
One Sentence One Model for Neural Machine Translation

Xiaoqing Li, Jiajun Zhang, Chengqing Zong
National Laboratory of Pattern Recognition, CASIA, Beijing, China

{xqli, jjzhang, cqzong}@nlpr.ia.ac.cn

Abstract
Neural machine translation (NMT) becomes a new state of the art and achieves promising translation performance using a simple
encoder-decoder neural network. This neural network is trained once on the parallel corpus and the fixed network is used to translate
all the test sentences. We argue that the general fixed network parameters cannot best fit each specific testing sentences. In this paper,
we propose the dynamic NMT which learns a general network as usual, and then fine-tunes the network for each test sentence. The
fine-tune work is done on a small set of the bilingual training data that is obtained through similarity search according to the test
sentence. Extensive experiments demonstrate that this method can significantly improve the translation performance, especially when
highly similar sentences are available.

Keywords: Neural machine translation, online learning, sentence similarity

1. Introduction
Neural machine translation achieved great success recently
(Kalchbrenner and Blunsom, 2013; Sutskever et al., 2014;
Bahdanau et al., 2015). Thanks to the end-to-end train-
ing paradigm and the powerful modeling capacity of neu-
ral network, NMT can produce comparable or even bet-
ter results than traditional statistical machine translation,
only after a few years of development. However, it also
raises some new problems, such as how to use open vocab-
ulary and how to avoid repeating and missing translations.
These problems have been addressed by various recent ap-
proaches (Luong et al., 2015b; Jean et al., 2015; Tu et al.,
2016; Mi et al., 2016).
How to learn a good set of parameters is another challenge
for nowadays deep neural networks. There has been some
work in the field of NMT. Shen et al. (2015) propose to use
task specific optimization function. Specially, they propose
to directly optimize BLEU score instead of likelihood of
the training data. Bengio et al. (2015) take search into con-
sideration during training. In common practice, the decoder
uses gold reference as history during training, but it has to
use generated output as history during testing. To fix this
discrepancy between training and testing, the authors pro-
pose to moderately replace gold reference with generated
output during training. Wiseman and Rush (2016) take a
similar approach and regard training as beam search opti-
mization.
However, no matter how the network parameters are learnt,
they are fixed after the training is finished in all current
NMT practice. And the same model is applied to every
testing sentence. A potential issue of this practice is that a
neural network needs to be able to compress all translation
knowledge into a fixed set of parameters, which is very hard
in reality. So we propose to learn a specific model for each
testing sentence by paying more attention to those related
sentences. In particular, we propose a learning on-the-fly
strategy for parameter fine-tuning. First, a general model
is learnt from the whole training data. Then, for each test-
ing sentence, we find some similar sentence pairs from the
training data and use them to fine tune the parameters.
This procedure resembles how human do translation. Given

a sentence, especially one we are not familiar, we always
would like to search for some similar sentences and see
how they are translated. Various translation knowledge can
be learned from these examples, such as how to translate a
lexicon or phrase in a specific context, and how to reorder
the translation of different blocks according to some syn-
tactic clues. Once our translation knowledge is refreshed,
we can handle the sentence with much higher confidence.
There are two key aspects for the method. One is how to de-
fine similarity and the other is how to find similar sentence
pairs efficiently. For similarity measure, we tried string
based similarity and hidden representation based similar-
ity. Our approach has two additional steps compared with
plain decoding: finding similar sentence pairs and fine tun-
ing. To improve the efficiency, we used the technique of
inverted index for fast retrieval. We also studied how the
size of similar data influences the decoding time.
Experimental results show our approach can effectively im-
prove the translation performance, especially when highly
similar sentences are available.

