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Abstract
Relation classification is the task to predict semantic relations between pairs of entities in a given text. In this paper, a novel Long
Short Term Memory Network (LSTM)-based approach is proposed to extract relations between entities in Chinese text. The shortest
dependency path (SDP) between two entities, together with the various selected features in the path, are first extracted, and then used
as input of an LSTM model to predict the relation between them. The performance of the system was evaluated on the ACE 2005
Multilingual Training Corpus (Walker et al., 2006), and achieved a state-of-the-art F-measure of 87.87% on six general type relations
and 83.40% on eighteen subtype relations in this corpus.
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1. Introduction
The task of relation classification is to predict semantic re-
lations between pairs of entities. Formally, the goal is to
predict the semantic relations between a head entity eh and
a tail entity et from a given sentence. For example, in the
phrase “ÄW¯;ß Russian President”, the relations be-
tween “Russia (ORG)” and “President (PER)” are ORG-
AFF which indicate that the “President” is affiliated to an or-
ganization “Russia” , in ACE annotation ORG-AFF(Russia,
President), and to be more specific, “President” is the em-
ployee of “Russia”, EMPLOYMENT(Russia, President). In
ACE corpus 2005, six general relations such as ORG-AFF
and PART-WHOLE, and eighteen subtype relations such as
OWNERSHIP, LOCATED, and EMPLOYMENT are defined.
The feature-based, kernel-based and deep learning-based
methods are the most popular models for relation extrac-
tion in the literature. The basic idea of the feature-based
approach is to treat relation extraction as a classification
problem. Different kinds of features are extracted from text
and then fed into a classifier. Such work includes (Kamb-
hatla, 2004), (GuoDong et al., 2005) and (Moldovan and
Blanco, 2012). However, these approaches suffer from er-
ror propagation problems. If the features are not well se-
lected, the errors will be added up until the end. (Jiang
and Zhai, 2007) systematically analyzed the effectiveness
of different features for relation extraction on a large feature
space and concluded that just using the basic unit features
from each feature space (sequence, syntactic and depen-
dency relation) can achieve reasonably good performance,
and adding more complex features may not benefit the re-
sult. The kernel-based approach is to compute a kernel
function to measure the similarity between two data ob-
jects. Such work includes (Zelenko et al., 2003), (Culotta
and Sorensen, 2004), (Bunescu and Mooney, 2005), (Zhang
et al., 2006), (Zhou et al., 2007), (Wang, 2008) and (Plank
and Moschitti, 2013). The key issue of the kernel-based
approach is the slow training and prediction time, so it is
not good enough to process big data. With the development
of deep learning, a series of neural network-based models
are proposed, such as recursive neural network-based ap-
proaches (Socher et al., 2012),(Ebrahimi and Dou, 2015),

and convolutional neural network-based approaches (Zeng
et al., 2014), (Santos et al., 2015), and (Nguyen and Grish-
man, 2015).
Long short-term memory (Hochreiter and Schmidhuber,
1997) can capture long-term dependencies in sequences, so
they could be used to model sequential data naturally. Re-
cently they have been used frequently in many NLP tasks
(Cho et al., 2014). Shortest dependency paths (SDP) have
proven to be highly useful to relation extraction (Ebrahimi
and Dou, 2015). They can to the utmost avoid involving
irrelevant words in the path from one entity to another. (Xu
et al., 2015) combined LSTMs and SDPs together and pro-
posed a SDP-LSTM model for an English relation classifi-
cation task on the SemEval-2012 dataset. Intrigued by this
idea, we built a simplified SDP-LSTM model for Chinese
relation classification on the ACE 2005 corpus and obtained
state-of-the-art results. To the best of our knowledge, we
are the first to implement an LSTM network for Chinese
relation classification. This paper is organized as follows:
We first present related work, then describe the system in
detail, including the SDP and features for Chinese, and ex-
plain how to apply them to the LSTM Model. After that we
present the details of our experiment, such as the corpus,
the training details and the tools used. Finally, we compare
our work with previous work in the literature, and show the
effectiveness of different features on the final results.

