:

• Scale-Invariant Feature Transform (SIFT) (Lowe,
2004): This method extracts features that are invari-
ant to scale, illumination and rotation. It is composed
of four main steps: (1) keypoint extraction, via Differ-
ences of Gaussians in different scales; (2) keypoint lo-
calization, to refine and filter extracted keypoints; (3)
orientation assignment, for each keypoint to achieve
rotation invariance; (4) keypoint description, using the
histogram of gradients in the neighborhood of the key-
point to encode a 128-position vector.

• Speeded-Up Robust Features (SURF) (Bay et al.,
2008): As an extension of the SIFT method, SURF
follows the same steps of SIFT applying different
mathematical methods. For keypoint extraction and
localization, the Differences of Gaussians are replaced
by Box Filters and Hessian Matrix determinants;
for orientation assignment and keypoint description,
SURF uses Haar Wavelet responses around the key-
point. SURF achieves similar results to SIFT, gen-
erating smaller vectors (64-positions) with improved
speed.

• Oriented FAST and Rotated BRIEF (ORB) (Rublee
et al., 2011): This method is a fusion of two de-
scriptors: FAST (Rosten and Drummond, 2006) and
BRIEF (Calonder et al., 2010). ORB uses the FAST
keypoint extraction method, achieves rotation invari-
ance by analyzing the weighted centroid of intensities
around each keypoint, and then combines this orienta-
tion with the BRIEF descriptor by prior rotation of the
pixels in the described keypoint neighborhood.

• VGG19 classes (Simonyan and Zisserman, 2014):
This method uses the classes detected from the
VGG19 model pre-trained using the images from Ima-
geNet, creating a probability vector of 1000 positions,
probabilities of specific objects in a scene.

3.3. Multimodal Representation
To combine multiple data representations in a simple way,
we can use feature concatenation prior to classification
(Wang et al., 2003), create ensembles of single-mode clas-
sifiers (Radová and Psutka, 1997), align features of single-
mode representations by similarity measures (Frome et al.,
2013) or co-learn single-modality representations using an-
other modality as basis (Information Resources Manage-
ment Association, 2012, Chapter 28). But these representa-
tions do not encode a real fusion between two modalities in
a single mathematical vector space, as they only add in-
formation to an existing space or combine inferences from
separate spaces in a shallow way.
In this paper, we use both early-stage feature fusion with
concatenation (Wang et al., 2003) and model-based feature
fusion, creating a single vector space that maps both modal-
ities to a single vectorial space. In this paper, we will use
a simple multimodal autoencoder framework with single-
mode pre-training, in a similar architecture to the one pro-
posed in Ngiam et al. (2011):

1. Two deep autoencoders are pre-trained with single
modalities until convergence;

2. The weights are then ported to a multimodal deep au-
toencoder with one (or more) shared hidden layers that
will codify our multimodal representation;

3. Training will have instances that will try to reconstruct
two modalities from one, reconstruct one modality
from two, and reconstruct one modality based on the
other.

The architecture described in Vukotić et al. (2016)
(BiDNN) will also be used to compare results between the
multimodal approaches. The simple autoencoder described
above was also compared in Vukotić et al. (2016), and we
replicate this experiment with our dataset.

4. Experiments
The experiments described in this paper were executed in a
multimodal dataset composed of 6,400 textual descriptions
of e-commerce electronic products paired with their respec-
tive images. Not all the textual descriptions have a related
image. The original downloaded images have (55×55×3)
pixels each. Each product is assigned to a class automati-
cally extracted by web crawlers.
The 10 classes in this dataset are:

• Automotive – items related to automobile sound sys-
tems, tires and related electronic gadgets;

• House and Electronics – products related to kitchen
appliances and house maintenance;

• Games – video-game related products such as con-
soles, joysticks and games;

• Hardware – computer components such as proces-
sors, GPUs and coolers;
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• Computing – stand-alone products that are related to
computers such as routers, no-breaks and power ca-
bles;

• Stationary – office products such as organizing boxes
and tacks;

• Peripherals – computer peripherals such as head-
phones, keyboards and mouses;

• Used – an amalgam of all the other products in used
conditions and user-made descriptions;

• Smartphones – smartphones and its accessories;

• Telephony – landlines, cables and radios.

