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Abstract
Long Short-Term Memory (LSTM) and its variants have been the standard solution to sequential data processing tasks because of their
ability to preserve previous information weighted on distance. This feature provides the LSTM family with additional information
in predictions, compared to regular Recurrent Neural Networks (RNNs) and Bag-of-Words (BOW) models. In other words, LSTM
networks assume the data to be chain-structured. The longer the distance between two data points, the less related the data points are.
However, this is usually not the case for real multimedia signals including text, sound and music. In real data, this chain-structured
dependency exists only across meaningful groups of data units but not over single units directly. For example, in a prediction task over
sound signals, a meaningful word could give a strong hint to its following word as a whole but not the first phoneme of that word.
This undermines the ability of LSTM networks in modeling multimedia data, which is pattern-rich. In this paper we take advantage of
Seq2Tree network, a dynamically extensible tree-structured neural network architecture which helps solve the problem LSTM networks
face in sound signal processing tasks—the unbalanced connections among data units inside and outside semantic groups. Experiments
show that Seq2Tree network outperforms the state-of-the-art Bidirectional LSTM (BLSTM) model on a signal and noise separation task
(CHiME Speech Separation and Recognition Challenge).
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1. Introduction
Recent RNN-based approaches are achieving high perfor-
mance in speech processing tasks, including but not limited
to the signal and noise separation task (Erdogan et al., 2015;
Zhu and Vogel-Heuser, 2014; Wu et al., 2015; Barker et al.,
2015). The underlying hypothesis is that the energy in each
frequency bin over a period of time is continuous and pre-
dictable. However, in real life scenes noises can break in at
any time and intertwine with the sound signal with no pre-
dictable pattern, which undermines these models’ ability to
predict the distribution of noise over frequency bins.
To address the problem of finding correct boundaries of
noises, some variants of the original LSTM network are
used. The current state-of-the-art system on this task ap-
plies BLSTM, which tries to bound noises by foreseeing
future information (Erdogan et al., 2015; Weninger et al.,
2015; Grais et al., 2014). Nevertheless, information from
the future also contains more distant sound signals, which
does not solve the signal superposition problem. Further-
more, we believe the future for speech processing should
be dominated by real-time speech processing techniques,
which BLSTM models are not able to handle.
What’s more important, phonemes in sound signals make
no sense if not combined into “words”, which are not found
in noise signals. So, the sound waveforms should not be
understood as a chain of phonemes, but rather on a “word”
level. This leads to a natural choice of tree structured mod-
eling of the waveforms.
In this paper we introduce two variants of Seq2Tree (Ma et
al., 2018b; Ma et al., 2018a), a novel architecture which ex-
tends LSTM networks to be able to parse sequential input
into a tree structure and show its superiority in decompos-
ing sound and noise signals. Seq2tree network architecture

differs from the standard LSTM since each node inherits the
hidden state not from the previous state in time sequence
but from its parent in the tree structure, based on its posi-
tion predicted by the network itself.
Our evaluation demonstrates the advancement of Seq2Tree
network compared to the BLSTM baseline on the signal
and noise separation task (Barker et al., 2015). Experiments
show that our system shows comparable performance to the
BLSTM implementation, while outperforming it in more
complex scenarios. Further optimization and adjustment to
this task will follow.

2. LSTM Network
RNNs have the advantage of processing input sequences
regardless of their lengths. The network reads an element in
a sequence at a time and passes it to an activation function
recursively together with the current state of this network.
The sequence and elements can be of arbitrary types—for
example, phonemes in a piece of sound when it comes to
the task of speech processing.
Generally the input elements are represented as vectors, and
the state at a certain time t is a distributed representation
with a preset dimension d. Based on the recurrent nature
of RNNs, the state at time t stores the information from all
the states before time t. The commonly accepted activation
functions in RNNs are often an affine transformation of the
previous state ht−1 and the current input xt combined with
a non-linear function σ:

ht = σ(Wxt + Uht−1 + b). (1)

