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Abstract
In this work we evaluate domain-specific embedding models induced from textual resources in the Oil and Gas domain. We conduct
intrinsic and extrinsic evaluations of both general and domain-specific embeddings and we observe that constructing domain-specific
word embeddings is worthwhile even with a considerably smaller corpus size. Although the intrinsic evaluation shows low performance
in synonymy detection, an in-depth error analysis reveals the ability of these models to discover additional semantic relations such
as hyponymy, co-hyponymy and relatedness in the target domain. Extrinsic evaluation of the embedding models is provided by a
domain-specific sentence classification task, which we solve using a convolutional neural network. We further adapt embedding
enhancement methods to provide vector representations for infrequent and unseen terms. Experiments show that the adapted technique
can provide improvements both in intrinsic and extrinsic evaluation.
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1. Introduction

Domain-specific, technical vocabulary presents a challenge
to NLP applications. Recently, word embedding models
have been shown to capture a range of semantic relations
relevant to the interpretation of lexical items (Mikolov et
al., 2013b) and furthermore provide useful input represen-
tations for a range of downstream tasks (Collobert et al.,
2011). The majority of work dealing with intrinsic evalu-
ation of word embeddings has focused on general domain
embeddings and semantic relations between frequent and
generic terms. However, it has been shown that embed-
dings differ from one domain to another due to lexical and
semantic variation (Hamilton et al., 2016; Bollegala et al.,
2015). Domain-specific terms are challenging for general
domain embeddings since there are few statistical clues in
the underlying corpora for these items (Bollegala et al.,
2015; Pilehvar and Collier, 2016).

The Oil and Gas domain is a highly technical and data-
intensive domain. Experts working within this domain
daily investigate selected geographical areas and use rel-
evant information (scientific articles, reports and other tex-
tual sources) to evaluate the potential for undiscovered hy-
drocarbons. The vocabulary is technical and there is a real
need for NLP tools to aid the work process. In this work
we investigate whether word embedding models can cap-
ture domain-specific semantic relations by training domain-
specific embeddings1 and evaluating these against a termi-
nological resource. We conduct a comprehensive study in-
cluding a wide range of evaluation criteria, contrasting sev-
eral general and domain specific embedding models. We
augment the domain-specific embeddings using a domain
knowledge resource. To supply embeddings for rare words,
we extend the retrofitting method by Faruqui et al. (2015).
We then go on to examine the contribution of these models
in the performance of a downstream classification task.

1Link to the domain-specific model: http://vectors.
nlpl.eu/repository/11/75.zip

2. Related work
Despite the pervasive use of word embedding in language
technology, there is no agreement in the community on the
best ways to evaluate these semantic representations of lan-
guage2. There exist a variety of benchmarks which are
widely employed to assess the quality of word representa-
tions and to compare different distributional semantic mod-
els. Existing evaluation methods can largely be separated
into two categories: ”intrinsic evaluation” and ”extrinsic
evaluation”. Intrinsic evaluation tries to directly quantify
how well various kinds of linguistic regularities can be de-
tected with the model independent of its downstream appli-
cations (Baroni et al., 2014; Schnabel et al., 2015). On the
other hand, the quality of a word vector may be assessed
by its performance in downstream tasks through measur-
ing changes in performance metrics specific to the tasks
by extrinsic evaluation. The downstream language tech-
nology tasks on which the quality of a word embedding is
examined, fall into syntactic (e.g. POS tagging, Chunking)
and semantic (e.g. Named entity recognition, Sentiment
Classification) categories (Schnabel et al., 2015; Chiu et
al., 2016b). In this work we evaluate domain-specific word
embedding models using both intrinsic and extrinsic evalu-
ation schemes.
Although, word embeddings techniques have drawn signif-
icant interest in the field, they are not well equipped to deal
with unseen and infrequent words, nor do they consider
word relations found in knowledge resources. Recently,
different solutions have been proposed to overcome these
limitations (Pilehvar and Collier, 2016; Faruqui et al., 2015;
Yu and Dredze, 2014). Among these, we choose Faruqui et
al. (2015) in this work since it is a post-processing approach
which is straightforward to apply.