2. Background
In this section, we will briefly introduce the NMT system
from Bahdanau et al. (2015), which will be used later in
the experiments. However, our approach is model indepen-
dent and can be applied to other NMT systems, such as the
recently proposed convolutional seq2seq network (Gehring
et al., 2017) and the Transformer network (Vaswani et al.,
2017), which do not use recurrent network as the encoder
or decoder.
Given a source sentence s = (s1, s2, ...sm) and its transla-
tion t = (t1, t2, ..., tn), NMT models the translation proba-
bility with a single neural network as follows,

p(t|s) =

n∏
i=1

p(ti|t<i, s) (1)

where the conditional probability is parameterized with the
encoder-decoder framework. The encoder reads the source
sentence and encodes it into a sequence of hidden states

910

Whole

Training

General

Model

Test 1

Subset 1

Model 1

Test 2

Subset 2

Test n

Subset n

...

...

...

Fine

tune

Fine

tune

Fine

tune

Model 2 Model n

Offline Online

Figure 1: System architecture for our method

h = h1, h2, ..., hm with bidirectional GRU.

hi = [
−→
h i;
←−
h i] (2)

−→
h i =

−→
φ (
−→
h i−1, xi) (3)

←−
h i =

←−
φ (
←−
h i+1, xi) (4)

where xi is the embedding of current word, and the recur-
rent activation functions

−→
φ and

←−
φ are gated recurrent units.

The decoder consists of a recurrent neural network and an
attention mechanism. The recurrent neural network com-
putes a hidden state for each target position as follows,

zj = φ(zj−1, yj−1, cj) (5)

where zj−1 is the previous hidden state, yj−1 is the embed-
ding of previous word and cj is the context vector obtained
by the attention machenism, which decides which source
words to look at when predicting current target word.

cj =

m∑
i=1

αi,jhi (6)

and the weight αi,j is calculated as follows,

αi,j =
exp(ei,j)∑m
k=1 exp(ek,j)

(7)

ei,j = fATT (zj−1, hi) (8)

Then the probability of generating a specific target word w
will be computed by

p(tj = w|t<i, s) = softmax(z>j yw) (9)

where yw is the embedding of target word w.

3. Tuning on-the-fly
As illustrated in Figure 1, the learning strategy of our ap-
proach is simple. First, we learn a general model from the
whole training corpus. Then, for each testing sentence, we
extract a small subset from the training data, consisting of
sentence pairs whose source sides are similar to the testing
sentence. This subset is used to fine tune the general model
and a specific model is obtained for the testing sentence.
This procedure can be formulated as two stage optimiza-
tion. The first stage is to to find a set of network parameters
θ to maximize the log likelihood of the whole training data
D = {(s(1), t(1)), (s(2), t(2)), ..., (s(N), t(N))}.

θ̂ = arg max
θ
{L(θ)}

= arg max
θ
{log

N∏
k=1

P (t(k)|s(k); θ)}

= arg max
θ
{
N∑
k=1

|t(k)|∑
i=1

logP (t
(k)
i |s

(k), t
(k)
<i ; θ)}

The second stage is to find a set of parameters in the neigh-
bourhood of θ̂ to maximize the log likelihood of a subset of
data similar to the testing sentence x.

θ̄ = arg max
θ∈N (θ̂)

{log
∏

s(k)∼s

P (t(k)|s(k); θ)}

In the following parts, we will discuss how to evaluate sim-
ilarity between two sentences and how to quickly find sim-
ilar sentences from training data.

3.1. Similarity Measure
There are many methods to evaluate the similarity between
two sentences. In this paper, we consider three of them.
The first is based on Levenshtein distance, which counts at
least how many operations do we need to convert one se-
quence to another. The operations include insertion, dele-
tion and substitution. Levenshtein distance reflects the sur-

911

face similarity of two sentences, and it does not consider
the meaning of the sentence.

simLD(s1, s2) = 1− LD(s1, s2)

max(|s1|, |s2|)
The second measure is based on average word embedding
(Mikolov et al., 2013) of the sentence. Although this sen-
tence representation is simple, it has been shown compet-
itive to many complex sentence representations in many
tasks.

simemb(s1, s2)

= cos(

∑|s1|
i=1 emb(s1[i])

|s1|
,

∑|s2|
j=1 emb(s2[j])

|s2|
)

The third measure is based on the hidden states of the en-
coder in NMT. Unlike word embedding, the hidden states
of the encoder contains context information. What’s more,
the hidden states is learnt in the translation task. For this
similarity measure, we need to run the encoder first with
the general model learnt offline to get the representation of
the testing sentence. This representation will be compared
with the representation of training sentences, which need
only to be calculated once in an offline manner.

simenc(s1, s2) = cos(

∑|s1|
i=1 h1[i]

|s1|
,

∑|s2|
j=1 h2[j]

|s2|
)

where h1[i] and h2[j] are the hidden states of the two sen-
tences, which are calculated according to equations (2) -
(4).