Though RNNs are designed to store previous information,
they are easily trapped by the explosive growth or rapid
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vanishment of the gradient over long distances (Hochreiter,
1998; Hochreiter et al., 2001). This makes it difficult for
RNNs to represent long-term information.
The LSTM network is introduced to deal with this prob-
lem (Hochreiter, 1998; Hochreiter et al., 2001; Zaremba
and Sutskever, 2014; Zaremba et al., 2014). Different from
directly passing the previous state and the current input to
the transition function on which the gradient is calculated,
LSTM uses a memory cell to preserve the longer-term in-
formation. Using the settings in (Zaremba and Sutskever,
2014; Zaremba et al., 2014), the LSTM transition functions
are as follows:

it = σ(W (i)xt + U (i)ht−1 + b(i),

ft = σ(W (f)xt + U (f)ht−1 + b(f),

ot = σ(W (o)xt + U (o)ht−1 + b(o), (2)

ut = tanh(W (u)xt + U (u)ht−1 + b(u),

ct = it � ut + ft � ct−1,
ht = ut � tanh(ct)

where it, ft, ot, ct are the input gate, forget gate, output
gate and the memory cell, respectively, and � refers to
element-wise multiplication. In the equations, the input
gate decides how much information from the new input will
be added to the memory cell. Similarly, the forget gate f
controls how much information to forget from the previous
states, and the output gate limits the amount of informa-
tion to expose. By balancing the incoming and outgoing
information amount, LSTM is able to prevent the gradient
vanishment and explosion problems.
Ordinary LSTM is based on chain-structured sequences.
There exist two common variants of LSTM networks by
structure, namely BLSTM and Multilayer LSTM, which
combines multiple LSTM networks together to provide ad-
ditional information in the prediction at each time step.
Tree LSTM (Tai et al., 2015) could be regarded as one vari-
ation of Multilayer LSTM with the dependency relation re-
versed.

3. Seq2Tree Network

Figure 1: Seq2Tree Network Architecture

The LSTM architectures described in the previous section
all have limits in constructing a tree structure from sequen-

tial input. Though Multilayer LSTM and Tree LSTM net-
works are able to maintain multilevel dependencies, Multi-
layer LSTM exposes children cells to all the other units, and
Tree LSTM requires tree-structured input. These character-
istics limit their use in speech processing tasks where no re-
liable parser exists, especially in the case of online speech
processing. Hence we in this paper apply Seq2Tree net-
work, a dynamic tree-structured neural network architec-
ture we developed, on sound signal processing tasks. Be-
cause of the structural characteristics of sound signal data,
we in this paper introduce two variants to the general idea
of Seq2Tree network—Single Level Seq2Tree and Multi-
layer Seq2Tree architectures. Both variants are able to find
dependencies from adjacent signals, while the Multilayer
Seq2Tree architecture catches deeper, weaker-bounded cor-
relations.
Similar to original LSTM networks, at each time step our
Seq2Tree architecture passes information from a preceding
state with a hidden unit ht, accepts new information from
the input xt gated by an input gate it, controls the output
by an output gate ot, drops unimportant data in an amount
decided by the forget gate ft, and keeps long-term informa-
tion from the beginning of the input sequence in a memory
cell ct. The difference is that instead of taking the previ-
ous state as the preceding state, Seq2Tree networks use one
additional direction gate dt to choose the direction to go
at time step t. The path selection gate is implemented dif-
ferently in Single Level Seq2Tree and Multilayer Seq2Tree
architectures.