3. Intrinsic evaluation setup
Intrinsic evaluation of word embeddings has two require-
ments. First, we require a query inventory as a gold stan-
dard, and second, a word embedding model that has been

2RepEval @ACL 2016: The First Workshop on Evaluating
Vector Space Representations for NLP
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Source Abbr. Description Docs Sentences

American Association of Petroleum Geologist AAPG Scientific articles 3,382 72,243
C&C Reservoirs-Digital Analogs CCR Field evaluation reports 1,140 244,017
Elsevier ELS Scientific articles, magazines 40,757 7,703,447
Geological Society, London Memoirs GSL Scientific articles 152 32,352
Norwegian Petroleum Directory NPD Norwegian Field info 514 49,426
Tellus TELLUS Basin info 1,478 179,450
Total 47,423 8,280,935

Table 1: Sources of the Oil and Gas corpus

trained on a specific corpus. In this section we describe how
we build a domain specific query inventory by exploiting
a domain-specific knowledge resource. Then, the domain
specific corpus and the training of the embedding models
will be described. We then go on to clarify the evaluation
methodology.

3.1. Domain specific query inventory
For the general domain, there exists a wide range of gold
standard resources for evaluating distributional semantic
models in their ability to capture semantic relations of dif-
ferent types, for instance, Simlex-999 (Hill et al., 2015).
However, evaluating the domain specific embeddings by
applying these gold standards will not provide an adequate
picture of their quality, since they do not share a common
vocabulary and word meanings. For this reason, we create a
domain-specific gold standard using the Schlumberger oil-
field glossary (slb).3 The slb is a reference which defines
major oilfield activities and has been created by technical
experts. Terms are described by their part of speech, their
discipline (e.g. Well Completions, Geology), as well as a
textual definition. Terms are linked to other terms in the
glossary by means of semantic and lexical relations such as
Synonyms, Antonyms and Alternative forms. It provides a
network of related terms that can be navigated through the
glossary. We construct a domain query inventory by ex-
tracting all terms and their inter-glossary relations from the
relational database. The glossary consists of 4,886 terms.
Following the symmetric nature of the Synonym, Antonym
and Alternative form relations we infer a relation if it is
missing between terms. The final query inventory contains
878 synonym pairs, 284 antonym pairs and 934 alterna-
tive form pairs. We observe that the majority of terms in
the query inventory are multi-word units (70%) and nouns
(72%). This indicates that a large portion of the domain-
specific vocabulary that we want to capture in our model
consists of multi-word entities. Thus we should take this
into account during the training of embeddings.

3.2. Corpora and Pre-processing
In order to train domain-specific embeddings we need a
domain-specific corpus. We therefore compile a corpus
consisting of technical reports and scientific articles in the
Oil and Gas domain. Table 1 shows detailed information
about these sources. The corpus contains 47, 423 docu-
ments and 8, 280, 935 sentences. It is pre-processed using

3http://www.glossary.oilfield.slb.com/

the following steps: 1) Tokenization and lemmatization us-
ing StanfordCoreNLP (Manning et al., 2014). English stop
words and sentences with less than three words are also
removed from the corpus. 2) Shuffling: we randomly shuf-
fle the text in the dataset. During the training of embed-
ding models the learning rate is linearly dropped as train-
ing progresses, text appearing early has a larger effect on
the model. Shuffling makes the effect of all text almost
equivalent (Chiu et al., 2016a).

3.3. Training of Word Embeddings
For training of the word embeddings, we exploit the avail-
able word2vec (Mikolov et al., 2013a) implementation gen-
sim (Řehůřek and Sojka, 2010). The elements that have
an impact on the performance of the model are the in-
put corpus, model architecture and the hyper-parameters.
In many works lemmatized, lowercased and shuffled input
during training the word2vec are recommended; we carried
out our experiments with these settings as detailed above.
We employed the phrase model of gensim which automat-
ically detects common phrases (multi-word expressions).
The phrases are collocations (frequently co-occurring to-
kens) and we consider bi-grams and tri-grams in this ex-
traction process. We further proceed with the domain spe-
cific model generation by creating two sets of embeddings,
employing both the CBOW and the Skip-gram architectures
with default settings. In the initial evaluation step, we com-
pare the outcomes of these two models to determine the
better architecture.
We then go on to compare different settings for the hyper-
parameters, while keeping all other settings constant. It
has been shown that optimizations of hyper parameters and
certain system choices constitute the main causes of differ-
ences in performance rather than the algorithms themselves
(Levy et al., 2015). Here we investigate the impact of vari-
ous system design choices in the evaluation of domain spe-
cific embeddings across the following parameters 4: I) Vec-
tor size: dim ∈ 50,100, 200, 300, 400, 500, 600 II) Con-
text window size: win ∈ 2, 3,5, 10, 15, 20. III) Negative
sampling size: neg ∈ 3,5, 10, 15. IV) Frequency cut off:
min.count ∈ 2, 3,5, 10. V) n-most-similar: The parame-
ter n for top n-most-similar as output is fixed at value 5 (the
maximum number of terms that are involved in each rela-
tion set in the query inventory). We evaluate these different
system design settings based on our intrinsic benchmark.
We build various embeddings models by varying values of