3.2. Finding similar sentences efficiently
The training corpus for neural machine translation usually
contains millions of sentences. For a given testing sentence,
comparing it with every training sentence will be too time
consuming. So we propose to filter the training corpus first
by only considering those which have common words with
the testing sentence, and then compute similarity with the
filtered set.
We use inverted index for fast retrieval. Each training sen-
tence is given a unique index. And we maintain a word
to indexes map, recording the sentence indexes where each
word appears. For efficiency consideration, we ignore the
most frequent words, which usually are function words and
punctuations. Then for each word in a testing sentence, we
find all sentences which contain the word. And the union
of these sentences are used as the filtered set.
However, calculating Levenshtein distance between the
testing sentence and each sentence in the filtered set is still
not fast enough. So we propose to further reduce the set
with a simpler similarity measure, i.e. dice coefficients.

simdice =
2|set(w ∈ s1) ∩ set(w ∈ s2)|
|set(w ∈ s1)|+ |set(s ∈ s2)|

We first calculate the dice coefficients between the testing
sentence and each sentence in the filtered set, then reduce
the size of the set to a given threshold, e.g. 1000, by keeping

the sentences with the highest dice coefficients. Finally, we
will calculate Levenshtein distance for the reduced set.
For the other two similarity measures, calculating cosine
similarity can be done efficiently with linear algebra library.
So there is no need to further reduce the filtered set.

3.3. Fine tuning
The process of fine tuning is almost the same with offline
training. The main difference is that the data size used for
fine tuning is very small, usually containing only a few
sentence pairs. So we need to be careful about overfit-
ting. To this end, we go over the tuning data for only one
pass. Learning rate is another factor need to be attended.
Too large learning rate will cause overfitting, and too small
learning rate will make it hard to learn translation knowl-
edge from the tuning data. According to our pilot study,
optimization methods with adaptive learning rate, such as
Adadelta (Zeiler, 2012), work as well as SGD with care-
fully tuned learning rate, so we adopt it in our experiments.

4. Handle the case with low similarity
We cannot always find very similar sentences to the testing
sentence, especially when there is not enough in-domain
training data. In this case, we propose to find sentences to
maximize phrase coverage. The phrase we mention here
has the same meaning as the one in phrase-based machine
translation, which denotes any consecutive word sequence.
Our motivation is to select a subset of training data which
can cover as many phrases in the testing sentence as possi-
ble. The method to find the subset is shown in Algorithm
1.

Input: testing sentence x, training data D, phrase table
PT

Output: a subset of training data Dx

Dx ← φ;
for i← 1 to max phrase len do

for j ← 1 to |x| − i do
check if x[j : j + i] in PT ;
if True then

foreach phrase ∈ phrase pairs do
find a sentence pair containing phrase;
add the sentence pair to Dx;

end
else

continue;
end

end
end
Algorithm 1: Find a subset to maximize phrase coverage

The algorithm iterates over all possible phrases in the test-
ing sentence and check if it is contained in the phrase table,
which is extracted according to aligned bilingual corpus.
The table contains a list of phrase pairs in the following
form,

source ||| target ||| score1 score2 score3 score4

912

The four scores for each phrase are direct phrase transla-
tion probability φ(t|s), inverse phrase translation probabil-
ity φ(s|t), direct lexical weighting lex(t|s), inverse lexical
weighting lex(s|t), which are used to evaluate the quality
of the phrase pair from different angles. The direct phrase
translation probability and lexical weighting are calculated
as follows. The inverse ones are calculated similarly.

