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Abstract
All-words word sense disambiguation (all-words WSD) is the task of identifying the senses of all words in a document. Since the
sense of a word depends on the context, such as the surrounding words, similar words are believed to have similar sets of surrounding
words. We therefore predict the target word senses by calculating the distances between the surrounding word vectors of the target words
and their synonyms using word embeddings. In addition, we introduce the new idea of concept embeddings, constructed from concept
tag sequences created from the results of previous prediction steps. We predict the target word senses using the distances between
surrounding word vectors constructed from word and concept embeddings, via a bootstrapped iterative process. Experimental results
show that these concept embeddings were able to improve the performance of Japanese all-words WSD.
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1. Introduction
Word sense disambiguation (WSD) involves identifying the
senses of words in documents. In particular, the WSD task
where the senses of all the words in a document are disam-
biguated is referred to as all-words WSD. Much research
has been carried out, not only on English WSD but also
on Japanese WSD, for many years. However, there has
been little research on Japanese all-words WSD, possibly
because no tagged corpus has been available that was large
enough for the task. Usually, the Japanese sense dataset
Balanced Corpus of Contemporary Written Japanese (BC-
CWJ) (Maekawa et al., 2014), tagged with sense IDs from
Iwanami Kokugo Jiten (Nishio et al., 1994), is used for su-
pervised WSD. However, unsupervised approaches to all-
words WSD often require synonym information, which
sense datasets cannot provide. This paper reports research
on Japanese all-words WSD that uses a corpus that is in
its infancy, namely BCCWJ annotated with concept tags
or article numbers from the Word List by Semantic Prin-
ciples (WLSP) (Kokuritsukokugokenkyusho, 1964), which
is a Japanese thesaurus. In the WLSP, the article numbers
indicate shared synonyms.
In the WLSP thesaurus, words are classified and organized
by their meanings1 and each WLSP record contains the fol-
lowing fields: record ID number; lemma number; record
type; class; division; section; article; article number; para-
graph number; small paragraph number; word number;
lemma (with explanatory note); lemma (without explana-
tory note); reading; and reverse reading. Each record has an
article number, which represents four fields: class; division;
section; and article. For example, the word “犬”(inu, mean-
ing spy or dog) has two records in the WLSP, and therefore
has two article numbers, 1.2410 and 1.5501, indicating that
the word is polysemous. In addition, there are 240 seman-
tic breaks in the WLSP, which allow words to be classified
in more detail than with the article numbers alone. Note
that the article numbers are used as concept tags, because

1https://www.ninjal.ac.jp/english/publication/catalogue/goihyo/

many words have the same article numbers. Several words
can have the same precise article number, even when the
semantic breaks are considered.

2. Related Work
WSD methods can broadly be divided into two categories:
supervised and unsupervised approaches. Generally, WSD
using supervised learning can achieve high accuracy rates,
but requires substantial manual effort due to the need for a
sufficient amount of manually-annotated training data. On
the other hand, unsupervised learning does not need such
manual input, but it is difficult to obtain as high an accuracy
rate as with the supervised learning.
Many WSD methods have been proposed. WLSP arti-
cle numbers or hypernyms of target words obtained from
the WLSP are often used as supervised learning features.
Vu and Parker (2016) proposed the idea of K-embeddings
for learning concept embeddings. Komiya et al. (2015)
proposed a surrounding word sense model for Japanese all-
words WSD using unsupervised learning which assumes
that the sense distribution of surrounding words changes
depending on the sense in which a polysemous word is
used. Shinnou et al. (2017b) proposed a WSD system ca-
pable of performing Japanese WSD easily using a super-
vised approach.

3. WSD Using Synonym Information from
the WLSP

We propose three WSD methods that use synonym infor-
mation from the WLSP: 1) a method using only the word
embeddings of synonyms, 2) a method using both the word
and concept embeddings of synonyms, and 3) a method us-
ing only the concept embeddings of synonyms.

3.1. WSD Using the Word Embeddings of
Surrounding Words

Since the senses of words are determined by context, such
as the surrounding words, similar words are believed to
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have similar sets of surrounding words. The proposed
method is based on this idea and consists of three steps.
First, we generate word embeddings from an untagged cor-
pus and concatenate the embeddings of the words surround-
ing each target word, creating what we will refer to as the
surrounding word vectors. For example, a word“犬”(inu,
meaning spy or dog) has two article numbers, 1.2410 and
1.5501, in WLSP. Therefore, this word is polysemous. If
there was a sentence including the word“犬”below, the
surrounding word vector for the word“犬”is the concate-
nated vector of the word embeddings or the words“警察”,
“の”,“だ”, and“ .”.