4Default values are in bold
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Model Synonymy Antonymy Alt. form
A R P A R P A R P

Skip-gram 9.8 8.0 2.2 46.4 41.3 9.3 12.1 10.4 2.4
CBOW 12.7 10.2 2.7 55.3 49.2 11.1 12.8 11.0 2.6

Table 2: Evaluation results for different architectures

one hyper-parameter and keeping others as default. There-
after, we perform evaluation over the domain specific query
inventory.

3.4. Evaluation
For evaluation, we assume that for each term in the in-
ventory an embedding model should be able to propose
similar words which are related semantically as either syn-
onym, alternative form or antonym. We will measure this
by looking at a target word’s relation set, for instance its
synonyms, and top n-most-similar words based on the em-
beddings model. Since these relations are symmetric, the
pairs (ti, tj) and (tj , ti) are considered equivalent in the
evaluation. We calculate the accuracy (A) as the number
of target words for which the model provides at least one
correct prediction, the recall (R) as the number of correctly
predicted word pairs over all word pairs and precision (P)
as the number of correctly predicted word pairs over all pre-
dicted word pairs for each relation category.

4. Intrinsic evaluation experiments
In the following we present experiments that evaluate the
domain-specific word embedding models intrinsically. We
first present tuning experiments and then present an exper-
imental comparison between domain-specific and general
domain embedding models.

4.1. Model architecture: Skip-gram vs. CBOW
First, we compare the models obtained using different ar-
chitectures (CBOW and Skip-gram) with default values for
hyper-parameters i.e. dim = 100, win = 5, min.count =
5 and neg = 5. Table 2 presents the results for the two
architectures broken down by semantic relation from the
query inventory. In general we find that the CBOW based
model shows better results than the Skip-gram in all se-
mantic relation tasks. The results show that the embedding
models have higher scores for antonymy prediction than
synonymy, see Table 2. This result is consistent with pre-
vious studies such as van der Plas and Tiedemann (2006)
and Leeuwenberg et al. (2016) in which they reported that
using distributional similarity some word categories like
antonyms, (co)hyponyms or hypernyms show up more of-
ten than synonyms.

4.2. Hyper-parameter tuning
We explore the impact of each hyper-parameter on detec-
tion of semantic relations. We observe that the performance
of the embedding models can be notably improved over the
default hyper-parameters but like the findings in other stud-
ies (Chiu et al., 2016a; Gladkova et al., 2016), the effects
of different configurations are diverse and sometimes they
are counter-intuitive. For example, different relation cat-
egories benefit from different context windows size in dif-
ferent ways, such as the model with larger context windows

dim Synonymy Antonymy Alt. form
A R P A R P A R P

50 12.7 10.2 2.7 48.2 42.9 9.6 11.4 9.8 2.3
100 12.7 10.2 2.7 55.4 49.2 11.1 12.9 11.0 2.6
200 14.7 12.4 3.3 55.4 49.2 11.1 14.3 12.3 2.9
300 15.7 13.1 3.5 55.4 49.2 11.1 13.6 11.7 2.7
400 15.7 13.1 3.5 57.1 50.8 11.4 13.6 11.7 2.7
500 14.7 12.4 3.3 53.6 47.6 10.7 15.0 12.9 3.0
600 14.7 12.4 3.3 51.8 46.0 10.4 12.9 11.0 2.6
700 14.7 12.4 3.3 53.6 47.6 10.7 13.6 11.7 2.7

Table 3: Evaluation results for different vector size (de-
fault=100)

win Synonymy Antonymy Alt. form
A R P A R P A R P

2 12.7 10.2 2.7 55.4 49.2 11.1 13.6 12.3 2.9
3 13.7 12.4 3.3 48.2 42.9 9.6 11.4 9.8 2.3
5 12.7 10.2 2.7 55.4 49.2 11.1 12.9 11.0 2.6
10 13.1 10.9 2.9 53.6 47.6 10.7 13.6 12.3 2.9
15 12.7 10.2 2.7 67.1 50.8 11.4 12.9 11.0 2.6
20 12.7 10.2 2.7 53.6 47.6 10.7 12.1 10.4 2.4

Table 4: Evaluation results for different context window
size (default=5)

tends to capture antonymy relation while with smaller win-
dows, learns synonymy relation of the words. On the other
hand, negative sampling and frequency cut-off parameters
have different impacts in the three relation categories.

