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Abstract
In the present paper, we present an automated tagging approach aimed at enhancing a well-known resource, the ACL Anthology
Reference Corpus, with semantic class labels for more than 20,000 technical terms that are relevant to the domain of computational
linguistics. We use state-of-the-art classification techniques to assign semantic class labels to technical terms extracted from several
reference term lists. We also sketch a set of research questions and approaches directed towards the integrated analysis of scientific
corpora. To this end, we query the data set resulting from our annotation effort on both the term and the semantic class level level.
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1. Introduction
Science changes continually: While certain research top-
ics may be in a state of stagnation or decline, other re-
search fronts move forward rapidly. However, even “dor-
mant” (Menard, 1971) science can regain importance if
new data is produced or methods are developed to tackle
unresolved research problems. Scientific thought exhibits
intricate evolutionary patterns (Fleck, 1980) and paradigm
change (Kuhn, 1962) can affect the structure and outline of
a whole discipline.
The availability of large collections of digitized scientific
text enables systematic studies of the processes that drive
scientific development. Recent years have seen a no-
table increase in quantitative studies of scientific text col-
lections, e. g. Hall et al. (2008), Gupta and Manning
(2011), Michaelis et al. (2013), Mariani et al. (2014),
Babko-Malaya et al. (2015), Schumann and QasemiZadeh
(2015b), Asooja et al. (2016), Francopoulo et al. (2016),
Schumann (2016), Heyer et al. (2016).
The present study is a contribution to this research strand.
Our work centers on the use of semantic labeling tech-
niques for the automatic enhancement of a small corpus
of manual term and semantic class annotations. The ulti-
mate goal of our work, however, is to use this information
as one feature in the profiling of scientific papers, commu-
nities, and disciplines. In using semantic class labels as
one source of information, we take a macro- rather than a
micro-perspective: While individual words and terms are
certainly indicators of scientific trends and developments,
it is necessary to relate them to more coarse-grained cate-
gories for an overall view of a scientific discipline. Seman-
tic class annotations allow us to answer detailed questions
about the evolution of computational linguistics over time.
The data set described in this paper is made available to the
research community1.

2. Motivation and Related Work
The present investigation is conceptually related to earlier
studies dedicated to the lexical analysis of diachronic cor-

1https://github.com/anetschka/
complingterm.

pora. Since the well-known work by Hall et al. (2008),
topic modeling has been widely employed in the analysis
of diachronic data. Topic modeling, however, has the dis-
advantage that it is ignorant to the concept of domain rele-
vance. Topics, therefore, have to be painstakingly inferred
post-hoc from word sets, and it is not straightforward which
conclusions can be made on the basis of a topic model.
Later work has shown that interesting insights can be ob-
tained even with relatively simple methods of analysis, if
the domain terminology is used as a clean, high-quality
lexical representation of the data (Schumann and Qasemi-
Zadeh, 2015b; Schumann, 2016; Heyer et al., 2016). The
present study continues this line of research by relating
individual terminological units to coarse-grained semantic
classes. In particular, by adding semantic class informa-
tion to existing knowledge about terminological units, we
enable multi-dimensional queries of the data. On the basis
of terminological and semantic class information, we can,
for example, ask not only which terms have been trend-
ing in computational linguistics at a given time, but we
can study the evolution of various sub-fields of computa-
tional linguistics and check which associations individual
terms form within these sub-fields. This does, however, not
prevent us from “drilling down” to the level of individual
terms, but, if necessary, we can also take a more coarse-
grained perspective by “zooming out” from there, as in tra-
ditional OLAP-style2 analyses. In sum, we believe that our
approach provides two types of added value if compared to
earlier research:

• The lexical basis of our investigation has a sound ter-
minological foundation. The lexical items analyzed
are not random words, but they have been identified as
relevant by subject-matter experts.

• We add a second level of analysis and thus provide the
means for more expressive queries of the data.

Technically, our study is related to well-established lines of
work in taxonomy enrichment and domain knowledge-base
population (Montoyo et al., 2001; Bergamaschi et al., 2007;

2Online analytical processing (Codd et al., 1993).
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Figure 1: Flowchart representation of the semantic annota-
tion process.

Pekar and Staab, 2003; Ruiz-Casado et al., 2007; Popescu
et al., 2008; Ji and Grishman, 2011) in that we aim at the
automatic type-based estimation of the semantic class of
words or word sequences. Inspired by this family of ap-
proaches, we label each term, which is a specialized nomi-
nal expression of length one or more, with a semantic class.