φ(t|s) =
Count(s, t)

Count(s)

lex(t|s) =

|t|∏
i=1

1

|{j|(i, j) ∈ a}|
∑
∀(i,j)∈a

p(ei|fj)

A source phrase may corresponds to many (up to hundreds
or thousands) target phrases, we filter them according to the
average of the above four scores and keep those with the
highest score. If a phrase in the testing sentence matches
some source side in the phrase table, we will find a sentence
pair in the training data which contains the source side and
one of its high-score target side. Since there may be many
sentence pairs containing such phrase pair, we choose one
with the largest likelihood as follows, which means the sen-
tence pair is simple and easy to learn.

(ŝ, t̂) = arg max
phrase in (s,t)

|t|∏
i=1

P (ti|t<i, s; θ)

The translation probability of each training sentence pair is
calculated offline with the general network parameters.
We don’t use the phrase pairs as training data to fine-tune
the network parameters. There are two reasons. First, con-
text information is not available for choosing the proper
phrase translation. Second, training on phrase pairs will
harm the recurrent weights of the network, because they
are not complete sentences1.

5. Experiments
We evaluate our proposed method on the Chinese to En-
glish translation task. Translation quality is measured by
the BLEU metric (Papineni et al., 2002).

5.1. Datasets
We conduct experiments on two datasets. One is on the
United Nations Parallel Corpus2, which is composed of
official records and other parliamentary documents of the
United Nations. Since this data is from a narrow domain, it
is relatively easy to find similar sentences for many testing
sentences. The training data contains 1M sentence pairs
extracted from the corpus, and the testing data contains 5
groups of sentence pairs, with 200 sentence pairs in each
group. The most similar3 sentence we can find for the sen-
tences in each group falls into the similarity range of 0-0.2,
0.2-0.4, 0.4-0.6, 0.6-0.8 and 0.8-1.0, respectively. We also

1We also tried to fix the recurrent weights and tune the word
embeddings only, it performs better than tuning all weights, but
still worse than the approach of tuning on complete sentences.

2http://conferences.unite.un.org/UNCorpus
3The similarity is calculated based on Levenshtein distance.

0.54

0.55

0.56

0.57

0.58

0.59

0.6

0.61

0.62

1 2 4 8 16 32 64 128

B
LE

U

#SEN

LD

EMB

ENC

Figure 2: Performance with different similarity measures
when different number of similar sentences are used

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0

B
LE

U

similarity range

LD

EMB

ENC

Figure 3: Performance with different similarity measures
on testing data with different similarity range

randomly selected 1,000 sentence pairs as the development
set.
The training data of the other dataset is selected from
LDC4, which contains about 1.2M sentence pairs, whose
sources ranges from news, laws, hansard records, weblogs,
spoken dialogues, etc. And we use NIST 03 as develop-
ment set, and NIST 04 to 06 as testing set. In contrast to
the UN data, we can hardly find very similar sentences to
the testing one in this setting.

5.2. Experiment Setting
The hyperparameters used in our network are described as
follows. We limit both the source and target vocabulary
to 30k in our experiments. The number of hidden units
is 1,000 for both the encoder and decoder. And the em-
bedding dimension is 500 for all source and target tokens.
The network parameters are updated with the Adadelta al-
gorithm for both training and fine tuning.
When finding similar sentences based on phrase coverage,
we keep top two target phrase for each source phrase. And
if a source phrase appears more than 1,000 times in the
bilingual corpus, it will be discarded, because it’s unnec-
essary to re-learn how to translate these common phrases.

5.3. Experiments on UN Data
We first conduct experiments on the UN corpus, studying
which similarity measure is better, and how many similar
sentences should be used against each similarity range.