4.2.1. Vector size (dim)
The effect of vector size on the trained models is quite sim-
ilar in all tasks (Table 3). It shows a large improvement in
all evaluations when the dimensionality is increased. How-
ever, the improvement peaks at 400 for the synonymy and
antonymy predictions and 500 for alternative form.

4.2.2. Context window size (win)
Table 4 depicts the impact of window size per evaluation
task. The embedding model can detect well the synonymy
relation in low windows size (w=3) while in antonymy and
alternative form tasks the model performance fluctuates be-
tween lower and higher window sizes.

4.2.3. Negative sampling (neg)
Unlike the practical recommendation in Levy et al. (2015)
which states that the skip-gram model prefers many neg-
ative samples, the CBOW model shows contradictory re-
sult with respect to this parameter in our evaluation bench-
marks. As we can see in Table 5, results remain constant re-
gardless of negative sampling number in the synonym pre-
diction task. While its performance has correlation with an
increase of this parameter in alternative form detection. For
the antonym task, it reached a peak on neg equal to 5 and
10 before falling.

4.2.4. Frequency cut off (min.count)
The impact of excluding words that are less frequent re-
garding to the min.count parameter is summarized in Ta-
ble 6. This parameter shows different impact compared to
the other parameters. While, ignoring more words has bet-
ter effect in synonymy detection, it stops atmin.count = 3
for antonymy and alternative form relations.
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neg Synonymy Antonymy Alt. form
A R P A R P A R P

3 12.7 10.2 2.7 53.6 47.6 10.7 12.1 10.4 2.4
5 12.7 10.2 2.7 55.4 49.2 11.1 12.9 11.0 2.6
10 12.7 10.2 2.7 55.4 49.2 11.1 13.0 11.7 2.7
15 12.7 10.2 2.7 51.8 46.0 10.4 13.6 12.3 2.9

Table 5: Evaluation results for different number of negative
samples (default=5)

min.count Synonymy Antonymy Alt. form
A R P A R P A R P

2 12.4 9.9 2.7 54.4 48.4 10.9 13.0 11.8 2.7
3 12.6 10.1 2.7 56.1 50.0 11.2 13.2 12.0 2.8
5 12.7 10.2 2.7 55.4 49.2 11.1 12.9 11.0 2.6
10 13.1 10.4 2.8 54.7 48.3 10.9 13.0 11.8 2.7

Table 6: Evaluation results for different value for frequency
cut off (default=5)

Since the context window size (win), negative sampling
(neg) and frequency cut off (min.count) parameters showed
inconsistent results among the relations, we selected the
CBOW model with vector size (dim) equal to 400 and we
fixed the other parameters to their defaults i.e. win = 5,
min.count = 5 and neg = 5. This configuration, here-
inafter referred to as OILGAS.d400, showed the maximum
improvement during the tuning experiments.

4.3. Comparative evaluation
In order to compare the domain-specific embeddings with
general domain embeddings, we select two widely used
pre-trained embedding sets: Wiki+Giga 5 and GoogleNews
6 to see how they perform in our evaluation benchmark. The
input data in the Wiki+Giga has been tokenized and lower-
cased with the Stanford tokenizer, whereas the GoogleNews
model is trained on a part of the Google News dataset and it
contains both words and phrases. The phrases are obtained
using the same approach as described in Section 3.2.. The
words are not lemmatized in both models and the Google-
News also contains capitalized words.
The results of the comparative evaluation of the domain-
specific and pre-trained models are summarized in Table
7. Since the words in the vocabularies of both pre-trained
models are not in lemma form, we consider the surface
form of terms for the evaluation. We also report the pro-
portion of query terms that are covered by the vocabulary
of each model as coverage. We find that in spite of the
large input and vocabulary size in both GoogleNews and
Wiki+Giga models, they have less coverage than the do-
main specific model. We further observe that despite the
considerably smaller training data set, the OILGAS.d400
performs better across all the tasks.
It is clear that this comparison is somewhat unfair due to
differences in pre-processing and hyperparameter tuning.
In order to investigate the impact of these differences, we
apply the same pre-processing steps and hyperparameters
to train the CBOW model over the English Wikipedia dump
(20 September 2016), here dubbed enwiki. Furthermore,
we conduct a similar experiment with a data set consist-