3. Data Preparation and Semantic Labeling
We work on the ACL Anthology Reference Corpus (ACL
ARC) in its first version (Bird et al., 2008). This corpus
contains more than 10,000 scholarly articles from the com-
putational linguistics domain that were published between
1965 and 2006.
We also use two additional data sets that have been created
on the basis of the ACL ARC. In particular, we use a list of
technical terms (ACL RD-TEC 1.0, termed ACL1) that was
created by means of automatic term extraction (Q. Zadeh
and Handschuh, 2014). More specifically, the term list was
created with the help of several term extractors, and each
term candidate was then manually validated by the main
curator of the resource. This process resulted in more than
20,000 specialized terms that were deemed valid.
In our experiments, the ACL1 term list is used to identify
all known terms. Moreover, we use a set of in-line, double-
blind term and semantic class annotations (ACL RD-TEC
2.0, termed ACL2) provided on a subset of abstracts from
the ACL ARC (QasemiZadeh and Schumann, 2016). These
annotations were created by two human annotators in a
multi-step process that resulted in both term span and se-
mantic class annotations, following annotations guidelines
that differentiate between seven semantic classes, as shown
in Table 1. We use these high-quality annotations to train
our classification models. Figure 1 provides a graphical
representation of our work-flow for data preparation and
annotation. Data flows from green input data ellipses to
gray output data ellipses are represented with dashed lines.
Blue boxes represent major work steps in the process and
are explained in the sections to follow.

3.1. Data Preparation Work-flow
Annotation instances from ACL2 can be divided into 3 cat-
egories:
• Perfect matches: identical term spans marked by both

annotators

Type Example
Technologies parsing
Tools parser
Language resources corpus
Lang. resource products Brown corpus
Models language model
Measures Bleu score
Other residual class

Table 1: Semantic classes in ACL2.

• Partial matches: overlapping, but not identical term
spans

• Annotation conflicts: term spans marked by only one
of the two annotators

Each instance has at least one semantic class assigned to
it, but in all categories multiple (conflicting) class assign-
ments can occur. Table 1 shows which semantic classes
have been annotated in ACL2 (see Schumann and Qasemi-
Zadeh (2015a) for details). We have prepared our training
and test data as follows:

1. We extracted reliable annotation instances from
ACL2. This is explained in more detail in Section 3.2.

2. We created consistent annotation types by aggregating
annotation instances by their term lemmas. We rela-
beled a part of the annotations and merged the original
semantic classes into larger containers. This proce-
dure is explained in Section 3.3.

3. We merged both term lists (ACL1+2) to create a max-
imal term list and identified term occurrences in the
whole ACL ARC.

4. The classifier is described in Section 3.4.

3.2. Extraction of Reliable Annotation Instances
From ACL2, we extracted all consensual annotations, that
is, term occurrences that were annotated by both annota-
tors with the same span and semantic class: Among the
4,849 manual annotation instances, 2,583 share exactly the
same span, being complete matches of each other. Among
those, 1,686 also share the same semantic class. Appendix
A shows how these terms are distributed over the different
publication years in the data set and how many abstracts
were annotated for each year.
As can be seen from the table, the distribution is highly
skewed in favor of an, overall, too large “other” class. Why
is this data so unbalanced? In many cases, the “other” class
contains linguistic units that are neither language resources
nor language resource products. Examples of such “other”
instances are terms like “verbal interaction” or ”Japanese
kanji-kana characters”. However, linguistic left-overs do
not make up the complete “other” class: Specialized lan-
guage is embedded in discourse and, therefore, terminolog-
ical units in real-world abstracts are sometimes not those
that one might find in a specialized taxonomy or ontology.
For example, they might be ambiguous if taken out of con-
text, or they might be discoursive variants of known terms
that still bear terminological weight. Examples of such
items are terms like “syntactic descriptions” (which might
be anything between a strongly formalized and a free-form
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description) or “error characters”. Such units are, indeed,
characteristic of academic language and should not be ig-
nored. However, with the heavy skew observed, the ACL2
data set seems hardly usable for automatic prediction.