4https://www.ldc.upenn.edu/

913

System 0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1

baseline 36.45 46.78 58.06 60.64 60.52
fine-tune 37.23 48.25 63.79 71.73 78.21

Table 1: Best performance on each group of UN testing
data

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 4 8 16 32 64 128

B
LE

U

#SEN

0.0-0.2

0.2-0.4

0.4-0.6

0.6-0.8

0.8-1.0

Figure 4: How the size of similar data influence the perfor-
mance of testing data with different similarity range

5.3.1. Similarity Measure
Figure 2 shows the performances of the three similarity
measures when different number of similar sentences are
used. There are two observations according to this fig-
ure. First, the performance of the similarity based on Lev-
enshtein distance is always better than the other two, the
similarity based on encoder states is slightly worse, and
the similarity based on average word embedding is the
worst. Since Levenshtein distance only cares string sim-
ilarity, similar sentences found according to this measure
will have more words in common with the testing sentence,
thus more parameters related to the word embedding can
be updated. And the encoder states takes context informa-
tion into consideration when compared with averaged word
embedding, so it has better performance.
Second, the performance gap between different similarity
measures become smaller when more similar sentences are
used. This is due to the fact that there will be a larger over-
lapping in the sentences found by the three measures when
more sentences are used.
To further check the difference between the three measures,
we fix the number of sentences used for fine tuning as 4,
and show the performance of the three measures on testing
sentences in different similarity range in Figure 3. It can be
seen from the figure that, when very un-similar (0-0.4) or
very similar (0.8-1.0) sentences can be found for the testing
sentence, the performances of the three measures have lit-
tle difference. When the sentences in a relatively high range
(0.4-0.8), especially in (0.6-0.8), can be found for the test-
ing sentence, the performance of the Levenshtein distance
based similarity is obviously better.

5.3.2. Data Size
According to Figure 2, using only 1 similar sentence for
fine-tuning performs best. However, this figure only shows
the overall performance on the whole testing data. If we
dive into testing sentences with different similarity range,
the trend will be different, as shown in Figure 4. We adopt

0

1

2

3

4

5

6

7

0 1 2 4 8 16 32 64 128

ti
m

e
 (

s)

#SEN

Figure 5: How time cost increases while more sentences
are used for fine-tuning

System 04 05 06 Avg.

baseline 36.06 32.74 34.85 34.55
fine-tune 37.43 34.01 35.77 35.74
fine-tune (phrase) 38.04 34.41 35.41 35.99

Table 2: Experimental results for LDC data

the Levenshtein distance based similarity in this experi-
ment. It can be seen from the figure that, if very similar
sentences (0.4-1.0) can be found for the testing sentence,
using only 1 similar sentence can greatly improve the per-
formance, using more does not provide further help and
may even degrade the performance. However, when the
found sentences are not very similar (0-0.4), the improve-
ment brought by fine-tuning is much smaller, and using
more sentences, such as 16, is better than using one. Less
sentences will lead to more severe overfitting, which will
make the model remember how to reproduce the transla-
tions of the sentences. This is desirable when very similar
sentences can be found, but it will produce negative effect
otherwise.

The best performance we can get for each group of testing
sentences are shown in Table 1. It can be seen from the
table that more than 10 BLEU points can be gained when
we can find very similar (0.6-1) sentences to the testing one.
However, if we cannot find very similar sentences (0-0.4),
only minor (around 1 BLEU point) improvement can be
gained.

5.3.3. Influence on Efficiency

The influence of data size on efficiency is shown in Fig-
ure 5. The time cost in the figure only includes fine-tuning
time and decoding time. The retrieval time, i.e., time of
finding similar sentences, is not shown because it is rela-
tively small compared to the other two. Retrieval with edit
distance measure is the slowest one. But it is still less than
1/3 of the decoding time. We can see from the figure if
less or equal than 32 sentences are used for fine-tuning for
each testing sentence, the time cost is controlled within two
times of the baseline. If we use 128 sentences, the time cost
increases to 4 times.