2. Related Work
Research on Chinese relation extraction is quite limited
compared with the progress with English. This may be
due to two reasons. First, the Chinese language makes less
use of function words and morphology (Levy and Manning,
2003), which makes it harder to extract syntactic informa-
tion from it. Second, the lack of relevant corpora and tools
also slows down the progress of research in Chinese. (Che
et al., 2005) (Kebin et al., 2007) (Huang et al., 2008) (Yu
et al., 2010), and (Dandan et al., 2012) proposed different
kernel based approach to Chinese relation extraction. (Li
et al., 2008) (Zhang et al., 2008),(Zhang et al., 2011) pub-
lished a series of papers on feature-based approaches. In
particular, they designed nine positional structures of enti-
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ties and focused on the effectiveness of the positional fea-
ture on Chinese relation extraction. (Chen et al., 2014) pro-
posed a novel Omni-word feature which takes advantage
of Chinese sub-phrases, together with soft constraints for
Chinese relation extraction, and got a 90.35% F1 score on
Type relation, and a 75.44% F1 score on subType relation.
Other interesting work such as (Chen et al., 2012) intro-
duces a Deep Belief Network model that can handle high-
dimensional feature space (Lin et al., 2010) worked on a
mixed model that combined feature-based and kernel-based
models together.
Word vector representation is the foundation of deep learn-
ing techniques for NLP. There are two popular models for
word embedding: the word2vec model, which is promoted
by Google (Mikolov et al., 2013), and the GloVe model,
which is promoted by Stanford University (Pennington et
al., 2014). Low-dimensional, dense word embeddings can
effectively alleviate sparsity by sharing statistical strength
between similar words, and can provide a good starting
point to construct features of words and their interactions
(Chen and Manning, 2014).
Long short term memory (LSTM) networks were first pro-
posed by Hochreiter in 1997 (Hochreiter and Schmidhuber,
1997). An LSTM could be viewed as a complex activation
unit that has an input gate, a forget gate, an output gate, a
new memory cell and a final memory cell. Figure 1 shows
the complete representation of a long short term memory
unit.1

Figure 1: The complete representation of a long short term
memory unit.

The mathematical formulation of LSTM units is as follows:
The input gate is to decide if the input xt is worth being
preserved based on the input word xt and the past hidden
state ht−1.
it = σ(W (i)xt + U (i)ht−1)
The forget gate ft makes an assessment on whether the
past memory cell is useful to compute the current memory
cell.
ft = σ(W (f)xt + U (f)ht−1)
The output gate is to separate the final memory ct from

1http://web.stanford.edu/class/cs224n/lecture notes/cs224n-
2017-notes5.pdf

the hidden state.
ot = σ(W (o)xt + U (o)ht−1)
The new memory generation cell is used to generate a
new memory c̃t by input work xt and the past hidden state
ht−1.
c̃t = tanh(W (c)xt + U (c)ht−1)
The final memory cell produces the final memory ct by
summing the advice of the forget gate ft and input gate it
ct = ft ◦ ct−1 + it ◦ c̃t
ht = ot ◦ tanh(ct)

3. Approach
The pipeline of the system is as follows: we first find the
shortest dependency path (SDP) between two given enti-
ties in a sentence. Second, we extract the selected features
along the words in the SDP. Finally, we concatenate the dis-
tributated representation of the words and their features into
dense vectors, and feed them as input of LSTM models.

3.1. The Shortest Dependency Path
Dependency parsing captures the dependence relations be-
tween words, and when compared with constituency paths,
dependency paths have a better ability to encode informa-
tion. In dependency parsing, the dependency relations and
words will form a dependency graph. The edges are the
dependency relations and the vertices are the words. Find-
ing the shortest dependency path between words may be
mapped into finding the shortest path between two ver-
tices in the dependency graph. We used Stanford CoreNLP
(Manning et al., 2014) for dependency parsing, and Net-
workX (Hagberg et al., 2008) to get the shortest path in the
dependency graph. Figure 2 and 3 show an example to map
from the dependency graph to shortest dependency path of
sentence “We went home after comforting her sister (�ì
(�p�¹¹�_Þ¶�).”.

