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Abstract 
In machine translation, we often try to collect resources to improve performance. However, most of the language pairs, such as 

Korean-Arabic and Korean-Vietnamese, do not have enough resources to train machine translation systems. In this paper, we propose 
the use of synthetic methods for extending a low-resource corpus and apply it to a multi-source neural machine translation model. We 
showed the improvement of machine translation performance through corpus extension using the synthetic method. We specifically 
focused on how to create source sentences that can make better target sentences, including the use of synthetic methods. We found that 
the corpus extension could also improve the performance of multi-source neural machine translation. We showed the corpus extension 
and multi-source model to be efficient methods for a low-resource language pair. Furthermore, when both methods were used together, 
we found better machine translation performance. 
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1. Introduction 

We often try to collect resources to improve machine 
translation performance. Using the large size of a parallel 
corpus, it is possible to achieve high-quality machine 
translation performance. However, there are many cases 
where resources of language pairs are insufficient. Except 
for major European languages and some Asian languages, 
most of the language pairs do not have sufficient 
resources to develop a neural machine translation (NMT) 
system. It is also difficult to obtain parallel corpora for 
some language pairs such as Korean to Arabic or Korean 
to Vietnamese. 

Since the machine translation performance largely 
depends on the size of a parallel corpus, it is important to 
find an efficient way to extend the corpus. Although it is 
difficult to find a proper parallel corpus, we can create an 
artificial parallel corpus by translating the source or target 
of a language pair. Some researchers have studied the 
extension of a parallel corpus using the pivot method 
(Cohn and Lapata, 2007; Utiyama and Isahara, 2007; Wu 
and Wang, 2007). This method introduces another 
language referred to as the pivot language which is a third 
language that is different from the source and target 
languages. 

There are many different pivot strategies. The first is 
the transfer method which translates a source sentence to a 
pivot sentence and then to a target sentence (Cohn and 
Lapata, 2007; Wu and Wang, 2007). The second is the 
triangulation method which multiplies corresponding 
translation probabilities and lexical weights to create a 
new source-target phrase table (Utiyama and Isahara, 
2007). The third is the synthetic method, which uses 
existing translation models to build a synthetic parallel 
source-target corpus from source-pivot or pivot-target 
(Bertoldi et al., 2008). 

There are other approaches that have been proposed for 
multilingual training with low-resource parallel corpora. 
Among the approaches, there is a multi-source translation 
approach where the model has multiple encoders and 
attention mechanisms for each source language (Zoph and 
Knight, 2016). The goal of multi-source translation is the 
translation of a text given in N source languages into a 

single target language. This considers a case where source 
sentences are provided in two or more languages. In this 
study, we combined four other languages to achieve better 
target language translation. We used four source 
languages (Korean, English, Japanese, and Chinese) and a 
single target language (Arabic). 

To further improve the multi-source model to be useful 
for low-resource language pairs, we proposed to use 
synthetic methods for extending a low-resource corpus 
and applied it to a multi-source NMT model. Although we 
can not obtain a high-quality corpus with these methods, it 
can still be effective in improving multi-source model 
performance. 

Section 2 presents our proposed approach. Section 3 
consists of the experimental settings. Section 4 contains 
experiment results and analysis, followed by a conclusion 
in section 5. 

2. Proposed Approach 

We considered a variety of ways to make a model that 

performs as well as an NMT model with a resource-rich 

corpus, even though we had to use a low-resource corpus. 

Among those considered, the corpus extension and multi-

source translation method were employed in this study. 

For the corpus extension, we used a synthetic method, and 

there are two ways of generating the target and the source. 

Multi-source translation is an approach that allows one to 

leverage N-way corpora to improve translation quality in 

both resource-poor and resource-rich scenarios. Through 

this method, we were able to observe the improvement of 

machine translation performance. 

2.1 Synthetic Method 

There are two approaches to obtain a source-target 
parallel corpus using the source-pivot and pivot-target 
corpora. When we were given a pivot sentence, we 
translated it into a source or target sentence. In each case, 
translation results were combined with their source and 
target respectively to get a new parallel corpus. These data 
are referred to as the synthetic target and the synthetic 
source. A synthetic target is generated when a target is 
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translated, and a synthetic source is generated when a 
source is translated.  

