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Abstract

The paper presents several configurations of deep neural networks aimed at the task of coreference resolution for Polish. Starting with
the basic feature set and standard word embedding vector size we examine the setting with larger vectors, more extensive sets of mention
features, increased number of negative examples, Siamese network architecture and a global mention clustering algorithm. The highest
results are achieved by the system combining our best deep neural architecture with the sieve-based approach – the cascade of rule-based
coreference resolvers ordered from most to least precise. All systems are evaluated on the data of the Polish Coreference Corpus featuring
540K tokens and 180K mentions. The best variant improves the state of the art for Polish by 0.53 F1 points, reaching 81.23 points of the
CoNLL metric.
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1. Introduction
Coreference resolution, the task of clustering textual frag-
ments that refer to the same entity in the discourse world,
has been successfully tackled for Polish in numerous
configurations, starting with a rule-based model (Ogrod-
niczuk and Kopeć, 2011) through machine-learning (Kopeć
and Ogrodniczuk, 2012) and projection-based approaches
(Ogrodniczuk, 2013) up to the newest multi-pass sieve set-
ting (Nitoń and Ogrodniczuk, 2017). In this paper we
present the first deep neural network resolver for Polish,
further improving the state of the art. For English, the state-
of-the-art coreference resolution systems are also based on
deep neural networks (Clark and Manning, 2016), (Wise-
man et al., 2016). We were inspired and motivated by these
works.
The data for our experiments, as for all previous configu-
rations, come from the Polish Coreference Corpus (Ogrod-
niczuk, 2015, PCC), a large corpus of Polish general nom-
inal coreference manually annotated over the texts of the
National Corpus of Polish (Przepiórkowski et al., 2012)1

and Rzeczpospolita Corpus (Presspublica, 2002). The cor-
pus features broad understanding of mentions (e.g. with
included relative clauses or appositions, nesting, disconti-
nuities and zero anaphora) and contains almost 1800 doc-
uments from 14 genres, 540K tokens, 180K mentions and
128K coreference clusters.
Coreference scores on the test set are measured using
gold mentions on input with MUC (Vilain et al., 1995),
B3 (Bagga and Baldwin, 1998), and CEAFE (Luo, 2005)
metrics averaging them according to the CoNLL-2011 ap-
proach (Pradhan et al., 2011) to track influence on differ-
ent coreference dimensions (the B3 measure being based on
mentions, MUC on links, and CEAFE on entities). CEAFM
(Luo, 2005) and BLANC (Recasens and Hovy, 2011) are
also presented for consideration. Metrics were calculated
using Scoreference2, a mention detection and coreference
resolution evaluation tool (Ogrodniczuk et al., 2015).

1Pol. Narodowy Korpus Języka Polskiego (NKJP), see http:
//nkjp.pl.

2http://zil.ipipan.waw.pl/Scoreference

2. The Baseline

In all our experiments we used 90% texts from the PCC as
the training set and 10% as the test set. Text type balance
was maintained in this division.
Our neural networks return a single output (a value between
0 and 1), which is interpreted as the probability of two men-
tions being coreferent. Mentions are then linked into coref-
erence chains with a certain clustering algorithms. We ex-
perimented with both mention-based and entity-based set-
tings. The mention-based algorithm connects each anaphor
with an antecedent for which neural network returned the
best prediction score. The entity-based algorithm connects
each anaphor with a mention group for which the neural
network returned the best average prediction score (which
is average prediction between the anaphor and each men-
tion being part of the tested mention group).
For both types of algorithms the prediction must be higher
than selected connection threshold, i.e. the value above
which two mentions are considered coreferent. Each ex-
periment (excluding Experiment 3) was tested on a set of
various different pre-selected connection threshold values:
0.5, 0.75, 0.85, 0.95, and 0.99.

2.1. Input Features

Each training features vector gathers information about an-
tecedent, anaphor and antecedent-anaphor pair. Each men-
tion features vector consists of:

• word embedding vectors (Wawer, 2015) for the men-
tion head word, the first word in the mention, two
words preceding the mention and two words follow-
ing the mention

• averages of embeddings vectors calculated for five
words preceding the mention, five words following the
mention, the words of the mention and the words of
the sentence in which the mention occurred

• binary features marking whether the mention is of a
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nominal type3, pronominal type4, a zero type5 or other.