5
https://nlp.stanford.edu/projects/glove/

6
https://code.google.com/archive/p/word2vec/

ing of both the general and domain specific corpora (en-
wiki+OILGAS). However, these approaches do not show
further improvements in our evaluation benchmark, as re-
ported in Table 7. Surprisingly, the mixing of Wikipedia
and OILGAS does not increase the coverage rate. It can be
attributed to the fact that the phrase extraction method (Sec-
tion 3.3.) is not able to capture the multi-word expressions,
since in many case in mixed corpus the relative increase
in the frequency of tokens individually is higher than rel-
ative increase of co-occurring tokens (e.g. the relative in-
crease of the word ”source” and the word ”rock” in the en-
wiki+OILGAS are bigger than relative increase of the word
”source rock” compared to the OILGAS corpus )

5. Error Analysis
The results in Section 4.3. show that the domain-specific
model provides better results than general domain models
for a domain-specific benchmark. However, we also ob-
serve that performance is low for all three tasks, in particu-
lar for the synonymy detection task. In this section, we ex-
plore the reasons behind these low scores and gain insight
into the domain specific model predictions, in particular the
synonymy detection, through an in-depth error analysis.
As noted above, the primary cause of low performance is
due to out of vocabulary (OOV) terms in the query inven-
tory. The model vocabulary contains only 31% of the eval-
uation dataset. We find that the majority of terms that par-
ticipate in synonymy relations are not included in the word
embeddings model, this is in particular the case for multi-
word items. The majority of these terms either do not occur
or have a frequency lower than the cut off threshold in the
domain dataset. Excluding the OOV terms from the eval-
uation tasks has an impact on the model performance for
synonymy detection, recall (R) is 29% and precision (P) is
6.5%. Still these scores are low, we therefore examine the
model predictions closer.
We choose randomly 100 terms from the reference inven-
tory which are also in the model vocabulary and we manu-
ally categorize their 10-most-similar words provided in the
word embeddings. In this section, we are inspired by the
work of Leeuwenberg et al. (2016), where the authors cate-
gorized the result of embeddings for a synonym extraction
task in the following categories (The categories with ∗ are
added by us).
Spelling Variant: The prediction is an abbreviation or
there are differences between prediction and target word
because of hyphenation.
Alternative or derived form: The prediction is an alterna-
tive or derived form of the target word.
Reference-Synonyms: The prediction is a synonym of the
target word in the oilfield glossary.
Human-judged Synonyms: The prediction is judged as
true by the expert (but is not present in the glossary).
∗Antonyms: The prediction is an antonym of a target term.
Hypernyms: The prediction is a more general category of
the target term.
Hyponyms: The prediction is a more specific type of the
target term.
Co-Hyponyms: The prediction and target term share a
common hypernym.
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Model Coverage dim Synonymy Antonymy Alt. form

A R P A R P A R P

Google News 26% (100B, 3M) 300 9.0 7.0 1.8 51.2 37.0 8.1 4.1 1.6 0.4
Wiki+Giga 23% (6B, 400K) 300 4.0 3.2 0.8 40.4 43.8 10.2 1.8 3.7 0.8

OILGAS.d400 31% (108M, 330K) 400 15.7 13.1 3.5 57.1 50.8 11.4 13.6 11.7 2.7

enwiki 29% (1.8B, 2M) 400 8.2 6.7 1.8 39.1 33.3 7.5 8.3 8.1 1.9
enwiki+OILGAS 31% (1.9B, 2.3M) 400 11.1 7.8 2.1 55.3 47.7 10.7 8.6 8.9 2.0

Table 7: Results from the intrinsic comparative evaluation of general domain and domain-specific embedding models.