3.2. Feature selection
We extracted four kinds of features: word embedding, Part-
of-Speech tags, entity type, and entity subtype.
We use Google’s word2vec model and trained our word
vectors on Chinese Wikipedia data. Part-of-Speech tags are
extracted by Stanford CoreNLP. The type and subtype of
the entities are already annotated by the corpus. The ACE
corpus defines seven general types of entities, and each gen-
eral type could be subcategorized into subtypes. There are
44 total subtypes of entities.
All the features use distributed representations and are only
applied to the words that are on the shortest dependency
path. For each word, we concatenated it with all its fea-
tures into a dense vector and fed it as the input of the LSTM
model. Figure 4 shows the feature representation of the sen-
tence.

3.3. Model Structure
In general, the model has three layers: one LSTM layer,
one dropout layer and one softmax layer. An overview of
the model is shown in Figure 5.

3.3.1. The LSTM layer
The LSTM network takes input from the data directly. The
input of the LSTM network should be in three dimensions.
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Figure 2: The dependency graph of the sentence “We went back after comforting her sister.”

we went back
nsubjoo prep // comfort

dobj // sister

Figure 3: The shortest dependency path between “we ”and “sister ”.

Word POS Type SubType

We PN PER Group

go + V V + ∅ + ∅

comfort V V ∅ ∅
sister NN PER Individual

Figure 4: feature representation of the sentence.

Figure 5: The strcture of our model.

The first dimension is the batch size, which is set during the
experiment. The second dimension is the size of the input,
which is the size of the dense vector that concatenates the
word and its features. The third dimension is the time step
dimension of the LSTM, which in our case is the sequence
length of the Shortest Dependency Path (SDP). However,
different instances have the different lengths of SDPs, so
we use padding techniques that unify the SDP length of all
the training examples.

3.3.2. The Dropout layer
A dropout layer is built on top of LSTM layer. It is used
to reduce overfitting by randomly delete features from net-
work during the training in order to prevent the features
from excessively co-adaptation (Hinton et al., 2012) (Sri-

vastava et al., 2014). To be more formal, a kept prob rate
of probability P is initialized. During the training process,
1- P of the features will be randomly deleted, however dur-
ing the test process we do not delete any features, as a re-
sult, the testing process will have the same magnitude as
the training process, and the overfitting will be prevented.

3.3.3. The softmax layer
A softmax layer is usually used as the output layer for clas-
sification problems in Deep Learning. It takes the output
of the dropout layer and outputs the probability distribution
of the candidate classes. In our case, the outputs are the six
general type relations and the eighteen subtype relations be-
tween the entities.

3.3.4. Learning
The training goal is to minimize the cross-entropy error be-
tween the softmax layer outputs (the probabilistic distribu-
tion of the predicated relations) and the one-hot representa-
tion of the gold annotated relations. The mathematic repre-
sentation of the training process is as follows:

E(θ) = −
∑
n

∑
k

tkn log y
k
n +

λ

2
||θ||2

t is the gold annotated relations. y is the predicated relations
from the softmax layer. λ is the regularization rate. θ is the
model parameters we are trying to learn.

4. Experiments and Results
The model is implemented using Google’s Tensor-
flow(Abadi et al., 2016). All the layers and the training
object used the default packages included in Tensorflow.
We did not make any changes to these packages.