彼
he
は
(topic marker)

警察
police

の
of
犬
spy
だ
is

.

.
‘He is a spy of police.’

Second, we make synonym lists for the senses of each target
word using the WLSP, and create surrounding word vectors
for each synonym appearing in the corpus. Note that each
surrounding word vector is labeled according to the sense
of the target word, which is equivalent to the sense of the
synonym. For example, if the target word was“犬”, its syn-
onyms are the words that have the article number, 1.2410 or
1.5501. They are agent, ninja, and so on when the number
was 1.2410, and wolf, fox, and so on when it was 1.5501.
The surrounding word vectors for these synonyms are cre-
ated from each synonym appearing in the corpus and are
labeled as 1.2410 or 1.5501. These labels can be obtained
in an unsupervised manner, that is, it does not make use
of sense-tagged data, and this method is knowledge-based
because the WLSP is a thesaurus.
Finally, we predict the target word senses using the K-
nearest neighbors (KNN) algorithm, based on the distances
between the surrounding word vectors for the target words
and their synonyms. In other words, we calculate the dis-
tances between the surrounding word vectors for the target
word“犬”and its synonyms labeled as 1.2410 or 1.5501
and determine the word sense of the target word via KNN
algorithm. That is, if the synonym with label 1.2410 was
nearer by the algorithm, the word sense of the target word
will be 1.2410 and vice versa.

3.2. WSD Using the Word and Concept
Embeddings of Surrounding Words

For this method, we repeat the target word sense prediction
process (based on the one described in Section 3.1.), with
the prediction steps at the nth iteration being as follows.

1. Replace the word tokens in the corpus with their con-
cept tags, using the results from the n − 1st predic-
tion step, and create concept embeddings using the
conceptually-tagged corpus.(cf. Figures 1 and 2).

Figure 1: Word Tokens

Figure 2: Conceptually-tagged Corpus

For example, a text shown in Figure 1 were converted
to a concept-text in Figure 2. Here, the word“届
ける”(todokeru, meaning deliver) is polysemous that
has three article numbers, 2.1521, 2.3141, and 2.3830.
This word is replaced with 2.1521 in Figure 2 accord-
ing to the result of the n − 1st prediction step. In ad-
dition, the words that have no record in WLSP are not
replaced by the article numbers. The words“根本”
(Nemoto, person name) and“要”(Kaname, person
name) in Figure 2 are those examples.

2. Generate surrounding word vectors for the target
words and their synonyms, namely vectors where the
word and concept embeddings have been concate-
nated. For the first prediction step, use the prediction
results for the word embeddings only, as described in
Section 3.1.

3. Predict the target word senses using the KNN algo-
rithm, as described in Section 3.1.

For the method using only the concept embeddings of syn-
onyms, we concatenated only the concept embeddings in-
stead of the word and concept embeddings in the second
step. We investigate the optimal number of iterations ex-
perimentally in Section 4.

3.3. Word List by Semantic Principles
Table 1 shows the structure of WLSP. We extracted メー
トル (meter) and its synonyms for example. In the WLSP
thesaurus, words are classified according to an article num-
ber. The article number represents four fields: class, di-
vision, section, and article. The class classifies the words
into four groups according to a part of speech, and the divi-
sion, section, and article further classify them by according
to a word ’s meaning. In addition, there are 240 semantic
breaks(“＊”in Table 1) in WLSP, which allow words to
be classified in more detail than with the article numbers
alone. For example, there are approximately 500 counter
suffixes (meter, yard, liter, gallon, etc.) that have an article
number, 1.1962, in WLSP. Since these words have same ar-
ticle number, they can be deemed as words that have the
same meanings. However, if the semantic breaks are took
into consideration, they are deemed as two word groups,
“meter yard”and“ liter gallon.”

3.4. Selecting Synonyms Using the WLSP
First, we find the WLSP article numbers for　 all words in
the corpus. The synonyms used for our methods of Section
3.1. are as follows.

• Words with the same article numbers as the target
words. Here semantic breaks are also considered if
available.

• Words are excluded if they are synonyms for more
than one sense of a given target word.
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article
number

paragraph
number

small
paragraph
number

word
number lemma

1 メートル (meter)

2
キロメートル

(kilometer)
15 1 3 キロ (kilo)

...
...

18 2 1 ヤード (yard)

1.1962
...

...
...