2.1.1 Synthetic Target  

The synthetic target used to obtain the target translation 
for source sentences in the source-pivot corpus. It can be 
obtained by translating pivot sentences to target sentences. 

2.1.2 Synthetic Source 

We use the synthetic source to obtain source translation 
for target sentences in the pivot-target corpus. It can be 
obtained by translating pivot sentences to source 
sentences. The artificial corpus created by this process is 
called a "synthetic source" corpus. 

2.2 Multi-Source Translation Model 

 There are other approaches that have been proposed for 
multilingual training with low-resource parallel corpora. 
Among the approaches, there is the multi-source 
translation approach where the model has multiple 
encoders and attention mechanisms for each source 
language (Dabre et al., 2017; Garmash et al., 2016). 
Multi-source translation is the method using N source 
languages to improve the translation model created by 
using both low-resources and high-resource scenarios. 
This model considers a case where the source sentences 
are provided in two or more languages. According to this 
method, the model can learn more word vectors of a target 
language. Then the decoder will be able to generate better 
target sentence. In this study, we want to combine four 
other language pairs to get better target language 
translation. We used four source languages (Korean, 
English, Japanese, Chinese) and a single target language 
(Arabic). As the amount of Arabic sentences grows, the 
number of target word vectors will be increased. Then the 
word generation capability of the decoder will improve 
and the translation result will be better.  

3. Experimental Settings 

In this study, we used various data for the experiments, 

which consisted of a Korean-Arabic small-scale 

production parallel corpus as a baseline, and OPUS 

(Tiedemann et al., 2004) English-Arabic parallel corpus to 

make synthetic data. We used a WIT
3
 (Cettolo et al., 2012) 

corpus to train a multi-source translation model. We used 

OpenNMT (Klein et al., 2017) for training the NMT 

systems in this study. OpenNMT is an open- source 

implementation of NMT that contains a library for 

training and deploying NMT models. To tokenize the 

sentences of the corpus and reduce data sparsity, we 

applied sub-word tokenization to the source and target 

sides of a training corpus with the Byte Pair Encoding 

(BPE) scheme (Sennrich et al., 2016). We used 

SentencePiece, which is an implementation of the 

wordpiece algorithm (Schuster and Nakajima, 2012) and 

BPE. 

3.1 Languages and Data Settings 

We conducted experiments with a closed production 

corpus (Prod), a publicly available WIT
3
 corpus, and 

OPUS. The Prod corpus is a Korean-Arabic corpus that 

contains 157,865 sentences and is manually built for the 

traveling situation. We set the training data size of the 

baseline to 150,000 sentences. The WIT
3
 corpus is a 

collection of three parallel corpora made from the 

transcriptions of TED (Technology, Entertainment, 

Design) speech, all written in the Arabic language on the 

target side. The language pairs of those corpora are 

English-Arabic, Japanese-Arabic, and Chinese-Arabic. 

We only used them to train the multi-source translation 

model (MSM). Depending on experimental, we set the 

training data size of each parallel corpus to 150,000 and 

500,000. 

To extend the training corpus, we used an OPUS 

English-Arabic corpus, which contains 11 million 

sentences, to generate a synthetic Korean-Arabic corpus. 

OPUS was used differently depending on whether it was 

used for the source side or target side. We used English as 

a pivot language. When a target side was created, OPUS 

was used to make an English-Arabic translation model. A 

synthetic target corpus could be obtained by translating 

English to Arabic. We translated English into Arabic 

when the given sentence existed in the Korean-English 

production corpus
1
. Then, we could obtain a 1.16 million 

parallel Korean-Arabic corpus after filtering the <unk> 

symbol from a 2.5 million corpus. When we manipulated 

the source sides, OPUS was used to obtain a good target 

language. It can keep Arabic language in high-quality 

condition. An English-Korean translation model
2
 

translates English sentences of an OPUS English-Arabic 

corpus into Korean sentences. We combined the synthetic 

                                                           
1 This original corpus’s line size is about 2.5M. The Korean-

English production corpus has a trip domain. 
2
 This model is an English-Korean translation model trained by 

ETRI. 