Category Example [target→ prediction] 1st:10th(%)

1. Spelling Variant borehole→ bore-hole 2.4
2. Alternative or derived form acidizing→ acidization 3.2
3. Reference-Synonyms filter cake→ mud cake 2.8
4. Human-judged Synonyms seismometer→ seismograph 8.4
5. Antonyms transgressive→ regressive 0.9
6. Hypernyms acidizing→ stimulation 1.3
7. Hyponyms EOR→ In-situ combustion 9.3
8. Co-Hyponyms EOR→MEOR 13.1
9. Holonyms shoe→ wellbore 1.1
10. Meronyms rig→ wellhead 2.8
11. Related Kirchhoff migration→ NMO correlation 35.2
12. Unrelated/Unknown backflow→ sediment-laden 19.5

Table 8: Manual error analysis results for the 10-most-similar words

∗Holonyms The prediction denotes a whole whose part is
denoted by the target term.
∗Meronyms: The prediction is a part of the target term.
Related: The prediction is semantically related to target.
Unrelated/Unknown: The prediction and target terms are
semantically unrelated.
Table 8 shows the result of this analysis. In general, the
result of this analysis shows that the model predictions are
semantically meaningful in a majority of cases and all cate-
gories except the Unrelated/Unknown represent one type of
morphosyntactic or semantic relation between terms. Less
than 20% of errors are assigned to the Unrelated/Unknown
category. It reveals that if we consider the count of human-
judged synonyms as true positives, the actual scores for pre-
cision and recall will be considerable higher than the ones
that are reported in the evaluation section. Moreover, the
embeddings model proposes more synonyms that are not
in the reference, even though the reference is provided by
manual procedure. The most frequent error type falls in
the related category. The hyponym and co-hyponym re-
lations are another frequent error type that were also re-
ported in previous studies (van der Plas and Tiedemann,
2006; Leeuwenberg et al., 2016). The morphosyntactic
type of relations such as Alternative forms, spelling vari-
ant cover another type of errors. The error analysis fur-
ther reveals several meaningful relation types such as Hy-
pernyms, Meronyms and Holonyms that are useful in many
downstream applications.

6. Embedding Enrichment Using a
Knowledge Resource

Even though the word embeddings clearly capture impor-
tant semantic relations in the domain, the first experiment

shows that the domain technical vocabulary has many ele-
ments which are generally disregarded by the distributional
representation techniques. Since these approaches rely only
on the statistics derived from textual input, they are in-
capable of providing representations for words which are
not seen frequently in the training process. Furthermore,
they do not include the valuable information that is accom-
modated in domain knowledge resources such as semantic
lexicons and glossaries. In this section, we address these
issues by applying the work of Faruqui et al. (2015) to ex-
ploit prior domain knowledge in enhancing the embeddings
model, and induce representations for OOV terms. We then
go on to evaluate the impact of the refinement method over
an unseen terminological resource.

6.1. Embeddings for infrequent terms
Faruqui et al. (2015) proposed the retrofitting method as
a post-processing step to apply to existing pre-trained em-
beddings. The goal is to refine word vector representa-
tions to capture relatedness suggested by semantic lexicons
while preserving their similarity to the corresponding em-
beddings. The objective of the retrofitting method is to min-
imize the following:

Ψ(Q) =

n∑
i=1

[
αi‖qi − q̂i‖2 +

∑
(i,j)∈E

βij‖qi − qj‖2
]

where q̂ ∈ Q̂ is the observed vector representation for each
term in the semantic lexicon and q ∈ Q is the correspond-
ing retrofitted vector. E is the set of relations among the
terms in the semantic lexicons. α and β correspond to the
relative weights of relation type. Since Ψ is convex inQ, an
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Model Synonymy Narrower Broader Abbr. label

A R P A R P A R P A R P

OILGAS 25.5 15.5 5.1 12.5 5.0 2.7 4.7 4.4 0.9 2.4 2.3 0.5
OILGAS.retrofitted 27.4 16.7 5.5 12.5 5.0 2.7 4.7 4.4 0.9 2.2 2.2 0.4

OILGAS.retrofitted+OOV 30.2 18.4 6.1 12.5 5.0 2.7 4.7 4.4 0.9 2.4 2.3 0.5

Table 9: Evaluation over the GeoSci knowledge resource.

efficient iterative updating method is used to solve the ob-
jective function. Retrofitted embeddings Q are initialized
to be equal to the observed ones Q̂. Then by taking first
derivative of Ψ with respect to qi the following online up-
date is used for 10 iterations in order to reach convergence:

qi =

∑
j:(i,j)∈E βijqj + αiq̂i∑

j:(i,j)∈E βij + αi
(1)