...
23 99 99 ＊
24 1 1 リットル (liter)
...

...
...

...
26 1 1 ガロン (gallon)
...

...
...

...

Table 1: WLSP

For example, imagine that a target word, X, has two
senses: Sense 1 and Sense 2. If the synonyms for
Sense 1 are A, B, and C, and the synonyms for Sense 2
are C, D, and E, we exclude C from the synonym sets
for both Sense 1 and Sense 2.

However, the above conditions can not take into consider-
ation the ambiguity of the synonyms. For example, if a
word A, the synonym of X for Sense 1, is polysemous, the
surrounding word vectors of A are not necessarily vectors
meaning only Sense 1. Therefore, we take into considera-
tion the ambiguity of the synonyms for method in Section
3.2..
The synonyms used at the nth iteration of our method are
as follows.

• Polysemous words with the same sense as the target
word. For the KNN algorithm at the nth step, we only
use surrounding word vectors whose predicted sense
was the same as that of the target word at the n − 1st
prediction step.

• Monosemous words with the same sense as the target
word.

• Words are excluded if they are synonyms for more
than one sense of a given target word.

In other words, the surrounding word vectors of A are cre-
ated not from all word tokens of A, but from only word
tokens of A predicted as Sense 1 at the n-1 prediction.

4. Experiment
We used the BCCWJ for our experiments, and used the an-
notation by (Kato et al., 2017) to add word sense annota-
tions. This corpus includes 3,790 word types and 22,568
word tokens, including 1,096 word types and 4,760 word
tokens for polysemous words. The polysemous words have
an average of 3.16 word senses per word token and an aver-
age of 2.59 word senses per word type, so the accuracy rate
of a random baseline method would be 31.65% (the inverse
of the average number of senses for the polysemous words).
The accuracy of the most frequent sense baseline is 91.7%.

Number of URLs collected 83,992,556
Number of sentences (tokens) 3,885,889,575
Number of sentence (types) 1,463,142,939
Number of words (tokens) 25,836,947,421

Table 2: Statistics for the NWJC-2014-4Q Dataset

CBOW or skip-gram -cbow 1
Dimensionality -size 200

Number of surrounding words -window 8
Number of negative samples -negative 25

Hierarchical softmax -hs 0
Minimum sample threshold -sample 1e-4

Number of iterations -iter 15

Table 3: Parameters Used to Generate NWJC2vec

Note that we cannot know what is the most frequent sense
using an unsupervised approach. We used NWJC2vec2

(Shinnou et al., 2017a) for the Japanese word embeddings.
This is a set of word embeddings generated from the
NWJC-2014-4Q dataset, which is an enormous Japanese
corpus developed using the word2vec3 tool. Tables 2 and
3 present summary statistics for the NWJC-2014-4Q data
and the parameters used to generate the word embeddings,
respectively. We used word2vec (Mikolov et al., 2013c;
Mikolov et al., 2013a; Mikolov et al., 2013b) to generate
the concept embeddings, and the parameters used are sum-
marized in Table 4.
The window size for the surrounding word vectors was set
to two, meaning four words in total. When the number of
surrounding words was smaller than the window size, we
used a zero vector. Therefore, the dimensionality of the
surrounding word vectors was 800 when they were created
using only the word embeddings, and 1,000 when both the
word and concept embeddings were used. It was 200 when
only the concept embeddings are used.
We used KNeighborsClassifier from the scikit-learn4 li-
brary as the KNN algorithm. We tried K values of 1, 3, and
5, as well as uniform and distance-based weights. Default
settings were used for all other parameters.

5. Results
Table 5 shows the WSD results when only the word em-
beddings of the surrounding words were used, and Table 6

CBOW or skip-gram -cbow 1
Dimensionality -size 50

Number of surrounding words -window 5
Number of negative samples -negative 5

Hierarchical softmax -hs 0
Minimum sample threshold -sample 1e-3

Number of iterations -iter 5
Minimum frequency to consider -min-count 1

Table 4: Parameters Used for the Concept Embeddings

2http://nwjc-data.ninjal.ac.jp/
3https://code.google.com/archive/p/word2vec/
4http://scikit-learn.org/stable/
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Weights K=1 K=3 K=5

Uniform 52.6 53.0 53.0
Distance-based 52.6 52.7 52.7

Table 5: WSD Accuracy Rate Using Word Embeddings
Only

K weight 1 2 3 4 5 6

1 Uniform 57.0 56.2 56.4 56.3 56.5 56.3
1 Distance 57.0 56.2 56.4 56.4 56.5 56.4
3 Uniform 57.1 56.5 56.6 56.5 56.6 56.5
3 Distance 57.1 56.3 56.5 56.4 56.6 56.4
5 Uniform 57.3 56.6 56.8 56.7 56.8 56.7
5 Distance 57.2 56.3 56.6 56.5 56.7 56.5

