
Build Fast and Accurate Lemmatization for Arabic

Hamdy Mubarak
QCRI, Hamad Bin Khalifa University (HBKU), Doha, Qatar

hmubarak@hbku.edu.qa

Abstract
In this paper we describe the complexity of building a lemmatizer for Arabic which has a rich and complex morphology, and show some
differences between lemmatization and surface stemming, i.e. removing prefixes and suffixes from words. We discuss the need for a
fast and accurate lammatization to enhance Arabic Information Retrieval results. We also introduce a new dataset that can be used to
test lemmatization accuracy, and an efficient lemmatization algorithm that outperforms state-of-the-art Arabic lemmatization in terms of
accuracy and speed. We share the dataset and the code for research purposes.

Keywords: Arabic NLP, Lemmatization, Stemming, Information Retrieval, Diactitization

1. Introduction
Lemmatization is the process of finding the base form
(or lemma) of a word by considering its inflected forms.
Lemma is also called dictionary form, or citation form, and
it refers to all words having the same meaning.

Lemmatization is an important preprocessing step for
many applications of text mining and question-answering
systems. Researches in Arabic Information Retrieval (IR)
systems show the need for representing Arabic words at
lemma level for many applications, including keyphrase
extraction (El-Shishtawy and Al-Sammak, 2009) and
Machine Translation (Dichy and Fargaly, 2003). In addi-
tion, lemmatization provides a productive way to generate
generic keywords for search engines (SE) or labels for
concept maps (Plisson et al., 2004).

Word stem is that core part of the word that never changes
even with morphological inflections; the part that remains
after prefix and suffix removal. Sometimes the stem of
the word is different than its lemma, for example the
words: believe, believed, believing, and unbelievable share
the stem (believ-), and have the normalized word form
(believe) standing for the infinitive of the verb (believe).

While stemming tries to remove prefixes and suffixes from
words that appear with inflections in free text, lemmatiza-
tion tries to replace word suffixes with (typically) different
suffix to get its lemma. For languages having complex
derivational and inflectional morphology, like Arabic,
lemmatization needs more than just suffix replacement as
will be described in next section.

This paper is organized as follows: Section 2. gives some
background about Arabic morphology and shows some
complexities in building Arabic lemmatization; Section 3.
lists IR clustering methods and gives examples to show that
lemmatization can enhance search results; Section 4. sur-
veys prior work on Arabic stemming and lemmatization;
Section 5. introduces the dataset that we created to test
lemmatization accuracy; Section 6. describes the algorithm
of the system that we built. Results and error analysis are
described in section 7.; and Section 8. concludes the paper
and lists some tasks for future work.

2. Background
Arabic is the largest Semitic language spoken by almost
300 million people. It’s one of the six official languages
in the United Nations, and the fifth most widely spoken
language after Chinese, Spanish, English, and Hindi1.

Arabic has a very rich morphology, both derivational and
inflectional. Generally, Arabic words are derived from a
root that uses three or more consonants to define a broad
meaning or concept, and they follow some templatic
morphological patterns (�

éJ

	
Q̄å�Ë@ 	áK

	P@ñÖÏ @). By adding
vowels, prefixes and suffixes to the root, word inflections
are generated. For instance, the word Aî

	
Eñj

�
J

	
®J
�ð (wsyftH-

wnhA)2 “and they will open it” has the triliteral root
i

�
J
	
¯ (ftH), which has the basic meaning of opening, has

prefixes �+ð (w+s) “and+will”, suffixes Aë+
	

àð (wn+hA)

“they..it”, stem i
�
J
	
®K
 (yftH) “open”, and lemma i

�
J
	
¯ (ftH)

“the concept of opening”.

Arabic verbs have the following grammatical categories:
tense (past, present, imperative, and future), number (sin-
gular, dual, and plural), person (first, second, and third),
mood (indicative, subjunctive, and jussive for present
verbs, given for past verbs, and jussive for imperative
verbs), gender (masculine and feminine) and voice (active
and passive).
Typically, lemmatization of a verb is achieved by obtaining
its past tense without any prefixes or suffixes, singular
number, third person, given mood, masculine gender, and
active voice. Mapping between different grammatical
values cannot be done in many cases by just stripping
word from its prefixes and suffixes but by applying some
complex morphological rules due to the derivational nature
of Arabic morphology. Table 1 shows some examples.