3.3. Conversion of Annotation Instances to
Annotation Types

Since our work was aimed at creating a reliable set of se-
mantic term type annotations, instance annotations from
ACL2 had to be converted to annotation types. We did
this by grouping the 1,686 perfect matches from ACL2 by
their term lemmas, arriving at 1,490 annotation types. All
“other” attributions were then reconsidered and, if neces-
sary, relabeled manually. The main goal of this step was to
arrive at a more even class distribution in the training data
and, most notably, a smaller residual class. Since in the
ACL2 data identical lemmas can have diverging semantic
labels in different annotation instances, re-annotation with
the aim of producing consistency with respect to other an-
notation instances seemed justified. All relabellings were
discussed by both authors of this paper. If necessary, ACL
papers from the corpus were analyzed in detail. Then,
to deal with very tiny classes, we merged the 7 semantic
classes originally annotated in ACL2 into 4 larger classes,
namely:
• Mathematics: This class contains the Models and

Measures classes from ACL2.
• Technologies: This is the superclass of the ACL2

classes Technologies and Tools.
• Linguistics: This class contains terms with a linguis-

tic background, that is the Language resources and
Language resource products classes from ACL2 along
with a relevant share of relabeled “other” instances.

• Interdisciplinary: After the re-annotation, what is
left of the “other” class now contains general, higher-
level interdisciplinary terms that nevertheless bear ter-
minological weight.

The 4 classes were formed by merging conceptually sim-
ilar tiny classes to form larger and slightly more general
classes. Figure 2 provides a graphical overview of the se-
mantic classes before and after merging. Green boxes rep-
resent the 7 semantic classes that were manually annotated
in ACL2. These were merged into 4 coarse-grained classes
for more reliable automatic prediction (blue boxes). The
tree in Figure 2 is also labeled with example terms from
ACL23. As a result of our restructuring of the data, the
bulk of the purely linguistic terms has been moved to the
Linguistics class. What remains in Interdisciplinary can
now be related to technicalities of the scientific process and
to scientific discourse. Examples of the Interdisciplinary
class are terms such as “speech-act indirectness”, “np-hard
problem”, or “telephone communication”. Table 2 gives an
overview of the training data resulting from our prepara-
tory work. The table shows that our efforts have produced
a more even class distribution. Classes with very few in-
stances have been merged with larger classes.

3Note that due to our work-flow, we have access to both
coarse-grained and fine-grained (ACL2) semantic information for
the 1,490 training terms. For all remaining terms we have coarse-
grained semantic labels.

Type Number
Mathematics 226
Technologies 677
Linguistics 283
Interdisciplinary 304
Overall 1,490

Table 2: Term type distribution in training data

3.4. Automatic prediction
In order to assign a semantic class to the unlabeled terms
extracted from ACL1, we have implemented a logistic-
regression classifier trained on the annotated data (ACL2).
We have performed feature selection using ten-fold cross-
validation. The resulting classifier uses the following fea-
tures:

1. BoW: Identity of the term headword. If the term is
longer than one word, we treat all words from the sec-
ond as a bag of words (BoW). In this way, we give
the headword of the term a special treatment, which
makes it easier to identify as a trigger term for a cer-
tain class.

2. Length: The length of the term in number of words,
and the proportion of capitalized characters. These
features help identify multi-word expressions and de-
termine whether they are terminological units, or
whether they are acronyms.

3. Brown: The Brown clusters (Brown et al., 1992) from
the full ACL corpus for the words in the term. Brown
clusters group words in a corpus according to their im-
mediate surrounding bi-grams and provide good fea-
tures to estimate semantic classes.

4. Embeddings: The average word embedding for all
words in the term. We use embeddings from the ACL
corpus with 100 dimensions and a word window of
5. Using embeddings allows us to incorporate dis-
tributional information of words involved in a term
that is larger in scope than the information captured
by Brown clusters.

5. WordNet: The number of senses in WordNet (Miller,
1995) for the term headword, as well as the list of se-
mantic types (e.g. noun.cognition) for these senses.
The intuition behind these features is that more poly-
semous words are more likely to be the head of terms,
and by including their possible coarse-grained senses
it becomes easier to characterize their semantic class.

We have used ten-fold cross-validation during development
to determine which classifier setup was more robust. How-
ever, the classifier we used to actually tag the corpus is
trained on the full dataset. In this way, the scores we pro-
vide are a conservative estimate of the actual performance
of the classifier. Table 3 shows the performance of the clas-
sifier in terms of F1 score for the chosen classifier, which
uses all the features listed, and a comparison baseline that
only uses BoW.
As can be seen from the table, our classifier performs rea-
sonably well, reaching an average F1 score of 0.73. Classi-
fication performance is obviously influenced by the number
of training examples with the largest class achieving the
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Terms

Mathematics

Measures character and word error rate

Models block unigram model

Technologies

Technologies bootstrapping approach

Tools IDUS (Intelligent Document Understanding System)

Linguistics

Language resources test corpus

Language resource products Roget’s Thesaurus

Interdisciplinary

Other disambiguation process

Figure 2: Taxonomic representation of the semantic categories used for training data preparation. Leaves in the tree are
example terms extracted from ACL2 data.