Table 6: WSD Accuracy Rate Using Both Word and Con-
cept Embeddings, for between One and Six Iterations

shows the results when both the word and concept embed-
dings were used. Table 7 shows the WSD results when only
the concept embeddings of the surrounding words were
used. The numbers in the column headings give the num-
bers of iterations.
Table 5 shows that uniform weights always gave better re-
sults than distance-based weights. The best results in Table
5 occurred for K = 3 or 5 and uniform weights, where we
obtained an accuracy rate of 53.0%. In addition, Table 5
shows that our method significantly outperformed the ran-
dom baseline, regardless of the K and weight settings used.
The best results in Table 6 occurred at the 1st step, for K =
5 and uniform weights and we obtained the best results in
Table 7 at the 2nd step, for K = 5 and distance weights. The
results when using only the concept embeddings were best
in this experiment.

6. Discussion
Considering our results, we can see that the accuracies
in Table 6 are better than those in Table 5, indicating
that starting from word-embedding-based predictions and
then developing concept embeddings generated from a
conceptually-tagged text corpus is effective for WSD.
In addition, Tables 5 and 6 show that the accuracy of WSD
using word and concept embeddings is high only when that
of WSD using only word embeddings is also high. How-
ever, Tables 5 and 7 show that the accuracy of WSD using
only concept embeddings does not follow this trend. To
study this further, we varied the conditions used to build
the synonym lists for the initial predictions to investigate

K weight 1 2 3 4 5 6

1 Uniform 54.7 58.5 57.2 57.7 58.4 57.8
1 Distance 54.7 58.0 56.9 56.9 58.2 56.6
3 Uniform 54.4 58.3 56.9 58.1 56.3 58.5
3 Distance 53.7 58.4 57.4 56.7 58.4 57.8
5 Uniform 55.2 58.0 57.4 58.2 58.0 57.2
5 Distance 55.8 58.8 57.4 58.6 57.5 57.3

Table 7: WSD Accuracy Rate Using Concept Embeddings
Only

Weights K=1 K=3 K=5

Uniform 51.3 53.3 53.4
Distance-based 51.3 51.7 51.7

Table 8: WSD Accuracy Rate Using Word Embeddings
Only, under Condition 1

K weight 1 2 3 4 5 6

1 Uniform 56.9 56.3 56.3 56.3 56.4 56.4
1 Distance 56.9 56.3 56.3 56.3 56.4 56.3
3 Uniform 54.7 56.1 56.9 56.1 56.8 56.1
3 Distance 56.9 56.4 56.4 56.4 56.5 56.4
5 Uniform 54.9 56.2 57.0 56.2 56.9 56.2
5 Distance 57.0 56.5 56.5 56.5 56.6 56.6

Table 9: WSD Accuracy Rate Using Both Word and Con-
cept Embeddings, under Condition 1, for between One and
Six Iterations

the effect of this on WSD performance. We originally ex-
cluded words that were synonyms for more than one sense
of a given target word, because we believed that KNN
classification accuracy would decrease when the same vec-
tors were generated for duplicate synonyms. The condition
variations that we now considered were as follows.

1. Ignore semantic breaks.
2. Substitute paragraph numbers for semantic breaks.
3. Use only monosemous words as synonyms.

Tables 8, 9, and 10 show the WSD results when only the
word embeddings of the surrounding words were used,
when both the word and concept embeddings were used,
and when only the concept embeddings of the surrounding
words were used under Condition 1, respectively. Tables
11, 12, and 13 are those results under Condition 2 and Ta-
bles 14, 15, and 16 are those results under Condition 3.5

Under Condition 1, the number of target word synonyms
increased compared that for the original conditions, mean-
ing that the synonyms included more words with different
senses. Condition 1 caused the accuracy to increase, when
using only word embeddings, but the accuracy decreased
when using word and concept embeddings. It indicates that
the quality of the concept embeddings does not always de-

K weight 1 2 3 4 5 6

1 Uniform 53.3 58.7 57.4 56.5 57.7 57.1
1 Distance 53.5 58.0 56.5 57.0 56.6 56.7
3 Uniform 54.5 56.4 57.3 58.0 57.2 57.1
3 Distance 53.7 59.5 58.3 59.1 58.4 58.5
5 Uniform 54.1 57.5 58.5 59.1 58.9 57.0
5 Distance 54.0 56.9 59.2 59.2 58.9 58.8