The formula computes a new embedding for a term i which
is in the pre-trained model and has relations of interest in
the semantic lexicon, whereas its neighbours should be part
of the pre-trained model. To provide an embedding for
OOV words we extend Q̂ in each iteration by adding the
terms that are in semantic lexicon and connect to the terms
that are in Q̂ via relations of interest. Since there is no ini-
tial vector for these type of words in the observed model,
α is set to zero and the online update formula for the OOV
terms will be as follows:

qi =

∑
j:(i,j)∈E βijqj∑
j:(i,j)∈E βij

(2)

6.2. Test Data
We use another domain related glossary to perform a quan-
titative comparison of domain-specific word embeddings
before and after the retrofitting process. We create a test
query inventory using the same approach as explained in
Section 3.1. using the Geoscience Vocabularies data set 7,
here dubbed GeoSci. GeoSci covers the domain of geology
and describes geological features, geological time, mineral
occurrences, and mining-related features. It relates terms
with syntactically and semantically aligned relations such
as Abbreviated label, Synonym 8, Broader and Narrower.
We construct a test query inventory by extracting all terms
and their inter-glossary relations from the RDF files. The
test set consists of 1,753 terms. It contains 196 synonym
pairs, 1,639 broader pairs, 1,584 narrower pairs and 965
abbreviated label pairs. Like the slb glossary, the majority
of terms are multi-word units (63%).

6.3. Evaluation
We use the structure of the slb glossary as prior domain
knowledge to enrich the OILGAS.d400 embeddings model
that is evaluated as a best candidate in Section 4.. Exper-
iments in Faruqui et al. (2015) showed that including all
semantic relations in the retrofitting process has a better im-
pact than having only one of them. We therefore consider
connections of a word to its synonyms, alternative forms

7http://resource.geosciml.org/
8GeoSic vocabulary specifies this relation as Alternative label.

and antonyms. Moreover, similar to the origin, all αi are
set to 1 and βij to be degree(i)−1.
The Eq.1 is used to retrofit the OILGAS.d400 model
by employing the structure of the semantic lexicon
(”.retrofitted”). To induce word vectors for OOV
terms , we carry out the retrofitting process with Eq.2
(”.retrofitted+OOV”). Table 9 shows the performance of
the model in the test dataset as well as the retrofitted mod-
els with two different configurations. We observe that
the retrofitting process provides improvement in the syn-
onymy relation. The improvement is highest when we con-
sider the adapted version (retrofitted+OOV). Interestingly
the retrofitted models have no impact in the narrower and
broader relationships, this can be attributed to the fact that
the employed semantic lexicons do not include these kinds
of associations to lead the retrofitting process. In the abbre-
viated label relation, there is a slightly negative effect when
we apply the original retrofitting process.

7. Extrinsic evaluation
While the intrinsic evaluations attempt to interpret the en-
coding content of an embedding model in terms of lexi-
cal semantic relations, extrinsic evaluation investigates the
contribution of an embedding model to the performance of
a specific downstream task. In this section, we investigate
the influence of our domain-specific model in a domain re-
lated classification task.

7.1. Classification Data Set
The task of the exploration department in Oil and Gas in-
dustry is to find exploitable deposits of hydrocarbons (oil
or gas). Geoscientists in the exploration department model
the subsurface geography by classifying rock layers accord-
ing to multiple stratigraphic hierarchies using information
from a wide range of different sources. The quality of the
analysis depends on the availability and the ease of access
to the relevant data. Previous technical studies, reports and
surveys are crucial resources in this process.
We collect sentences from exploration textual documents
which are then manually labeled with various geological
type properties by domain experts. Example 1 shows an
example sentence from the data set along with its assigned
set of properties.

Example 1. Submarine fans and deltaic/estuarine facies of the
San Juan Formation were deposited during the Maastrichtian
regression, which gave way during the Paleocene-Eocene to black
marine shales and carbonates of the Vidoño Formation and the
shelfal and pro-delta shales of the Caratas Formation.