Baseline Full
Technologies 0.75 0.83
Linguistics 0.61 0.70
Math. concepts 0.59 0.64
Interdisciplinary 0.53 0.60
Micro-Average 0.65 0.73

Table 3: F1 classification scores.

best individual score. The rather fuzzy in terms of distri-
bution and lexically very varied Interdisciplinary class ex-
hibits the lowest score. Conversely, the Technologies class
is easier to identify because it is often made up of longer
expressions and tends to show frequent, informative words
like system.
It is not straightforward to compare our classification re-
sult to the outcome of other annotation efforts, not only
because there are only few such efforts, but also because
annotation evaluation scenarios vary considerably. How-
ever, QasemiZadeh and Schumann (2016) provide a de-
tailed analysis of their manual annotation of the same data
set. They report class-wise IAA scores that range between
0.44 (for the Model class, compare Figure 2) and 0.83 (for
the Tool class, which is easily identifiable, but too small
for classification, compare Appendix A), respectively. This
shows that in manual annotation, too, class parameters in-
fluence annotation quality. The overall quality of our au-
tomatic classification, therefore, seems reasonably close to
that of the current manual annotation benchmark. It must
be noted, however, that the score reported by QasemiZadeh
and Schumann (2016) is a combined score for both term
identification and semantic class assignment.
We also performed a manual analysis of a small subset
of the predictions, namely a 30-term subset for each of
the four classes. Out of thirty examples of the Technolo-
gies category, we only would relabel one (“bottom-up ap-
proach”) as part of Interdisciplinary. In the predictions for

Linguistics, we find the false positive “electronic mail”,
which should be a Technology. This mis-prediction is a
result of the WordNet feature providing the super-sense
noun.communication to the word “mail”. The Mathematics
category ends up being the label of choice for all expres-
sions with the word “model” as a headword (“IBM Mod-
els 1-2”). “Model” is a fairly polysemous word that could
yield terms of any category, but the frequency and the an-
notation preference for labeling them as terms in Mathe-
matics enforces this bias. The Interdisciplinary class does
indeed contain more noise, and has many terms that should
belong to the Linguistics category (“simultaneous speech”
or “subject-object relation”). We attribute the permeation
between these two classes to some of the features that give
account for polysemy, as both Linguistics and Interdisci-
plinary contain more words with numerous possible senses,
in addition to being the classes with highest word variety in
terms of type–token ratio. Our manual analysis corrobo-
rates that Technologies is by far the most reliable label of
our predictions. Appendix B shows some of the examples
that underwent the manual analysis just described. For each
term, the table shows the classification probabilities given
by our classifier for the four possible classes. The value for
the resulting class is highlighted in bold.

4. Analysis of Resulting Data Set

4.1. Structure

The data set resulting from our annotation is essentially an
annotated term list. This list contains 22,980 computational
linguistics terms. Each term is annotated with a probability
vector with four components, where each component rep-
resents the probability that a given term is an instance of
the respective semantic class, as illustrated in Appendix B.
Finally, a class label indicates the semantic class with the
highest probability.
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Figure 3: Classification results: annotated terms and semantic classes over time.

4.2. Querying the Data
As pointed out earlier, we maintain that semantic class an-
notations facilitate the analysis of scientific text corpora. In
the last section of this paper, we, therefore, sketch some of
the research questions that can be tackled through multi-
dimensional analyses involving both the term and the se-
mantic class level.
One of the most prominent properties of the ACL data as
a whole is its exponential growth over time. This find-
ing is supported by Figure 3a which plots the number of
known and semantically labeled terms over time periods of
5 years. The tendency of scientific disciplines to grow ex-
ponentially has been described already by Menard (1971)
and it is, indeed, a property that informs all studies on the
ACL data. Figure 3b plots the classification results over
time, when class-wise term counts are normalized by the
number of all terms per year. Thus, the plot shows the rel-
ative importance of each semantic class over the course of
the publication period. The probably most prominent trend
in this plot is that Linguistics and Technologies, over the
years, switch ranks, with Linguistics slightly losing impor-
tance and Technology mentions becoming more frequent.
We also observe a slight, but steady increase in the relative
frequency of terms referring to mathematical concepts.
To check whether our dataset allows us to ask more specific
questions about the development of computational linguis-
tics, we set up a simple database holding information about
both terms, their semantic classes and term occurrences
across all publication years. We have used this database
to extract frequency data that was further analyzed with the
following techniques:

• We used word rank comparisons to identify “trending”
terms, that is, lexical units that gain importance in a
given period, as proposed by Schumann and Qasemi-
Zadeh (2015b). The method is based on the compari-

1986–1989 2000–2006
tree measure
formalism language model
user model f-measure
representations n-gram
domain model distribution
discourse model f-score
measure n-grams
perplexity nist
language model translation model
projection parse tree

Table 4: Mathematics terms with high positive frequency
rank shifts in two different time intervals. In both cases,
frequency counts were compared to frequency counts from
the preceding time interval.

son of two ranked word lists for consecutive time pe-
riods and identifies lexical units that undergo a strong
positive rank shift, that is, words that exhibit an “up-
wards” movement in the transition from one time pe-
riod to the next.

• We used frequency and productivity scores to analyze
individual terms’ life cycles, as proposed by Schu-
mann (2016). In this approach, productivity is formal-
ized in terms of entropy, that is, a base term with many
and frequently used related multi-word units is consid-
ered particularly productive. Unlike simple frequency
analysis, this approach helps, for instance, to differen-
tiate between short-term tendencies and longer-term
trends.

In a first step, we used our SQL database to obtain an
overview of the terms pertaining to the four semantic
classes and their frequencies at various points in time. For
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distribution measure
1986–1989 1990–1996 1986–1989 1990–1996
distribution distribution measure measure
probability distribution probability distribution distance measure f-measure
gaussian distribution uniform distribution similarity measure similarity measure
binomial distribution joint distribution evaluation measure evaluation measure
class distribution normal distribution association measure distance measure
probability distribution matrix frequency distribution confidence measure statistical measure

binomial distribution theoretic measure f measure
distributional similarity cosine measure
prior distribution precision measure
gaussian distribution association measure
. . . . . .

Table 5: Top terms matching “distribution” and “measure” in two time periods. Terms are sorted by their frequencies.

instance, we counted the occurrences of terms pertaining to
Mathematics in 4 time intervals: 1980-1985, 1986-1989,
1996-1999, and 2000-2006. Using the rank comparison
technique, we could then contrast different methodologies
and models that were popular in computational linguistics
research at different times. Table 4 exemplifies this by giv-
ing an overview of the terms with the highest positive fre-
quency rank shifts from Mathematics for two different time
intervals.

On the basis of the comparison exemplified in Table 4, it
seems relatively easy to contrast explicit, knowledge-based
or abstract modeling in the 1980s with scoring and statisti-
cal analysis, approaches that were prominently used in the
later time period. However, the table also seems to indi-
cate that there is nothing disruptive about this change in
the Mathematics class. Rather, concepts like “measure”
or “language model” seem to have kept gaining impor-
tance, whereas other concepts seem to have stagnated. This
claim can easily be substantiated by querying our database
for frequencies and collocations containing terms such as
“feature”, “distribution”, “measure”, or “model”. These
terms exhibit strong productivity increases, that is, a grow-
ing number of related multi-word units, in the 1980s and
a continuous increase in frequency over the complete pe-
riod of time under study. This means that these terms, at
the time of their rise, did not necessarily denote completely
novel concepts, but they have found new fields of applica-
tion or new ways were found to build and apply such mod-
els, features, etc. In this sense, terms like “distribution” or
“measure” can be hypothesized to constitute motors of sci-
entific innovation. Table 5 details the results of example
queries for the terms “distribution” and “measure” for only
two time periods, namely 1986–1989 and 1990–1995. The
rise in productivity for the two terms over this short time
period seems rather strong, however, as claimed before, the
examples illustrate a scientific evolution rather than a dis-
ruptive change. It is an interesting task to identify the area
of computational linguistics that has initiated this develop-
ment, and with the rich data set presented here, it seems
actually feasible to solve this task.