4.1. Corpus and experiment details
The performance of the system was tested on the ACE
2005 training corpus Chinese data set. There are in total
positive 7985 instances, and we split the corpus into 80%
training and 20% testing.
We used the pretrained word vector on Chinese Wikipedia
data and set the vector length to 60. Since there is no model
proposed to train the Part-of-Speech tags and entity types,
and they are not sparse even with one-hot representation,
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Systems features Type F1 SubType F1
(Li et al., 2008) Entity Type, Entity SubType 70.29% 67.41%

9 Position Strucute, N-grams
Wordlist

(Zhang et al., 2011) Entity Type, Entity SubType 70.43% 67.86%
9 Position Strucute, N-grams

(Dandan et al., 2012) Convolution Tree Kernel 69.00% 66.60%
Ours Entity Type, Entity SubType 87.87% 83.40%

Word Embedding, Part-Of-Speech

Table 1: Performance of Relation Extraction Systems

we randomly initialized them and set the vector length to
20 for each of them, so the input size of the LSTM model
is 120 dimensions. Because most relations in the ACE
corpus are short-range relations, and some of them even
within single noun phrases, we set the time step size to 5,
and used padding to unify the sequence length. We also set
the number of hidden units in the LSTM layer to 64 and
kept the prob rate on the dropout layer at 0.5.

4.2. Results
Table 2 shows the final results and effectiveness of different
features to the result. From Table 2, we can conclude that
all the selected features are effective and will benefit the re-
sults, and among those, word embedding is the most impor-
tant feature. There is another popular feature, “positional
structure” that is frequently used in previous research, and
we believe our results will be further improved if we in-
clude it. This feature has been used particularly with the
ACE corpus. However, modern corpus is no longer anno-
tated with this feature, which is why we do not include it.

Systems features Type F1 SubType F1
Word Embeddings 78.55% 72.92%
+ POS +1.63% +1.67%

LSTM + Entity Type +6.38% +9.23%
+ Entity SubType +5.22% +7.82%
Overall 87.87% 83.40%

Table 2: The experiment results

4.3. Compare with state-of-the-art System
We compared our results with those of three previous ap-
proaches that were evaluated on the same corpus. Table
1 shows the comparison of the features/kernel use and the
F1 scores of type and subtype relations between our ap-
proach and that of others. Previous works on this corpus
focused on relation extraction problem. The different be-
tween relation extraction and relation classification is that
relation extraction needs to detect if a relation utters corre-
sponding to some entity pairs before predicting the relation
between them. In practise, we could reduce the relation
extraction problem into relation classification problem by
removing negative instances (that do not have relations be-
tween entities). (Nguyen and Grishman, 2015) discovered

that the system performace will improve about 20% from
relation extraction to relation classification in ACE corpus.
Considering this discovery, our system is still superior to
the others. More importantly, our model does not combine
tremendous feature engineering work, and this re-confirms
its advantages.

4.4. Error analysis

Errors most frequently happen at the feature selection step.
Stanford CoreNLP may make mistakes analyzing Chinese
sentences. As with the entire pipeline model, it has error
propagation issues.
Optimizing the feature embedding is another way to im-
prove the results. For example, when we face a complex
noun phrase that is not in the pretrained word vector, we
may split it into several small elements, and then take the
average of each element embedding. It is a simple strat-
egy, but not the best. Besides, we randomly initialized the
embeddings for the rest of features, however, as stated in
(Chen and Manning, 2014), similar POS such as “NNS”
and “NN”, “VB” and “VBZ” should be clustered together
and have similar embeddings, and it is also the same for
entity type and subtype features.

5. Conclusion and Future Work

In this paper, we present an LSTM network with shortest
dependency path model to extract relations between enti-
ties in Chinese. The results show that the model is ef-
fective on the ACE 2005 training corpus. Compared with
traditional feature-based and kernel-based methods, deep
learning models (neural network based methods) can easily
achieve better results with fewer features.
There are several avenues for future work. The correct
representation of the feature embedding is very important
in deep learning models, and since Chinese is a character
based language, some researchers propose that instead of
using word embedding, we may use character embedding
instead. In this case, we will no longer have segmentation
problems, and have less feature engineering work. Since
few deep learning based works have been done to Chinese,
we would like to try more deep learning models and an-
alyze their performance. Besides, our model is not very
language-sensitive, so we will extend our work to other lan-
guages.
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