Arabic nouns and adjectives have the following grammati-
cal categories: case (nominative, accusative, and genitive),
number (singular, dual, and plural (proper or broken plu-

1https://en.wikipedia.org/wiki/Arabic
2Words are written in Arabic, transliterated using Buckwalter

transliteration, and translated.

1128

https://en.wikipedia.org/wiki/Arabic

Case Example
present->past Èñ

�
®K
 ->ÈA

�
¯ (yqwl, qAl) “said, say”

passive->active �
�

�
¯ñ

	
K -> �

�
�
¯A

	
K (nwq$, nAq$)

“was discussed, discussed”
first->third �

IÖ
	

ß ->ÐA
	
K (nmt, nAm)

“I slept, he slept”
plural->singular @ñ

	
�P ->ú

æ

	
�P (rDwA, rDy)

“they satisfy, he satisfies”
Table 1: Examples of complex verb lemmatization cases

rals Q�
�º
�
JË @ð ÕËA�Ë@

�
I

	
K

ñÖÏ @ð Q»
	

YÖÏ @ ©Ôg
.
)), gender (mascu-

line and feminine) and definiteness (definite and indefi-
nite). Typically, lemmatization of a noun or an adjective is
achieved by obtaining its nominative case without any pre-
fixes or suffixes, singular number, masculine gender, and
indefinite form. Mapping between different values is not
straightforward in many cases as shown in Table 2.

Case Example
broken plural->singular ÈAg. P ->Ég. P (rjAl, rjl)

“men, man”
proper plural->singular �

H@ñ
	
J� -> �

é
	
J� (snwAt, snp)

“years, year”

feminine->masculine Z @Qå
	
�

	
k ->Qå

	
�

	
k

@ (xDrA’, >xDr)

“green (f), green (m)”
genitive->nominative é

KA

	
JK. ->ZA

	
JK.

(bnA}h, bnA’)
“building-it, building”

special cases �
HAJ

	
®

�
�

�
��Ó ->ù

	
®

�
�

�
��Ó

(mst$fyAt, mst$fY)
“hospitals, hospital”
�

HAëñK
YJ

	
¯ ->ñK
YJ

	
¯

(fydywhAt, fydyw)
“videos, video”...

Table 2: Examples of complex noun lemmatization cases

In addition, according to Arabic morphology and writing
system, attaching pronouns to words in some cases changes
their last letter. This adds an extra complexity when ob-
taining lemmas. For example, when nouns ending with
Taa-Marbouta letter are attached to possessive pronouns,
it will be changed to Taa letter as in è+

�
èPA

	
�k -> é

�
KPA

	
�k

(hDArp+h, HDArth) “its civilization”. Also, when verbs
ending with Alif-Maqsoura letter are attached to some
subject pronouns, it will be changed to Yaa letter as in
A
	
K+ øYë -> A

	
JK
Yë (hdY+nA, hdynA) “we guided” or even

deleted in some cases as in @ð + øYë -> @ðYë (hdY+wA,
hdwA) “they guided”, and when are attached to object
pronouns, it will be changed to Alif letter as in Aë + øYë

-> Aë@Yë (hdY+hA, hdAhA) “guides her”, etc.

The mentioned cases are just few examples to show how
complex the Arabic lemmatization is, and reveal that many

cases should be considered in addition to stripping words
from prefixes and suffixes to get their proper lemmatization.

3. Lmmatization and IR
IR systems normally cluster words together into groups
according to three main levels: root, stem, or lemma. The
root level is considered by many researchers in the IR field
which leads to high recall but low precision due to language
complexity. For example words H. A

�
J» ,

�
éJ.

�
JºÓ , I.

�
JºK
 (yktb,

mktbp, ktAb) “he writes, library, book” have the same root
I.

�
J» (ktb) with the basic meaning of writing. Therefore,

searching for any of these words by root, yields getting
the other words which may not be desirable for many users.

Other researchers show the importance of using stem level
for improving retrieval precision and recall as they capture
semantic similarity between inflected words. However, in
Arabic, stem patterns may not capture similar words having
the same semantic meaning. For example, stem patterns
for broken plurals are different from their singular patterns,
e.g. the stem of the plural word ÐC

�
¯

@ (AqlAm) “pens”

does not match the stem of its singular form ÕÎ
�
¯ (qlm)

“pen”. The same applies to many imperfect verbs that
have different stem patterns than their perfect verbs, e.g.
the verbs ©J
¢

�
���
 , ¨A¢

�
J�@ (AstTAE, ystTyE) “he could, he

can” do not match because they have different stems. In-
dexing using lemmatization can enhance the performance
of Arabic IR systems as reported in (El-Shishtawy and
El-Ghannam, 2012), and in pactice, lemmatization should
be very fast and accurate to be used in IR systems.