Each pair’s features vector consists of the distances be-
tween mentions in the pair measured in words and in men-
tions6, and a set of binary features marking whether:

• mentions in a pair intersect

• mentions are identical (two features: without lemmati-
zation or using lemmatized mentions strings, obtained
with Morfeusz morphological analyser7 (Woliński,
2014) and Pantera tagger8 (Acedański, 2010))

• mentions are in the same sentence

• mentions are in the same paragraph

• one mention is an acronym of the other

• the antecedent contains the rarest (in terms of fre-
quency) word from the anaphora9.

In this experiment we used the word embedding vectors of
the size 50. Each training example (pair of mentions) has
1147 features (554 for each mention and 39 pair features
describing their relations) and is labeled with 1 or 0 mark-
ing whether mentions are coreferent or not.

2.2. Network Architecture
Input features described above are concatenated into a sin-
gle vector and act as input to our neural network. Thus, the
network takes an input vector of 1147 units and is passed
through a fully connected network with a single output (a
value between 0 and 1). The output is interpreted as the
probability of two mentions being coreferent. The network
has 3 hidden layers, where a number of units in subsequent
layers are 500, 300, and 100. In hidden layers we use REC-
TIFIED LINEAR UNIT — RELU (Nair and Hinton, 2010) as
an activation function and a sigmoid function in the output
layer.

2.3. Training Details
The network is trained by finding the parameters (weights)
to minimize the loss function. Regarding the loss, we fol-
low a typical choice, namely a binary cross entropy func-
tion. During the training, the loss was minimized with

3Nominal mentions are all nominal phrases whose syntac-
tic head is a noun marked with a subst (general noun)
or ger (gerund) tags (see http://nkjp.pl/poliqarp/
help/en.html for a concise tag descriptions).

4Pronominal mentions are first-, second- (annotated as
ppron12) or third-person pronouns (ppron3).

5Zero mentions are marked with tags corresponding to verbal
forms (fin, praet, bedzie, winien, aglt, and impt).

6Distances are binned into one of the buckets [0,1,2,3,4,5-7,8-
15,16-31,32-63,64+,discontinuous] and then represented as bi-
nary features (last bucket is reserved for situation when one men-
tion is between parts of second discontinuous mention)

7http://sgjp.pl/morfeusz/
8http://zil.ipipan.waw.pl/PANTERA
9For the purpose of checking word rarity we used a word fre-

quency list extracted from the balanced subcorpus of the National
Corpus of Polish (Przepiórkowski et al., 2012).

ADAM (Kingma and Ba, 2014) for 2 epochs with mini-
batches of size 128. We experimented with longer training
(more epochs) but the network became overfitted. We used
batch normalization (Ioffe and Szegedy, 2015) in each hid-
den layer and the network was regularized using dropout
(Srivastava et al., 2014) with a rate of 0.2.
Part of input features consists of word embeddings and
these vectors are treated as static and are not modified dur-
ing training.
Training set had 426 thousands pairs of mentions, equally
split between positive and negative pairs. The neural net-
work model was implemented with KERAS (Chollet and
others, 2015) using TENSORFLOW (Abadi et al., 2016) as
a backend. For training we used the GPU (K40 TESLA)
and the training was completed within a few minutes
(around 2 minutes per epoch). The implemented models
are publicly available at http://zil.ipipan.waw.
pl/Corneferencer.

2.4. The Results

First we evaluated the neural network model on the test set
consisting of 40K mention pairs. Our baseline model accu-
racy is 72.27%, which means approximately 72% of exam-
ples are classified correctly.
Then we evaluated the neural network on whole texts (not
only selected mention pairs) from the test set using THE
CORNEFERENCER10 system specially implemented for this
task. The best score was acquired for the mention-based
clustering algorithm with the connection threshold 0.99
(see row labeled as Baseline in Table 1 for results).

3. The Experiments

3.1. Experiment 1: Larger Vectors
After experimenting with the basic feature set we tested
different architectures in pursuit of a better, more robust
model. The first improvement featured larger word embed-
ding vectors (of the size 300 instead of 50), which gave
6647 features for each training example. However, despite
much richer embeddings, we did not observe any signifi-
cant improvements in the evaluation metrics. The best re-
sults were acquired for mention-based clustering algorithm
with 0.99 connection threshold (see Experiment 1 in Ta-
ble 1). It might be the case that 50-value embeddings are
just enough to capture similarities (or any other relations)
relevant to our task.