Properties: Lithology RockType, Lithology Main, DepEnv Sub,
DepEnv General
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Model DepEnv Sub Lith Main BasinType DepEnv Gen Facies DepEnv Main Lith RockType

F1 F1 F1 F1 F1 F1 F1

CNN.rand 28.9 90.6 0.0 0.0 63.0 57.1 68.2
CNN.domain 51.1 91.4 23.9 11.3 71.1 66.3 65.8
CNN.multi.rand 38.0 91.4 7.3 5.0 63.9 58.6 69.9
CNN.multi.enwiki 43.9 90.5 11.3 0.0 61.1 61.4 57.8
CNN.multi.domain 56.2 92.2 33.8 15.0 71.7 69.4 72.5

CNN.multi.retrofitted+OOV 64.0 91.3 11.3 0.0 67.6 68.8 72.2
CNN.multi.domain &retrofitted+OOV 68.2 92.8 32.0 9.4 73.4 73.5 71.1
CNN.multi.retrofitted+OOV&domain 53.4 92.6 20.9 10.0 71.8 67.0 70.7

Table 10: Results of the classification task with various configurations

Property # Sentences

Lithology Main 1,193
Lithology RockType 191
DepEnv General 38
DepEnv Main 483
DepEnv Sub 298
Facies 387
BasinType 49

Table 11: Classification data set

The resulting data set contains 1,348 sentences in which ex-
perts assigned each sentence to 7 different properties. The
sentences are pre-processed using the same approach as de-
scribed in Section 3.2. Table 11 depicts the properties and
number of sentences for each. It can be seen that the data
set is unbalanced regarding to the properties and that the
downstream task is a multi-label classification task.

7.2. Multi-label Classification Model
We use a slight variant of the Convolutional Neural Net-
work (CNN) architecture that is proposed by Kim (2014)
for a sentence classification task. We keep the value of
hyperparameters equal to the ones that are reported in the
original work, however we update the dimension of the em-
beddings layer according to the dimension of the domain-
specific embeddings model. Furthermore, since the archi-
tecture aims to assign a single label to each sentence, we
update the activation function to sigmoid at the output layer,
which produces a probability for each of the potential prop-
erties. During training, these probabilities are used to com-
pute the error, while during testing, we round each of the
probabilities to 0 or 1 depending upon a set threshold (0.5).

7.3. Extrinsic evaluation experiments
Like Kim (2014), we run experiments with several variants
of the model as follows: CNN.rand: As a baseline model,
where all words in the embedding layer are randomly ini-
tialized and updated in the training process. CNN.domain:
the embedding layer is initialized with a domain-specific
model and fine-tuned for the target task. CNN.multi.rand:
There are two embedding layers as a ’channel’ in the CNN
architecture. Both channels are initialized randomly and
only one of them is updated during training while the other
remains static. CNN.multi.domain: Same as before, but
the channels are initialized with domain-specific vectors.
CNN.multi.enwiki: The channels consider the general do-
main word vectors from section 4.3. using the English

Wikipedia data. To deal with effects of an unbalanced
dataset and guarantee that each fold in 5-fold cross valida-
tion will have the proportion of same classes during train-
ing and test, we apply the stratification of multi-label data
proposed by Sechidis et al. (2011).
Results of the classification task with various CNN config-
urations are presented in the first section of Table 10. In
general, the multi-channel mode performs better than the
single channel setting. The results suggest that having a sig-
nificant amount of sentences per property assists the CNN
model to classify better. The baseline model does not per-
form well on its own. The use of the pre-trained embed-
dings model helps the model in property assignment. Par-
ticularly, domain-specific embeddings provide higher per-
formance gain in the task-at-hand when it is used in both
channels.
We also investigate the influence of the refined
word embeddings model in our classification task.
CNN.multi.retrofitted+OOV: We used the retrofitted
domain embeddings including the OOV vectors generation
for two channels. One channel is static and the other
is non-static. CNN.multi.domain&retrofitted+OOV:
First channel is initialized with original domain-specific
embeddings with static mode and the second makes use
of the retrofitted embeddings with a non-static mode.
CNN.multi.retrofitted+OOV&domain: Same as previ-
ous setting, but the channels swap their input. In these
experiments, because of having many multi-words as OOV
terms in the model, we replaced tokens in the sentences
with their bi-gram and tri-gram forms if their combination
occurs in the model vocabulary (e.g. ’fracture porosity’ is
replaced to ’fracture porosity’ as a input unit). The experi-
ment (second section of Table 10) shows that the enhanced
embedding models provides better input representations
for classes with a sufficient number of instances.

8. Conclusion
In the present work we demonstrate that constructing
domain-specific word embeddings is beneficial even with
limited input data. Nevertheless, the empirical evaluation
shows that the distributional models have low performance
in domain-specific synonymy detection, an in-depth
manual error analysis reveals the striking ability of the
embedding models to discover other semantic relations
such as (co)hyponymy, hypernymy and relatedness. We
further showed the importance of dealing with rare words
in an embedding model in both intrinsic and extrinsic
evaluation.
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