4. Related Work
A lot of work has been done in word stemming and
lemmatization in different languages, for example the
famous Porter stemmer for English, but for Arabic, few
works have been done especially in lemmatization, and
there is no open-source code and new testing data that can
be used by other researchers for word lemmatization.

Xerox Arabic Morphological Analysis and Generation
(Beesley, 1996) is one of the early Arabic stemmers, and
it uses morphological rules to obtain stems for nouns and
verbs by looking into a table of thousands of roots.

Khoja’s stemmer (Khoja, 1999) and Buckwalter morpho-
logical analyzer (Buckwalter, 2002) are other root-based
analyzers and stemmers which use tables of valid combi-
nations between prefixes and suffixes, prefixes and stems,
and stems and suffixes.

Recently, MADAMIRA (Pasha et al., 2014) system has
been evaluated using a blind testset of 25K words for Mod-
ern Standard Arabic (MSA) selected from Penn Arabic
Tree bank (PATB). They reported an accuracy of 96.2%
as the percentage of words where the chosen analysis
(provided by SAMA morphological analyzer (Graff et al.,
2009)) has the correct lemma.

1129

In this paper, we present an open-source Java code to ex-
tract Arabic lemmas, and a new publicly available testset
for lemmatization allowing researches to evaluate using the
same dataset, and reproduce results.

5. Data Description
To make the annotated data publicly available, we se-
lected 70 news articles from Arabic WikiNews site
https://ar.wikinews.org/wiki. These articles
cover recent news from year 2013 to year 2015 in multiple
genres (politics, economics, health, science and technol-
ogy, sports, arts, and culture.) Articles contain 18,300
words, and they are evenly distributed among these 7
genres with 10 articles per each.

Words were white-space and punctuation separated, and
some spelling errors were corrected (1.33% of the total
words) to have a very clean testset. Lemmatization was
done by an expert Arabic linguist where spelling correc-
tions were marked, and lemmas were provided with full
diacritization. Sample is shown in Figure 1.

As MSA is usually written without diacritics and IR sys-
tems normally remove them from search queries and also
from indexed data as a basic preprocessing step, so another
column for undiacritized lemma was added. This column
was used to evaluate our lemmatizer and to compare with
state-of-the-art systems for lemmatization (MADAMIRA),
and segmentation and surface stemming (Farasa).

The raw sentences of the testset can be down-
loaded from the link: http://alt.qcri.org/

˜hmubarak/WikiNews-26-06-2015.txt
and the annotation for lemmatization from the
link: http://alt.qcri.org/˜hmubarak/
WikiNews-26-06-2015-RefLemma.xlsx

Figure 1: Lemmatization of WikiNews corpus

6. System Description
We were inspired by the work done by (Darwish and
Mubarak, 2016) for segmenting Arabic words out of
context. They achieved an accuracy of almost 99%;
slightly better than state-of-the-art system for segmentation
(MADAMIRA) which considers surrounding context and
many linguistic features. This system shows enhancements

in both Machine Translation, and Information Retrieval
tasks (Abdelali et al., 2016). This work can be considered
as an extension to word segmentation.

We used a fully diacritized corpus created by a commercial
vendor which contains 9.7 million words with almost 200K
unique surface words. About 73% of the corpus is in MSA
and covers variety of genres like politics, economy, sports,
society, etc. and the remaining part is mostly religious
texts written in classical Arabic (CA). (Darwish et al.,
2017) used this corpus to build state-of-the-art diacritizer
with word error rates (WER) of 3.29% and 12.76% in
diacritization of stem and grammatical case ending in order.

From this corpus, we constructed a dictionary of words and
their possible diacritizations ordered by number of occur-
rences of each diacritized form. For example, the word
Xñ

	
JK. ð (wbnwd) “and items” is found 4 times in this corpus

with two full diacritization forms X
�
ñ

�	
J
�
K.

�
ð , X� ñ

�	
J
�
K.

�
ð (wabunudi,

wabunudK) “and items, with different grammatical case
endings” which appeared 3 times and once respectively. All
unique undiacritized words in this corpus were analyzed
using Buckwalter morphological analyzer which gives all
possible word analyses, and for each analysis it provides
its diacritization, segmentation, lemma and part-of-speech
(POS) tag as shown in Figure 2.