3.2. Experiment 2: More Features
In the next step we brought back embeddings vector size to
50 and added extra input features to the training examples.
We selected the features proved best in other coreference
resolution systems for Polish, e.g. the model described in

10CORNEFERENCER (http://zil.ipipan.waw.pl/
Corneferencer) is a neural network based tool for performing
coreference resolution. It is the final product of the research
described in this article, it was used to get system annotation for
each experiment using for this task pretrained neural networks.
Default CORNEFERENCER configuration is the one described as
Experiment 5.
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(Ogrodniczuk et al., 2015) and in (Nitoń and Ogrodniczuk,
2017).
Additional binary mention features are e.g. features mark-
ing whether the mention:

• is in first or second person

• starts with a demonstrative pronoun

• starts with a demonstrative pronoun and is nominal

• starts with a demonstrative pronoun and is pronominal
or zero

• is a reflexive pronoun

• is first in a sentence

• is a personal pronoun or zero mention (false, if not one
of them)

• head contains a digit

• contains a letter

• is post modified (a head word is not the last word in
the mention).

Additional binary pair features are features marking
whether:

• distance between mentions in sentences is 1, 2 or more
(3 features)

• their gender values agree (without distinction of mas-
culine gender into subtypes)

• the string of one mention starts with second mention’s
string

• the string of one mention ends with second mention’s
string

• the string composed of the initial letters of all the cap-
italized words in the mention string produces a string
matching a head word of the second mention

• mentions are in the same sentence, the anaphor is
pronominal, and the antecedent is the first in paragraph

• mentions are in the same sentence, their persons and
numbers agree, and the antecedent is the first in para-
graph

• mentions are in adjacent sentences, are adjacent
mentions (without any other mention in between),
their persons and numbers agree and the anaphor is
pronominal

• mentions are in adjacent sentences, are adjacent men-
tions and the anaphor is pronominal

• they safisfy additional conditions for six knowledge-
based features — 3 PLWORDNET-based and
3 WIKIPEDIA-based, closely described in (Ogrod-
niczuk et al., 2015).

We also added string kernel features matching whole men-
tions or their heads (2 features).
As suspected, the features which are working well in other
systems also significantly increased the evaluation metrics
of our solution. Best results were acquired for mention-
based clustering algorithm with 0.95 connection threshold
(see Experiment 2 in Table 1).

3.3. Experiment 3: Siamese Networks
Next we tried a different network architecture called the
Siamese network (Bromley et al., 1994). Networks of
this type are particularly useful for tasks that involve find-
ing similarity or a relationship between two comparable
things. The network consists of two identical subnetworks
(weights are shared) to process two inputs followed by an-
other module which produces the final output. We used
here same embeddings vector size and features as in Exper-
iment 2 with the difference that one network uses all men-
tion features of the antecedent and features corresponding
to the tested mention pair and the other uses all mention
features for the anaphora and also mention pair features.
So we are using same pair features at the input of both net-
works.
Typically, Siamese networks are applied to determine
whether two faces belong to the same person or to figure out
whether two signatures come from the same person. Unfor-
tunately, this architecture did not bring us any improvement
over the baseline results (see Experiment 3 in Table 1 for the
best acquired, in this experiment, results).

3.4. Experiment 4: More Negative Examples
In the next experiment we used features, embeddings vec-
tor size, and architecture from Experiment 2 but extended
the training set by additional 600 thousands negative pairs
of mentions, also including singletons. Dominance of neg-
ative examples over positive is a typical situation in real
texts, where most pairs are not coreferent. Thus our new
training set should correspond better to a real test scenario.
The best results were obtained for mention-based clustering
algorithm with 0.85 connection threshold (see Experiment
4 in Table 1) and improve the metrics by over 3%.

3.5. Experiment 5: All2all Mention-based
Clustering Algorithm

The mention-based detection algorithm, in its base form,
considers only mentions preceding the mention to be clus-
tered. In this experiment we checked all possible mention
pairs regardless their positions in the text. We used here
the same configuration (embeddings vector size, network
architecture, features) as in Experiment 4.
Best results were acquired for 0.85 connection threshold
(see Experiment 5 in Table 1). We refer later to this cluster-
ing algorithm as all2all.