914

input 再次要求以色列向秘书长提供一切便利和协助,以执行本决议
reference calls once again upon israel to render all facilities and assistance to the secretary - general

in the implementation of the present resolution
sim. 再次要求以色列向秘书长提供一切便利以执行本决议
trans. of sim. calls once more upon israel to render all facilities to the secretary - general in the imple-

mentation of the present resolution
baseline reiterates its request to the secretary - general to provide all facilities and assistance to the

secretary - general for the implementation of the present resolution
ours calls once more upon israel to render all facilities and assistance to the secretary - general

in the implementation of the present resolution

input 经讨论商定，去掉方括号，保留其中的内容。
reference after discussion it was agreed to delete the square brackets and retain the contents therein

.
sim. 工作组商定，去掉该款的方括号。
trans. of sim. the working group agreed to remove square brackets from this paragraph .
baseline after discussion , it was agreed that the removal of the content would be deleted .
ours after discussion , it was agreed to remove square brackets and retain the contents of it .

Table 3: Translation examples of our method

5.4. Experiments on LDC Data
In this experiment, we can only find similar sentences in
the range of 0-0.4 for more than 90% of the testing sen-
tences. And according to our study on the development set,
the number of sentences used for fine-tuning needs to be
increased to 128 to get the best performance when the sim-
ilarity is low. We think the reason is due to the diversity
of the training data. Sentences in the low similarity range
may have totally different topics and styles with the testing
one. In order to avoid the influence of these unwanted data,
more sentences need to be used.
The performances on the testing data are shown in Table 2.
They are obtained with the following setting, if very similar
sentences (0.4-1) can be found, we use only 1 sentence for
fine-tuning, otherwise we use 128 sentences. On average,
1.2 BLEU points can be gained on the three testing sets,
which is consistent with the experimental results on the UN
dataset when very similar sentences cannot be found.
The performances of finding similar sentences based on
phrase coverage are also shown in the table. The average
improvement is 1.45 BLEU points, slightly better than the
approach of finding similar sentences directly. And the av-
erage sentence number used for fine-tuning is 31, much less
than 128. So the time cost is almost halved (see Figure 5).

5.5. Result Analysis
We show two examples in Table 3. The above one is the
case where highly similar sentence can be found to the test-
ing sentence. The only difference between the input sen-
tence and the similar sentence is that there are two extra
words ”和协助” (and assistance) and an extra comma. Af-
ter fine-tuning, the model remembers how to generate the
translation for the similar sentence. Based on the back-
bone, it can produce a correct translation for the testing
sentence with a minor modification. Whereas the baseline
skips the source word ”以色列” (Israel) and translates the
source word ”秘书长” (secretary - general) twice.
In the lower example, we can only find a not so simi-
lar sentence to the testing one, with a similarity score of

0.31. However, the sentence pair found in the example can
remind the model how to translate the phrase “方括号”,
whose translation is missing in the baseline system.

6. Related Work
After a few pioneer work in exploring neural features in
SMT systems (Zhang et al., 2014; Devlin et al., 2014),
NMT quickly become the dominant approach for machine
translation. Kalchbrenner and Blunsom (2013) and Cho et
al. (2014) first propose to use the encoder-decoder archi-
tecture to do sequence to sequence mapping. At the same
time, Sutskever et al. (2014) apply it in end-to-end machine
translation. Bahdanau et al. (2015) propose the attention
mechanism to dynamically attend to different source words
when generating different target words, which becomes the
default component of current NMT systems.
Recent advances in NMT include fixing defects of the
model, such as inability to use large vocabulary (Luong
et al., 2015b; Jean et al., 2015), unawareness of cover-
age (Tu et al., 2016; Mi et al., 2016) etc, making use
of mono-lingual data (Cheng et al., 2016; Sennrich et al.,
2015), extending to multi-lingual(Dong et al., 2015; Zoph
and Knight, 2016) and multi-modal (Hitschler and Riezler,
2016) scenarios.
In statistical machine translation, Liu et al. (2012) pro-
poses a local training method which also learns sentence-
wise weights based on similar sentences. However, since
there are only about a dozen of features in SMT, such as
translation score and language model score, adjusting the
relative weights of these features cannot making full use of
the similar sentences. There are some other work making
use of similar sentences by means of translation memory
(Koehn and Senellart, 2010; Ma et al., 2011; Bertoldi et
al., 2013; Wang et al., 2013; Li et al., 2014). However,
they need carefully designed features and only show im-
provement when similarity level is high. In comparison,
our method don’t need any modification to the model, and
it can bring improvement in all similarity level.