Single-modality and multi-modality experiments have been
executed with five simple classification algorithms:

• Support Vector Machine with both stochastic gradient
descent (SGD) and logistic regression learning (SVC);

• Binary Support Vector Machine (one-versus-all ap-
proach) with both stochastic gradient descent (SGD-
B) and logistic regression learning (SVC-B);

• Multilayer Dense Neural Network (MLP) with 256,
128 and 64 neurons on each layer, respectively;

All representations except the VGG19-derived ones were
generated in a 128 dimensional space. Word2Vec and
GloVe word representations were calculated for all words
in a document and averaged to create a 128-dimension vec-
tor. To generate Word2Vec and GloVe representations, we
used the tokenized texts without rare (less than 2 occur-
rences on the corpus) or large (more than 50 letters) to-
kens. To generate LSI and LDA word representations, each
text was first converted to Bag-of-Words and these count
values were used to generate term frequency–inverse doc-
ument frequency (TFIDF) (Wu and Salton, 1981) values.
Each image had its SURF, SIFT and ORB descriptors ex-
tracted, and a Bag-of-Visual-Words was generated by a k-
means clustering algorithm, with k = 128. Images were
passed through the VGG19 network and a vector with 1000
positions was generated for each image. The scripts were
written in Python, with CUDA acceleration (Nickolls et al.,
2008) and Tensorflow (Abadi et al., 2015) in the neural net-
work training phases. The classification experiment used
10-fold cross-validation.

4.1. Baselines
Firstly, we tested single-modality classification and early-
stage feature fusion, concatenating the vectors to generate
256-dimension vectors (or 1128-dimension vectors in the
VGG19 modality) for combined representations.
The combinations were made with two different textual
representations (text×text), two different image repre-
sentations (image×image) or one representation of each
(image×text). Although simple, this approach improved
classification accuracy and recall on some multimodal com-
binations, with the best results depicted in bold on Table 1.
These results show that textual classification outperforms
its image counterpart by a large amount in this domain.

Modalities Representation SGD SVC MLP SGD-B SVC-B

Text

GloVe 0.71 0.74 0.80 0.70 0.74
W2V 0.70 0.74 0.80 0.71 0.73
LDA 0.62 0.68 0.75 0.65 0.68
LSI 0.84 0.85 0.87 0.83 0.87

Image

SIFT 0.39 0.38 0.40 0.38 0.40
SURF 0.36 0.38 0.36 0.36 0.38
ORB 0.29 0.32 0.30 0.29 0.29
VGG19 0.38 0.44 0.57 0.40 0.45

Image×Image

SIFT+SURF 0.45 0.42 0.43 0.41 0.41
SIFT+ORB 0.41 0.40 0.41 0.41 0.37
SIFT+VGG19 0.47 0.50 0.53 0.45 0.49
SURF+ORB 0.38 0.38 0.39 0.38 0.36
SURF+VGG19 0.46 0.49 0.52 0.48 0.48
ORB+VGG19 0.45 0.45 0.49 0.46 0.46

Text×Text

GloVe+W2V 0.76 0.79 0.83 0.76 0.81
GloVe+LDA 0.76 0.78 0.81 0.76 0.79
GloVe+LSI 0.83 0.85 0.84 0.82 0.86
W2V+LDA 0.75 0.78 0.82 0.75 0.78
W2V+LSI 0.86 0.88 0.87 0.85 0.86
LDA+LSI 0.84 0.86 0.84 0.85 0.87

Image×Text

SIFT+W2V 0.72 0.72 0.74 0.71 0.75
SIFT+GloVe 0.74 0.71 0.80 0.71 0.72
SIFT+LDA 0.66 0.68 0.69 0.66 0.68
SIFT+LSI 0.84 0.84 0.84 0.83 0.86
SURF+W2V 0.70 0.73 0.75 0.71 0.72
SURF+GloVe 0.68 0.71 0.80 0.72 0.71
SURF+LDA 0.65 0.66 0.67 0.65 0.65
SURF+LSI 0.84 0.84 0.83 0.83 0.85
ORB+W2V 0.68 0.71 0.73 0.71 0.69
ORB+GloVe 0.70 0.72 0.76 0.71 0.69
ORB+LDA 0.61 0.66 0.65 0.61 0.66
ORB+LSI 0.83 0.84 0.81 0.82 0.85
VGG19+W2V 0.73 0.74 0.78 0.72 0.74
VGG19+GloVe 0.70 0.74 0.81 0.69 0.71
VGG19+LDA 0.68 0.72 0.75 0.70 0.72
VGG19+LSI 0.80 0.83 0.83 0.81 0.84

Table 1: Unimodal and early-stage multimodal fusion ex-
periments. Metric used is F-Score. Best scores for each
modality are highlighted in bold.