3.1. Single Level Seq2Tree
The Single Level Seq2Tree architecture allows at most a
depth of 1 for all the nodes in the generated tree structure.
It is based on a simplified hypothesis that children states
under a parent state do not affect outer units. On speech
processing tasks, for example, this means no two signals
overlap each other if they are not within the exact same
phase.
Since the height of the tree is limited to 2, at each step there
exist only 2 possible directions to go: up and down. The
strategy is that if the predicted direction to go is “up”, the
parent node’s hidden state becomes the input hidden state
ht−1 and the parent hidden state is assigned the hidden state
of the current input after processing it. If the direction is
“down” while the previous state is already a child node, the
new node becomes the sibling of the former one and inher-
its the hidden state from the previous state. Otherwise, the
new unit takes the hidden state from its previous neighbor
and becomes the child of its preceding state.
After processing each state, its parent node’s information
is updated. The forget gate of the child state ft controls
the amount of change to give its parent state. This mecha-
nism is inspired by the Tree LSTM networks. The transi-
tion functions of the Single Level Seq2Tree network are as
follows:

dt = bin(σ(W (d)xt + U (d)ht−1 + b(d))),

hparent = dt

(
hparent
ht−1

)
,

it = σ(W (i)xt + U (i)hparent + b(i)),
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ft = σ(W (f)xt + U (f)(dt

(
0

hparent

)
) + b(f)),

ot = σ(W (o)xt + U (o)hparent + b(o)),

ut = tanh(W (u)xt + U (u)hparent + b(u)), (3)
ct = it � ut + ft � cparent,
ht = ut � tanh(ct),

∆ft = σ(W (f)xt + U (f)ht + b(f)),

cparent = cparent + ∆ft � ct,
hparent = oparent � tanh(cparent).

where bin denotes a binary threshold activation function,
σ represents the sigmoid function, and � is element-wise
multiplication.

3.2. Multilayer Seq2Tree
The Single Level Seq2Tree architecture can perfectly
model the superposition of signals without an overlap of
three or more signals with different phases. However, in
speech processing tasks the boundaries of noise signals are
not necessarily distinct from each other.
To model the more complicated scenarios, a deeper tree
structure is needed so that when noises overlap with each
other, the layer l + 1 represents phonemes which come be-
fore the l − th sound waveform ends. This architecture is
an extension to the Single Level Seq2Tree architecture at
the point that at each time step, there exist three directions
instead of two. Multiple jumps towards the root in one time
step is also allowed. Moreover, at each jump an update gate
is used to control the amount of change on a parent layer,
and the remainder is passed to even higher states in the tree
if there are further jumps. The transition functions differ
from those of Single Level Seq2Tree on parent state selec-
tion and parent state update mechanisms:

dkt = bin(σ(W (d)xt + U (d)hk + b(d))),

hparent =

dkt 6=(0
0)∏

k=0

dkt

(
ht−k−1
ht−k

)
,

it = σ(W (i)xt + U (i)hparent + b(i)),

ft = σ(W (f)xt + U (f)(d0t

(
0

hparent

)
) + b(f)),

ot = σ(W (o)xt + U (o)hparent + b(o)),

ut = tanh(W (u)xt + U (u)hparent + b(u)), (4)
ct = it � ut + ft � ct−1,
ht = ut � tanh(ct),

∆ft = σ(W (f)xt + U (f)ht + b(f)),

∆ct = ∆ft � ct,

ckt = ckt + ∆ct −
k−1∑
i=0

ui∆ct,

hkt = okt � tanh(ckt).

where kt indexes the parent nodes in the path until the root
from the node at time step t, and d0t represents the gate d
at the current time step under the selected parent node.

4. Task and Model
4.1. Signal and Noise Separation Task
We test our Seq2Tree architecture on the signal and noise
separation task, the goal of which is to predict a mask
which weakens the energy of noise when applied to the
input sound. The task is defined in the Second CHiME
Speech Separation and Recognition Challenge (Vincent et
al., 2013).

4.2. Tree2Seq Signal-Masking Model
For this task, at each time step t we want to predict a mask
over all frequency bins. We achieve this by training a soft-
max regression matrix which takes the current hidden state:

mask = softmax(U (R)h)

where U (R) is the regression matrix.
We train our signal-masking model in two stages using two
different loss calculations, as is suggested in (Weninger et
al., 2014; Erdogan et al., 2015). The two losses we applied
are:

J1(t) = −1

c

c∑
i=1

(maski − labeli)2

J2(t) = −1

c

c∑
i=1

(‖xt‖(maski − labeli))2

where c is the number of frequency bins, maski is the pre-
dicted mask at time t for bin i and labeli is the labeled mask
on bin i at time t.