By repeating the analysis for the Technologies class we
were able to highlight some interesting technological trends
that have been prominent in computational linguistics over

the last decades. For the 1990–1995 interval, for instance,
the ranks shift analysis highlights the following trends: the
use of WordNet as a lexical resource, the use of finite-
state transducers for complex analysis tasks, work on word
sense disambiguation, but also on part-of-speech tagging
and other kinds of linguistic annotation, to mention only the
most prominent items in our result list. Techniques used are
not purely statistical, as highlighted by terms such as “lexi-
cal rule” or “heuristic”.
For the 2000–2006 period, many of the lexical units high-
lighted by the rank shifts analysis in Technologies are re-
lated to recent work on the use of machine learning in com-
putational linguistics, e. g. terms such as “classifier” or
“feature”. However, ontologies have also gained impor-
tance and the 2000–2006 slice of Technologies includes
novel lexical units such as “ontology learning”, “ontol-
ogy acquisition”, or “ontology induction”. Annotation,
both manual and automatic, remains an important topic and
FrameNet is introduced as a new resource. The growing
use of the term “NLP” and the rise of statistical machine
translation seem to constitute other important tendencies.

5. Conclusion
In this paper, we have described our methodology for cre-
ating a large data set of semantically annotated terms. We
have merged linguistic information from several existing
data sets and performed manual re-annotation to arrive at
a more even distribution of semantic class instances. We
have used state-of-the-art classification techniques to pro-
vide semantic class labels for known term instances. Both
manual and automatic evaluation of our classification re-
sults indicate reasonably good classification quality.
We have also carried out an initial analysis of the result-
ing data set to exemplify which kinds of questions can
be answered using the rich annotations provided by our
data set. Although we have by no means described a
complete methodology for the analysis of scientific cor-
pora, we believe that our analysis shows what is possible
with the wealth of data available. State-of-the-art methods
can be used not only to identify large-scale trends such as
the growing importance of statistical and machine learning
methods in computational linguistics. The semantic class
labels resulting from our classification effort allow to per-
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form this analysis on a more fine-grained level and search
for interesting phenomena in actual subfields of computa-
tional linguistics. We have also shown that the analysis of
mere frequency and productivity information allows us to
identify some of the concepts that have in the past served
as motors of innovation, such as the concepts “measure”
and “distribution”. In the future we hope to develop an inte-
grated methodology that will be able to reliably relate terms
and groups of terms to specific time periods and subfields
and to trace scientific innovations back to the nuclei from
which they originated.
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Year Lang. resources Lang. resource products Measures Models Other Technologies Tools Sum Abstracts
1978 0 0 0 0 36 4 0 40 3
1980 0 0 0 1 12 9 2 24 5
1982 0 0 0 0 16 11 4 31 3
1984 0 0 0 2 37 17 1 57 5
1986 0 0 0 1 91 10 2 104 7
1988 6 0 0 4 40 23 3 76 12
1990 14 1 2 0 52 25 0 94 11
1992 8 9 4 2 75 60 6 164 19
1994 5 1 2 6 88 57 4 163 16
2001 4 0 18 14 89 88 4 217 18
2003 26 0 18 29 158 111 4 346 29
2005 17 0 20 12 89 64 2 204 23
2006 7 1 11 2 95 44 6 166 20
Overall 87 12 75 73 878 523 38 1,686 171

Appendix A: Time distribution of semantic classes in ACL2 (perfectly matching instances).

Term Technologies Linguistics Interdisciplinary Mathematics
general-to-specific learning 0.97 0.00 0.03 0.00
spoken document categorization 0.74 0.25 0.01 0.00
arabic stemmer 0.89 0.05 0.06 0.00
constraint propagation algorithm 0.97 0.00 0.00 0.03
token processing 0.98 0.00 0.01 0.01
standard grammar textbook 0.40 0.54 0.03 0.02
pre-discourse meaning 0.02 0.88 0.09 0.01
korean language 0.01 0.96 0.02 0.01
case particle 0.13 0.78 0.03 0.05
prosody 0.08 0.52 0.36 0.04
knowledge editing 0.30 0.00 0.69 0.00
multilingual information exchange 0.31 0.00 0.68 0.01
simultaneous speech 0.18 0.12 0.69 0.01
subject-object relation 0.01 0.28 0.67 0.05
categorisation research 0.46 0.03 0.50 0.00
homomorphism 0.08 0.17 0.31 0.44
IBM Models 1-2 0.09 0.00 0.02 0.88
time complexity 0.00 0.00 0.39 0.61
bigram distribution modelling 0.27 0.00 0.00 0.73
likelihood reestimation 0.43 0.00 0.00 0.57

Appendix B: Example output of the classifier used for manual analysis, resulting class is highlighted in bold.
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