915

Finding similar sentences with inverted index is fast enough
in our experiments. If the training data is much larger
than ours, locality sensitive hash such as MinHash (Broder,
1997) may be a better choice.

7. Conclusion and Future Work
In this paper, we propose to learn a specific model for each
testing sentence. This is accomplished by two-stage train-
ing. An general model is learnt offline on the whole bilin-
gual training corpus. During testing, a small batch of simi-
lar sentences are extract to fine-tune the network parameters
on-the-fly. Experimental results demonstrate the effective-
ness of this approach. When highly similar sentences are
available, the improvement can exceed 10 BLEU points.
In the future, we plan to test the effectiveness of our method
with different network architechtures, such as stacked
LSTM (Luong et al., 2015a), and different training objec-
tives, such as MRT (Shen et al., 2015). Since our method is
model independent, we also plan to apply it to other tasks
beyond machine translation.

8. Acknowledgment
The research work descried in this paper has been sup-
ported by the National Key Research and Development
Program of China under Grant No. 2016QY02D0303 and
the Natural Science Foundation of China under Grant No.
61333018 and 61673380.

9. Reference
Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural ma-

chine translation by jointly learning to align and trans-
late. In ICLR 2015.

Bengio, S., Vinyals, O., Jaitly, N., and Shazeer, N. (2015).
Scheduled sampling for sequence prediction with recur-
rent neural networks. In Advances in Neural Information
Processing Systems, pages 1171–1179.

Bertoldi, N., Cettolo, M., and Federico, M. (2013). Cache-
based online adaptation for machine translation en-
hanced computer assisted translation. Proceedings of the
XIV Machine Translation Summit, pages 35–42.

Broder, A. Z. (1997). On the resemblance and contain-
ment of documents. In Compression and Complexity of
Sequences 1997. Proceedings, pages 21–29. IEEE.

Cheng, Y., Xu, W., He, Z., He, W., Wu, H., Sun, M., and
Liu, Y. (2016). Semi-supervised learning for neural ma-
chine translation. arXiv preprint arXiv:1606.04596.

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau,
D., Bougares, F., Schwenk, H., and Bengio, Y. (2014).
Learning phrase representations using rnn encoder–
decoder for statistical machine translation. In Proceed-
ings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1724–
1734, Doha, Qatar, October. Association for Computa-
tional Linguistics.

Devlin, J., Zbib, R., Huang, Z., Lamar, T., Schwartz, R. M.,
and Makhoul, J. (2014). Fast and robust neural network
joint models for statistical machine translation. In Pro-
ceedings of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers),
pages 1370–1380.

Dong, D., Wu, H., He, W., Yu, D., and Wang, H. (2015).
Multi-task learning for multiple language translation. In
Proceedings of the 53rd Annual Meeting of the ACL and
the 7th International Joint Conference on Natural Lan-
guage Processing, pages 1723–1732.

Gehring, J., Auli, M., Grangier, D., Yarats, D., and
Dauphin, Y. N. (2017). Convolutional sequence to se-
quence learning.

Hitschler, J. and Riezler, S. (2016). Multimodal piv-
ots for image caption translation. arXiv preprint
arXiv:1601.03916.

Jean, S., Cho, K., Memisevic, R., and Bengio, Y. (2015).
On using very large target vocabulary for neural machine
translation. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics and
the 7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages 1–10,
Beijing, China, July. Association for Computational Lin-
guistics.

Kalchbrenner, N. and Blunsom, P. (2013). Recurrent
continuous translation models. In Proceedings of the
2013 Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1700–1709, Seattle, Washing-
ton, USA, October. Association for Computational Lin-
guistics.

Koehn, P. and Senellart, J. (2010). Convergence of transla-
tion memory and statistical machine translation. In Pro-
ceedings of AMTA Workshop on MT Research and the
Translation Industry, pages 21–31.