5. Experiments
We evaluate our Seq2Tree architecture on the signal and
noise separation task. The data is a fraction of 1500 au-
dio files from the CHiME dataset (Vincent et al., 2016), in
which 10% is used for test and the rest for training. Each
input file is Fourier Transformed and fed to the models. Ev-
ery model predicts a mask given the input matrix. The qual-
ity of the mask is evaluated in terms of Overall Perceptual
Score (OPS) by applying the mask onto the source wave-
form, given the noise-removed audio gold standard (Emiya
et al., 2011). In our experiment, the shape of the training
data is 50×513, representing the energy at 50 time steps in
513 frequency bins. The test data has variable length over
time steps, taking advantage of LSTM models’ ability to
deal with variable length inputs.
We compare the results generated by our Single Level
Seq2Tree with those output by the BLSTM baseline. The
hidden layer size for our Seq2Tree network is set to 1024,
and we list the results with different numbers of iterations.
The BLSTM baseline applies a 256 hidden layer size, and
is trained for 30 epochs. Due to long training time cost,
our Multilayer Seq2Tree model for this task is only trained
for 20 runs with the same parameter settings as our Single
Level Seq2Tree model. Best and worst scores of our Single
Level model are also included.
As is shown in the results table, our Single Level Seq2Tree
model has comparable performance to the BLSTM imple-
mentation. The accuracy increases with more training it-
erations, indicating a preference of more training data and
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Implementation OPS(dB)
BLSTM 25.01
Single Level Seq2Tree 25.13
Single Level Seq2Tree (Worst Case) 23.87
Single Level Seq2Tree (Best Case) 27.96
Multilayer Seq2Tree 24.41

Table 1: Evaluation Results.

more training epochs. Also when looked into the specific
WAV files, in more complex cases where noises overlap
with each other, our Multilayer Seq2Tree model largely
outperformed the other models, which agrees with our esti-
mation. Further experiments are needed to demonstrate the
effectiveness of the Multilayer Seq2Tree architecture on the
noise separation task.

6. Conclusion & Future Work
In this paper, we introduced a generative tree-structured
LSTM network architecture. The Seq2Tree architecture
can be applied to arbitrary sequential input with potential
local dependencies among nodes. We demonstrated its ef-
fectiveness by evaluating two Seq2Tree-based models on
a signal and noise separation task. However, due to time
constraints we are only able to thoroughly study the per-
formance of the Single Level Seq2Tree architecture. Our
results are comparable to the current state-of-the-art model
in this task, though leaving some minor errors indicating
a preference to the multilayer tree structure and the need
for more careful parameter tuning. We will keep refining
our model to fit the noise separation task, and we will try
to expand the use of our Seq2Tree architecture to other
tasks. Since deep learning model have widely been used
in AI tasks, we propose that the seq2tree model can be used
in different NLP tasks, such as NLP tasks and multime-
dia tasks. Syntactic structures have been implemented with
deep neural networks and applied to build tree-strutured
LSTMs, however tree-structured LSTMs have not been ap-
plied to syntactic parsers. In the future, we are going to
build a Seq2Tree based dependency parser. Dependency
parsers have been utilized in quite a few NLP tasks such
as Relation Extraction and Event Extraction systems. For
example, (Cao et al., 2015) and (Cao et al., 2016) includes
syntactic relations with dependency regularizations in event
detection systems. Deep neural networks have also applied
in semantic relations such as Abstract Meaning Representa-
tion parsers. The Seq2Tree structure can also be applied in
AMR parsing because the AMR semantic structure is also
a tree. AMR parser is widely explored with different NLP
tasks such as event detection (Li et al., 2015) and natural
language generation (Flanigan et al., 2016).
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