Figure 2: Buckwalter analysis (diacritization forms and lemmas
are highlighted)

The idea is to take the most frequent diacritized form for
words that appear in this corpus, and find the morpho-
logical analysis with highest matching score between its
diacritized form and the corpus diacritized word. This
means that we search for the most common diacritization
of words regardless of their surrounding contexts. In the
above example, the first solution is preferred and hence its
lemma Y

	
JK. (banod, bnd after diacritics removal) “item”,

and the other less frequent analysis is ignored.

While comparing two diacritized forms from the corpus
and Buckwalter analysis, many special cases were applied
to solve inconsistencies between the two diacritization
schemas, for example while words are fully diacritized in
the corpus, Buckwalter analysis gives diacritics without
case ending (i.e. without context), and it removes short
vowels in some cases, for example before long vowels, and
after the definite article È@ (Al) “the”, etc.

It is worth mentioning that there are many cases in
Buckwalter analysis where for input word, there are two

1130

https://ar.wikinews.org/wiki
http://alt.qcri.org/~hmubarak/WikiNews-26-06-2015.txt
http://alt.qcri.org/~hmubarak/WikiNews-26-06-2015.txt
http://alt.qcri.org/~hmubarak/WikiNews-26-06-2015-RefLemma.xlsx
http://alt.qcri.org/~hmubarak/WikiNews-26-06-2015-RefLemma.xlsx

or more identical diacritizations with different lemmas,
and the analyses in these cases are provided in a random
order. For example the word �

èPAJ
� (syArp) “car” has two

morphological analyses with different lemmas; PAJ
� (syAr)

“walker”, and �
èPAJ
� (syArp) “car” in this order while

the second lemma is the most common one. To solve
this problem, all such words were reported and the top
frequent words were revised to insure that their lemmas are
sorted according to actual usage in a modern large corpus 3.

The lemmatization algorithm can be summarized in Figure
3, and the code can be tested and downloaded from Farasa
site: farasa.qcri.org. It can be called from the
command line as a Java package (.jar) using the following
syntax:
farasa –lemma -i <inFilename> -o <outFilename>

Figure 4 shows system output for a sample sentence where
errors are highlighted.

7. Evaluation
Lemmatization outputs of MADAMIRA and our system
were compared against the undiacritized reference lemma
for each word. We evaluated also surface stemming of
Farasa segmenter (Darwish and Mubarak, 2016) (i.e. the
remaining part after removing prefixes and suffixes) to
quantify the improvement in lemmatization accuracy after
applying the suggested algorithm.

For more accurate results, all differences were revised
manually to accept cases that should not be counted as
errors, for example in different writings for foreign named
entities such as l .

�
	
'ñ» l .

�
	
'ñë and 	

©
	
Kñ»

	
©

	
Kñë (hwng kwng,

hwnj kwnj) “Hong Kong”.

Table 3 shows results of testing our system, MADAMIRA
and Farasa segmenter as surface stemmer on the WikiNews
testset (for undiacritized lemmas). Our approach gives +7%
and +32% relative gains above MADAMIRA and Farasa
segmenter respectively in lemmatization task.

System Accuracy
Farasa segmenter (surface stemmer) 73.68%

MADAMIRA 96.61%
Our lemmatization System 97.32%

Table 3: Lemmatization accuracy using WikiNews testset

In terms of speed, our system was able to lemmatize 7.4M
words on a personal laptop in 2 minutes compared to 2.5
hours for MADAMIRA which does the full morphological
analysis and disambiguation, lemmatization, POS tagging,
named entity recognition, and diacritization.

The code is written entirely in Java without any external
dependency which makes its integration in other systems
quite simple.

3We used text from www.Aljazeera.net which contains 100M
words (archive of 10 years)

7.1. Error Analysis
Most errors in our system are due to using only the most
frequent diacritization of words without considering their
contexts. This cannot solve ambiguity in cases like when
nouns and adjectives share the same diacritization forms,
e.g. the word �

éJ
Öß
XA¿

@ (AkAdymyp) can be either noun and

its lemma is �
éJ
Öß
XA¿

@ (AkAdymyp) “academy”, or adjective

and its lemma is ù

Öß
XA¿

@ (AkAdymy) “academic”.