Table 10: WSD Accuracy Rate Using Concept Embed-
dings Only, under Condition 1, for between One and Six
Iterations

5We carried out nine iterations under all the conditions but
omit the results from 6th − 9th iterations under Condition 1 and
Condition 2 due to space limitation.
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Weights K=1 K=3 K=5

Uniform 51.5 51.5 51.5
Distance-based 51.5 51.5 51.5

Table 11: WSD Accuracy Rate Using Word Embeddings
Only, under Condition 2

K weight 1 2 3 4 5 6

1 Uniform 56 58 58 57.9 57.9 57.9
1 Distance 56 58 57.9 57.9 57.9 57.
3 Uniform 56.4 58.2 58.2 58.1 58.1 58.1
3 Distance 56.2 58.1 58 58 58 58
5 Uniform 56.4 58.4 58.3 58.2 58.3 58.2
5 Distance 56.2 58.2 58.2 58.1 58.1 58.1

Table 12: WSD Accuracy Rate Using Both Word and Con-
cept Embeddings, under Condition 2, for between One and
Six Iterations

pend on the prediction accuracy using only word embed-
dings. The accuracy increased when using only concept
embeddings and we obtained the best results when using
only concept embeddings.
Under Condition 2, the synonyms only included words
whose senses were closer to those of the target words than
they were under the original conditions, since the paragraph
numbers allowed the words to be classified in more detail
than the semantic breaks were able to achieve. Here, the
accuracy decreased when using only word embeddings but
the accuracies increased when using word and concept em-
beddings and when using only concept embeddings. We
again obtained the best results when using only concept em-
beddings.
In contrast, all accuracies increased under Condition 3
(shown in Tables 14, 15 and 16). The best results in this
research occurred at the 7th iteration for K = 3 and distance
weights, where we obtained an accuracy rate of 59.8%.
When polysemous words were used as synonyms, their
senses were not necessarily the same as those of the target
words, so the quality of the concept embeddings was im-
proved by using only monosemous words as synonyms. In
addition, about 70% of the words in the WLSP are monose-
mous, so the number of synonyms did not significantly de-
crease under Condition 3, and we believe this is why the
accuracies improved. Only under Condition 3, many itera-
tions caused the accuracy to increase. We believe that this is
because the quality of the concept embeddings was better.

K weight 1 2 3 4 5 6

1 Uniform 56.9 59.5 57.7 56.6 57.9 57
1 Distance 57.8 58.7 55.2 58.6 55.7 57.9
3 Uniform 57.9 57.6 54.9 57.9 54.9 55.6
3 Distance 56.6 56.1 58.3 57.1 57 59.1
5 Uniform 57.5 59.2 56.1 59.1 58.8 54.2
5 Distance 57.2 59.1 55.3 55.6 57.1 56.3

Table 13: WSD Accuracy Rate Using Concept Embed-
dings Only, under Condition 2, for between One and Six
Iterations

Weights K=1 K=3 K=5

Uniform 55.7 55.7 55.7
Distance-based 55.7 55.7 55.7

Table 14: WSD Accuracy Rate Using Word Embeddings
Only, Using Condition 3

K weight 1 2 3 4 5 6

1 Uniform 56.3 55.6 56.6 56.0 57.5 56.0
1 Distance 56.3 55.6 56.6 56.0 57.5 56.0
3 Uniform 56.6 55.7 56.6 56.1 57.5 56.2
3 Distance 56.6 55.7 56.7 56.0 57.6 56.1
5 Uniform 56.7 55.9 56.8 56.3 57.7 56.4
5 Distance 56.7 55.8 56.8 56.1 57.7 56.2

Table 15: WSD Accuracy Rate Using Both Word and Con-
cept Embeddings, under Condition 3, for between One and
Six Iterations

7. Conclusion
In this paper, we have proposed three methods for all-words
WSD: 1) a method using only word embeddings of syn-
onyms, 2) a method using both word and concept embed-
dings of synonyms, and 3) a method using only concept
embeddings of synonyms. Experimental results for the
proposed methods show that they all significantly outper-
formed a random baseline, indicating concept embedding
was effective for WSD. The optimal conditions for select-
ing synonyms depend on both the corpus size and the target
words. In the current study, the accuracies increased when
only monosemous words were used as synonyms. We will
use our method to annotate corpora.
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