3.6. Experiment 6: Mixed Architecture
In the last experiment we simulated mixing the sieve-based
architecture described in (Nitoń and Ogrodniczuk, 2017)
with our best neural system configuration (Experiment 5).
To acquire this we preprocessed input data with the sieve-
based coreference resolver using different sieve configura-
tions and then by CORNEFERENCER tool using the all2all
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System
MUC [%] B3 [%] CEAFM [%]

P R F1 P R F1 P R F1
Baseline 71.87 40.15 51.52 94.87 79.35 86.42 78.65 78.65 78.65
Experiment 1 64.96 44.46 52.79 91.72 80.43 85.71 77.79 77.79 77.79
Experiment 2 62.80 59.30 61.00 87.64 83.72 85.64 78.85 78.85 78.85
Experiment 3 55.67 55.07 55.37 84.41 82.39 83.39 75.69 75.69 75.69
Experiment 4 72.64 59.66 65.51 91.08 83.95 87.37 82.08 82.08 82.08
Experiment 5 69.31 65.28 67.23 87.19 86.01 86.59 81.14 81.14 81.14
Experiment 6 70.34 68.12 69.21 86.76 86.72 86.74 81.69 81.69 81.69

System
CEAFE [%] BLANC [%] CoNLL

P R F1 P R F1 [%]
Baseline 77.02 90.37 83.16 85.08 60.08 65.42 73.70
Experiment 1 77.99 87.66 82.54 78.23 62.91 67.59 73.68
Experiment 2 82.76 84.57 83.65 76.57 68.16 71.54 76.76
Experiment 3 81.19 81.54 81.37 70.54 66.13 68.05 73.37
Experiment 4 84.33 90.24 87.19 76.97 69.65 72.70 80.02
Experiment 5 85.92 87.88 86.89 68.45 74.03 70.85 80.24
Experiment 6 87.21 88.29 87.75 68.10 74.71 70.86 81.23

Table 1: Comparison of coreference resolution scores for different experiments with neural networks

System
MUC [%] B3 [%] CEAFM [%]

P R F1 P R F1 P R F1
Ruler 51.38 65.61 57.63 78.78 84.99 81.76 74.57 74.57 74.57
Bartek–3 61.14 67.90 64.34 84.08 86.09 85.07 79.81 79.81 79.81
Bartek–S1 70.30 65.35 67.73 87.91 85.38 86.63 81.74 81.74 81.74
Neural 69.31 65.28 67.23 87.19 86.01 86.59 81.14 81.14 81.14
Mixed 70.34 68.12 69.21 86.76 86.72 86.74 81.69 81.69 81.69

System
CEAFE [%] BLANC [%] CoNLL

P R F1 P R F1 [%]
Ruler 84.89 75.65 80.00 70.69 68.53 69.55 73.13
Bartek–3 86.99 83.22 85.06 75.67 73.01 74.26 78.16
Bartek–S1 86.56 88.96 87.74 70.19 71.73 70.93 80.70
Neural 85.92 87.88 86.89 68.45 74.03 70.85 80.24
Mixed 87.21 88.29 87.75 68.10 74.71 70.86 81.23

Table 2: Comparison of coreference resolution systems
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clustering algorithm. As we can see in Table 1 it brings
some improvement for coreference resolution even over
sieve-based solution (see Table 2). We think that is due to
the fact that such system uses more complex mechanisms
in cases where simple rules fail. It also merges initial (de-
tected by sieve system) mention groups by hardest links be-
tween their mentions based on the prediction made by the
neural network.
Best results were acquired while preprocessing data with
full set of sieves described in (Nitoń and Ogrodniczuk,
2017) as best configuration and 0.95 connection threshold
(see Experiment 6 in Table 1).

4. Summary
Table 2 presents comparison of our new coreference reso-
lution strategies (Neural and Mixed) with Bartek–S1, sieve-
based solution described in (Nitoń and Ogrodniczuk, 2017)
and two existing coreference resolution systems for Polish
described in detail in (Ogrodniczuk et al., 2015). RULER
is a simple rule-based tool with design following (Haghighi
and Klein, 2007) and BARTEK–3 is an adaptation of the
BART system for Polish, being a machine learning-based
solution.
The comparison shows that using solely neural network-
based system we can almost reach the state of the art for
coreference resolution score for Polish. Combining the
sieve-based architecture and the best acquired neural net-
work configuration has led to the best score for Polish
coreference resolution (0̃.5% improvement in CoNLL over
the best sieve-based system). We think that there is still
room for improvement, specifically by trying different neu-
ral architectures and/or using knowledge from sieves in the
training phase of a neural net. The main disadvantage of
using neural networks is the clustering time, which is way
longer than in compared approaches, therefore it is not the
best solution for real-time working tools.
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