Modalities Representation MMAE BIDNN

Image×Image

SIFT+SURF 0.38 0.37
SIFT+ORB 0.37 0.36
SIFT+VGG19 0.39 0.44
SURF+ORB 0.35 0.34
SURF+VGG19 0.39 0.46
ORB+VGG19 0.32 0.43

Text×Text

GloVe+W2V 0.73 0.79
GloVe+LDA 0.60 0.76
GloVe+LSI 0.50 0.82
W2V+LDA 0.74 0.82
W2V+LSI 0.74 0.84
LDA+LSI 0.61 0.83

Image×Text

SIFT+W2V 0.66 0.75
SIFT+GloVe 0.52 0.61
SIFT+LDA 0.60 0.66
SIFT+LSI 0.32 0.74
SURF+W2V 0.68 0.72
SURF+GloVe 0.49 0.61
SURF+LDA 0.58 0.63
SURF+LSI 0.38 0.77
ORB+W2V 0.70 0.72
ORB+GloVe 0.44 0.54
ORB+LDA 0.61 0.62
ORB+LSI 0.39 0.73
VGG19+W2V 0.67 0.73
VGG19+GloVe 0.51 0.54
VGG19+LDA 0.65 0.67
VGG19+LSI 0.37 0.79

Table 2: Multimodal fusion experiments. Metric used is
F-Score on a Multilayer Perceptron model. Best scores be-
tween modalities and algorithms are highlighted in bold.

4.2. Our approach
After finding our baselines, we tested our proposed ap-
proach by using multimodal features generated by a Deep
Multimodal Autoencoder (MMAE) (Ngiam et al., 2011)
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Figure 1: Deep Multimodal (MMAE) architecture used in the experiments.

Figure 2: Bidirectional Deep Autoencoder (BIDNN), with shared weights.

and a Bidirectional Neural Network (BIDNN) (Vukotić et
al., 2016) with tied weights, as illustrated in Figures 1 and
2.

These features have 64 dimensions, fusing text and
image representations. Both models were trained in
batches of 256 instances for 1000 epochs, optimized us-
ing ADADELTA (Zeiler, 2012) with binary cross-entropy
loss. The results of these tests are depicted in Table 2. Only
the Multilayer Perceptron classification model results are
shown in this table, as the other models achieved poor F-
Scores (below 0.4).

The results show that the Bidirectional Neural Network is
consistently better in this task, corroborating the experi-
ments in (Vukotić et al., 2016). But, when compared to
the previous experiment, lower F-Scores were obtained in
the neural multimodal features: the best results obtained
with these features were 0.74 (Multimodal Autoencoder)
and 0.84 (Bidirectional Neural Network), lower than the
results obtained by early-fusion of textual features (0.87 us-

ing W2V+LSI) and comparable to the results of unimodal
features (GloVe, W2V and LSI had results higher or equal
than 0.80).

5. Discussion
As can be noticed by the values in Table 1, LSI seems to be
the best text representation model with 0.87 F-Score with
MLP and SVC-B. It is also the best one to combine with im-
age representation models since its performance with SIFT
(SIFT+LSI), SURF (SURF+LSI) and ORB (ORB+LSI)
was really close to the best values achieved when only
text representations were used. We believe that this LSI’s
best performance is related to the fact that most descrip-
tions of e-commerce products are mainly composed of
highly specialized keyword groups (eg., “smartphone” and
“mobile” in the “smartphone” class, and “DPI” and “anti-
ghosting” in “peripherals”), thus topical representations can
adequately summarize concepts in this domain. And, as
these products rarely share the same visual concepts of oth-
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ers in their class (eg.,“smartphones” had images of smart-
phones, smartphone cables and accessories), visual descrip-
tors are not efficient in this task. From these early-stage
multimodal results we can conclude that text (at least, LSI)
can help image in the classification scenario tested in our
experiments.
Regarding our proposed neural multimodal approach, we
could not significantly improve classification accuracy us-
ing multimodal features obtained via neural means (MMAE
and BIDNN). In order to visualize the similarity between
representations, we generated comparison images for se-
lected products 1. The four most similar products (top-4) to
a target image of a printer are depicted in Figures 3 (using
only neural image features), 4 (using only textual features)
and 5 (using multimodal neural features), from a special re-
ceipt printer. In Figure 3, image representations could ap-
proximate other printers and rectangular objects to its im-
mediate vectorial vicinity. In Figure 4, using textual repre-
sentations, the two closest product vectors had no relation
whatsoever to printing: one represents a repair toolkit for
a CPU cooler and the other is a motion sensor. In Figure
5, using multimodal features, the four closest products are
all printers, and the first two are receipt printers just as the
target product is.
Analyzing product similarity, we can see that some prod-
ucts can be grouped more accurately using multimodal fea-
tures (as seen in Figure 5). The information gain from mul-
timodal features was not relevant for classification in our
corpus since there is too much noise in certain categories
(eg., in Figure 4 in which a printer, a cable and a sensor
were grouped together in the same category). However, we
think that multimodal features can be used in other tasks in-
volving similarity such as e-commerce search queries: im-
proving comparison speed and quality using these features
to navigate monolithic databases can increase site perfor-
mance.
As there are few linguistic resources for the Portuguese lan-
guage in this area, we intend to make this set a starting point
for other works. The dataset can be obtained on request,
and the code will be released in a public repository after
the publication of this paper.
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