Li, L., Way, A., and Liu, Q. (2014). A discriminative
framework of integrating translation memory features
into smt. In Proceedings of the 11th Conference of the
Association for Machine Translation in the Americas,
volume 1, pages 249–260.

Liu, L., Cao, H., Watanabe, T., Zhao, T., Yu, M., and Zhu,
C. (2012). Locally training the log-linear model for smt.
In Proceedings of the 2012 Joint Conference on Empiri-
cal Methods in Natural Language Processing and Com-
putational Natural Language Learning, pages 402–411.
Association for Computational Linguistics.

Luong, T., Pham, H., and Manning, C. D. (2015a). Effec-
tive approaches to attention-based neural machine trans-
lation. In Proceedings of the 2015 Conference on Em-
pirical Methods in Natural Language Processing, pages
1412–1421, Lisbon, Portugal, September. Association
for Computational Linguistics.

Luong, T., Sutskever, I., Le, Q., Vinyals, O., and Zaremba,
W. (2015b). Addressing the rare word problem in neu-
ral machine translation. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers),
pages 11–19, Beijing, China, July. Association for Com-
putational Linguistics.

Ma, Y., He, Y., Way, A., and van Genabith, J. (2011).
Consistent translation using discriminative learning: a
translation memory-inspired approach. In Proceedings
of the 49th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technologies-

916

Volume 1, pages 1239–1248. Association for Computa-
tional Linguistics.

Mi, H., Sankaran, B., Wang, Z., and Ittycheriah, A. (2016).
A coverage embedding model for neural machine trans-
lation. arXiv preprint arXiv:1605.03148.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and
Dean, J. (2013). Distributed representations of words
and phrases and their compositionality. In Advances
in neural information processing systems, pages 3111–
3119.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002).
Bleu: a method for automatic evaluation of machine
translation. In Proceedings of 40th Annual Meeting of
the Association for Computational Linguistics, pages
311–318, Philadelphia, Pennsylvania, USA, July. Asso-
ciation for Computational Linguistics.

Sennrich, R., Haddow, B., and Birch, A. (2015). Improv-
ing neural machine translation models with monolingual
data. arXiv preprint arXiv:1511.06709.

Shen, S., Cheng, Y., He, Z., He, W., Wu, H., Sun, M., and
Liu, Y. (2015). Minimum risk training for neural ma-
chine translation. arXiv preprint arXiv:1512.02433.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence
to sequence learning with neural networks. In Advances
in neural information processing systems, pages 3104–
3112.

Tu, Z., Lu, Z., Liu, Y., Liu, X., and Li, H. (2016).
Coverage-based neural machine translation. arXiv
preprint arXiv:1601.04811.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. (2017).
Attention is all you need.

Wang, K., Zong, C., Su, K.-Y., et al. (2013). Integrating
translation memory into phrase-based machine transla-
tion during decoding. In ACL (1), pages 11–21.

Wiseman, S. and Rush, A. M. (2016). Sequence-to-
sequence learning as beam-search optimization. arXiv
preprint arXiv:1606.02960.

Zeiler, M. D. (2012). Adadelta: an adaptive learning rate
method. arXiv preprint arXiv:1212.5701.

Zhang, J., Liu, S., Li, M., Zhou, M., and Zong, C. (2014).
Bilingually-constrained phrase embeddings for machine
translation. In Proceedings of the 52nd Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 111–121.

Zoph, B. and Knight, K. (2016). Multi-source neural trans-
lation. arXiv preprint arXiv:1601.00710.

917

	Introduction
	Background
	Tuning on-the-fly
	Similarity Measure
	Finding similar sentences efficiently
	Fine tuning

	Handle the case with low similarity
	Experiments
	Datasets
	Experiment Setting
	Experiments on UN Data
	Similarity Measure
	Data Size
	Influence on Efficiency

	Experiments on LDC Data
	Result Analysis

	Related Work
	 Conclusion and Future Work
	Acknowledgment
	Reference