 Language Pair 

WIT
3
 - TED corpus En-Ar Ja-Ar Ch-Ar 

Original data size 508,925 514,746 520,886 

Training data size (2) 150,000 150,000 150,000 

Training data size (5) 500,000 500,000 500,000 

Table 1: The training data size of each model.  

Synthetic type Sentences 

Synthetic target (3) 

Synthetic source (4) 
450,000 

Synthetic source (5) 350,000 

Table 2: The WIT3 data for the Multi-Source Model 
(MSM). 

Table 3: The synthetic corpus for using corpus extension. 

Model Sentences 

(1) Prod. Ko-Ar corpus (Baseline) 150,000 
(2)  (1) + Multi-Source Model (MSM) 

(Ko/En/Ja/Ch  Ar) 
600,000 

(3)  (1) + Synthetic Target 600,000 

(4)  (1) + Synthetic Source 600,000 
(5)  (4) + Multi-Source Model 2,000,000 
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source with the original target. Then we obtained an 

800,000 Korean-Arabic parallel corpus through the 

filtering task. The filtering process consisted of length 

filtering, deduplication of sentences, and removal of 

sentences containing the <unk> symbol. 

In this paper, we used data with the sizes indicated in 

Tables 1, 2, and 3. From the extracted data, we selected a 

fixed training size. As shown in Table 2, we used a WIT
3
 

corpus consisting of 150,000 sentences. This is because 

we wanted to minimize variation of each additional 

corpus size in training a multi-source model. So, to train 

this model, we used the same size of each additional 

corpus with an initial baseline production corpus. Finally, 

we used 600,000 sentences as a multi-source corpus 

which consisted of Korean-Arabic (Ko-Ar), Englih-

Arabic (En-Ar), Japanese-Arabic (Ja-Ar), and Chinese-

Arabic (Ch-Ar) parallel language pairs. To compare fairly 

with the multi-source model (2) in Table 1, it is necessary 

to make the size of a training corpus equal. Therefore, we 

used 450,000 sentences of the synthetic corpus to make 

600,000 sentences. When we applied the corpus extension 

method to a multi-source model, we set the corpus size to 

500,000 sentences according to the maximum size of 

WIT
3
. We used the 350,000 sentence synthetic dataset to 

make 500,000 Korean-Arabic sentences as an initial 

baseline corpus. The model was trained using a total of 2 

million sentences like the model (5) in Table 1.  

To measure how well the model is generalizing during 

training, we used 3,865 development set from a Prod. We 

used 4,000 1-referenced test set from a Prod corpus. This 

test set is referred to as trip (TRIP). We extracted 2,000 

Korean-Arabic sentences as a 1-referenced test set from a 

WIT
3
 corpus. This test set is called as TED. 

3.2 NMT and Model Settings 

To train NMT systems, we used OpenNMT and we set 

the following conditions for training models : 

 BPE vocabulary size : 8,000 vocabulary for the 

source language and 10,000 vocabulary for the target 

language in all models. When we checked the 

coverage of BPE models in each language, we found 

the appropriate size of a BPE model. This size could 

cover 99.5% of the words. 

 Recurrent neural network (RNN) for encoders and 

decoders : long short-term memory (LSTM) with 4 

layers, 1,000 nodes output. Each encoder is a 

bidirectional RNN. Word embedding size is 500 

dimensions, and global attention is also enabled with 

default parameters. 

 Optimization algorithms : stochastic gradient descent 

(SGD) with an initial learning rate of one which 

remains the same during the epoch. 

We trained and evaluated the following NMT model 

with a WIT corpus. 

 One source to one target : three models (baseline and 

synthetic extension corpus models) 

 Four sources to one target : two models (multi-source 

translation models) 

 Evaluate the performance of the trained models at 20 

epochs.  