For MADAMIRA, most errors came from selecting
incorrect POS tag, hence lemma, for ambiguous words (ex:
the word �

H@Qå
	
�Am× (mHADrAt) “lectures” was mistakenly

tagged as adjective Qå
	
�Am× (mHADr) “lecturer” instead of

the correct noun �
èQå

	
�Am× (mHADrp) “lecture”). Another

source of errors is the wrong segmentation of named
entities, ex: the word 	

àñ
�
JK
AJ. Ë @ (AlbAyvwn) “the+Python”

which should be segmented as 	
àñ

�
JK
AK.+ È@ (Al+bAyvwn)

“the Python”, i.e. split the definite article È@ (Al) “the”.

For Farasa segmenter (surface stemmer), errors came from
not supporting complex cases described in Section 2..

8. Conclusion
In this paper, we list some complexities in building
lemmatization for Arabic due to its rich morphology and
complex writing system. We introduce a new testset for
lemmatization and a very fast and accurate algorithm that
performs better than state-of-the art lemmatization system;
MADAMIRA. It also outperforms state-of-the-art word
segmenter (surface stemmer); Farasa segmenter.

From a large fully diacritized corpus, possible diacritiza-
tions of words are extracted, and the algorithm considers
only the most frequent diacritized form for words out of
context. It gets the best similarity matching score between
this diacritized form and the morphological analysis, pro-
vided by Buckwalter morphological analyzer, which con-
tains word lemma. Both the testset and the code are pub-
licly available for researchers.
We plan to study the performance when we consider sour-
rouning context, also to provide diacritized lemmas which
can be useful for other applications. In addition, we plan to
plug the lemmatizer into an IR system (Solr for example),
and carry out an extrinsic evaluation to evaluate perfor-
mance with lemmatization also versus other systems such
as MADAMIRA and Farasa surface stemmer.

9. Bibliographical References
Abdelali, A., Darwish, K., Durrani, N., and Mubarak, H.

(2016). Farasa: A fast and furious segmenter for arabic.
In HLT-NAACL Demos, pages 11–16.

Beesley, K. (1996). Arabic finite-state morphological anal-
ysis and generation. In In COLING-96: Proceedings of
the 16th international, pages 89–94.

Buckwalter, T. (2002). Arabic finite-state
morphological analysis and generation. In
http://members.aol.com/ArabicLexicons/.

1131

farasa.qcri.org

Figure 3: Summary of lemmatization algorithm

Figure 4: Lemmatization online demo (part of Farasa Arabic NLP tools)

Darwish, K. and Mubarak, H. (2016). Farasa: A new fast
and accurate arabic word segmenter. In LREC.

Darwish, K., Mubarak, H., and Abdelali, A. (2017). Ara-
bic diacritization: Stats, rules, and hacks. In Proceedings
of the Third Arabic Natural Language Processing Work-
shop, pages 9–17.

Dichy, J. and Fargaly, A. (2003). Roots and patterns vs.
stems plus grammar-lexis specifications: on what basis
should a multilingual lexical database centred on ara-
bic be built? In Proceedings of the MTSummit, New-
Orleans.

El-Shishtawy, T. and Al-Sammak, A. (2009). Arabic
keyphrase extraction using linguistic knowledge and ma-
chine learning techniques. In Proceedings of the Second
International Conference on Arabic Language Resources
and Tools, The MEDAR Consortium.

El-Shishtawy, T. and El-Ghannam, F. (2012). An accurate

arabic root-based lemmatizer for information retrieval
purposes. arXiv preprint arXiv:1203.3584.

Graff, D., Maamouri, M., Bouziri, B., Krouna, S., Kulick,
S., and Buckwalter, T. (2009). Standard arabic morpho-
logical analyzer (sama) version 3.1. In Linguistic Data
Consortium LDC2009E73.

Khoja, S. (1999). Stemming arabic text. In Computing De-
partment, Lancaster University.

Pasha, A., Al-Badrashiny, M., Diab, M., El Kholy, A., Es-
kander, R., Habash, N., Pooleery, M., Rambow, O., and
Roth, R. M. (2014). Madamira: A fast, comprehensive
tool for morphological analysis and disambiguation of
Arabic. Proc. LREC.

Plisson, J., Lavrac, N., and Mladenic, M. (2004). A rule
based approach to word lemmatization. In research-
gate.net.

1132

	Introduction
	Background
	Lmmatization and IR
	Related Work
	Data Description
	System Description
	Evaluation
	Error Analysis

	Conclusion
	Bibliographical References