3.3 Automatic Evaluations via Tokenized 
BLEU 

We used the tokenized BLEU-4 (Papineni et al., 2002) 

automatic evaluation method to measure translation 

quality. Since Arabic is a rich-morphological language, its 

performance would be underestimated because non-

tokenized BLEU evaluates units separated by whitespaces. 

Therefore, in this study, Arabic sentences were evaluated 

based on the results separated by morphemes. We used 

Farasa (Abdelali et al., 2016), which is an Arabic 

segmentation tool developed by the Qatar Computing 

Research Institute (QCRI) to tokenize Arabic words into 

morphemes. 

4. Result and Analysis 

4.1 Evaluation results 

Tables 4, 5, and 6 show the BLEU scores of our 

proposed methods. First, we used synthetic data to 

determine whether the corpus extension method could 

improve BLEU scores. Table 4 shows the BLEU score of 

the model trained by a baseline corpus and the models that 

added synthetic data to the baseline.  

For training the multi-source model, we used three 

different languages pairs. Table 5 showed the BLEU score 

when we used the multi-source model, which uses Ko-Ar, 

En-Ar, Ja-Ar, and Ch-Ar corpora as the training data. We 

found that the BLEU score is better when we use 

synthetic source data and the multi-source model. To gain 

additional improvement, we trained a multi-source model 

using the extended corpus by a synthetic source. Finally, 

based on the results, training a multi-source model with 

the synthetic source outperformed all other approaches in 

a low-resource scenario. 

4.2 Analysis 

From Tables 4,5 and 6, it is clear that we improved the 

quality of a translation model by using the corpus 

extended with a synthetic source for the multi-source 

model. 

We have shown that the corpus extension is suitable for 

improving the translation model of a low-resource 

language pair. Table 4 shows that the BLEU score was 

1.77 points higher than the baseline in the TRIP test set 

and 1.73 points in the TED test set when the corpus was 

extended to a synthetic target. However, when we used 

the synthetic source method, the BLEU score was 

increased about 4.96 and 3.86 points in the TRIP and TED 

test sets, respectively. Through these results, we showed 

that the synthetic source is more efficient in corpus 

extension. The reason is that generating source sentences 

can keep the target sentences in their original native state. 

The original target sentences enriched the deficient 

portions of a Prod corpus to improve the quality of the 

model. We also conducted experiments to demonstrate the 

effect of a multi-source model. As can be seen in Table 5, 

the MSM was 4.87 points higher in TRIP and 3.54 points 

higher in TED than the baseline. Even though the source 

sentences are different, the MSM can cause the model to 
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have a lot of target information. Therefore, the model can 

be enhanced to obtain a better translation. 

Based on these results, we decided to combine the two 

methods. We hypothesized that the model performance 

would be better if we trained the extended corpus with 

MSM. The results are shown in Table 6. Performance was 

greatly improved when training a multi-source model with 

the synthetic source. A model obtained BLEU scores of 

27.07 and 12.99 in the TRIP and TED data sets, 

respectively. In other words, training a multi-source 

model with a synthetic source can reach the improvement 

of 5.15 and 6.8 BLEU score for the two test sets.  

5. Conclusion 

The performance of an NMT system largely depends on 

the size of the parallel corpus. There are many languages 

in the world, but most pairs of languages are not rich 

enough to make a good translation model. Therefore, this 

paper proposed a method to improve the performance of 

low-resource language pairs. 

In this paper, we used the corpus extension and multi-

source translation method to achieve a performance 

improvement. The two methods of corpus extension:  

target generation and source generation. The source 

generation, called the synthetic source, can improve the 

performance of NMT systems. We showed the corpus 

extension and multi-source model to be an efficient 

method for low-resource languages. Furthermore, we 

achieved better translation performance by using both 

methods together. 

However, the evaluation data was significantly 

influenced by the domain of the training data, and we 

found that better evaluation results were obtained in the 

TED evaluation than in the TRIP. If we use training data 

in the trip domain, we will also see a high score like the 

TED result. In the future, we plan to see if we can further 

improve the TRIP evaluation set by collecting an 

additional training corpus in the trip domain.  
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