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Abstract
Text-to-Speech (TTS) systems convert text into phonetic pronunciations which are then processed by Acoustic Models. TTS frontends
typically include text processing, lexical lookup and Grapheme-to-Phoneme (g2p) conversion stages. This paper describes the design and
implementation of the Indic frontend, which provides explicit support for many major Indian languages, along with a unified framework
with easy extensibility for other Indian languages. The Indic frontend handles many phenomena common to Indian languages such as
schwa deletion, contextual nasalization, and voicing. It also handles multi-script synthesis between various Indian-language scripts and
English. We describe experiments comparing the quality of TTS systems built using the Indic frontend to grapheme-based systems.
While this frontend was designed keeping TTS in mind, it can also be used as a general g2p system for Automatic Speech Recognition.
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1. Introduction
Intelligible and natural-sounding Text-to-Speech

(TTS) systems exist for a number of languages of the world
today. However, for low-resource, high-population lan-
guages, such as languages of the Indian subcontinent, there
are very few high-quality TTS systems available. One of
the bottlenecks in creating TTS systems in new languages
is the development of a frontend that can take sentences or
words in the language and assign a pronunciation in terms
of phonemes from a phone set defined for the language.

In some languages, such a frontend may make use
of a lexicon, which is a list of words in the language
with their pronunciations, and of a Letter-to-Sound (LTS)
model that predicts the pronunciation of Out-of-Vocabulary
(OOV) words. Other frontends may not have a lexicon and
may only use LTS or Grapheme-to-Phoneme (g2p) rules
to predict the pronunciations of all words. Languages that
have fairly close relationships between the orthography and
pronunciation typically fall in the latter category.

In this work, we improve upon previous grapheme-
based approaches to create a unified frontend that imple-
ments various g2p rules for Indian languages. The Indic
frontend can be used for g2p conversion for building TTS
systems in various Indian languages for use with the Fes-
tival Speech Synthesis engine (Taylor et al., 1998). While
this frontend was designed keeping TTS in mind, it can also
be used as a general g2p system for speech recognition.

2. Relation to Prior Work
The lack of lexical resources and clearly defined

phone sets can be an impediment to building TTS and other
speech-processing systems in new languages. Previously,
two techniques have been proposed to build voices in new
low-resource languages (Sitaram et al., 2015b). The first
technique assumes no knowledge of the language and sim-
ply treats each grapheme or letter as a phoneme. This al-
lows us to build a voice without having to define a phone set
for the language. The disadvantage of this technique is that
we lose out on phonetic features that typically give gains

in models of the spectrum and the prosody. Another prob-
lem with this approach is that since each grapheme maps
to a single “phoneme” in all contexts, this technique does
not work well in the case of languages that have pronun-
ciation ambiguities. We refer to this technique as “Raw
Graphemes.”

Another technique exploits a universal transliteration
resource (UniTran) (Qian et al., 2010) that provides a map-
ping from graphemes to phonemes in the X-SAMPA phone
set. The UniTran implementation in Festvox (Sitaram et
al., 2015b) provides a single mapping from each grapheme
in the Unicode specification to a phoneme, with the excep-
tion of a few scripts such as Chinese and Japanese. While
this technique allows us to use phonetic features in mod-
els downstream, it has the same limitation as the previ-
ous technique because there is a single mapping between
a grapheme and a phoneme.

(Choudhury, 2003) describes a rule-based g2p map-
ping scheme for Hindi, which can be used to build a TTS
system for Hindi. Schwa deletion, syllabification, and con-
textual nasalization are handled by the rules stated in this
work, with exceptions to these rules being handled by list-
ing in a lexicon.

(Bali et al., 2004) also describes a rule-based Hindi
frontend to be used with the Festival Speech Synthesis
system. Schwa deletion is handled with rules. However,
these rules fail when dealing with compound words. In
light of this, an algorithm to detect compound words is de-
scribed which results in an improvement in the g2p con-
version when schwa deletion is applied to the individual
constituents.

As per our knowledge, there has been no prior work
in creating a freely available, common frontend for all the
Indian languages that can be used for g2p conversion. Our
motivation for creating such a frontend is to be able to ad-
dress many common pronunciation issues in Indian lan-
guages using a single frontend to facilitate rapid develop-
ment of TTS systems in Indian languages.

To build the Indic frontend, we build upon the
Festvox UniTran implementation. The UniTran mappings

1



have some limitations when it comes to handling the g2p
rules in Indian languages. From a pronunciation point of
view, most Indian languages have a fairly consistent map-
ping from graphemes to phonemes. However, some con-
textual rules need to be applied in some languages. For
example, the UniTran mapping assigns an inherent schwa
to all consonants by default. However, in some languages
such as Hindi and Bengali, schwas are deleted at the ends
of words and sometimes in the middle of words. This is
something we need to handle explicitly. Still, the UniTran
mappings provide a good starting point for building a fron-
tend for Indian languages.

3. Indic Frontend Description
The Indic frontend has been developed on top of the

Festvox voice-building tools (Black and Lenzo, 2002), to
be used in the Festival Speech Synthesis engine (Taylor et
al., 1998). We will also describe implementations of the
Indic frontend for Flite (Black and Lenzo, 2001), a low-
footprint speech synthesizer; and Flite for Android (Par-
likar, 2014), an Android application that can be used on a
smartphone. For the next few sections, we focus on the de-
sign and implementation of the Indic frontend for Festvox.

All Unicode characters defined for Indian languages
are first mapped to a phoneme from the X-SAMPA set, sim-
ilar to the mappings provided by UniTran. In addition, each
Unicode character is mapped to its corresponding ordinal
for ease of processing. Lastly, a set of rules are defined
which are associated with language lists. If a language is
in the list for a particular rule, the rule is fired for that lan-
guage.

Next, we describe the rules implemented in the fron-
tend to handle various phenomena.

3.1. Schwa Deletion
Indo-Aryan languages such as Hindi, Bengali, Gu-

jarati, et cetera, exhibit a phenomenon known as schwa
deletion, in which a final or medial schwa is deleted from
a word in certain cases. For example, in Hindi, the final
schwa (realized as the sound [@]) in the word kml (pro-
nounced ‘kamal’) is deleted. None of the consonants k,
m, or l have an attached vowel; hence, they have inherent
schwas, and the inherent schwa on the last consonant l gets
deleted. The word lgBg (pronounced ‘lagbhag’) has con-
sonants l g B g, from which both the medial schwa on
the first consonant g and the final schwa on the second con-
sonant g get deleted. If schwa deletion did not take place,
these words would erroneously be pronounced as ‘kamala’
and ‘lagabhaga’ respectively. In both these cases, the or-
thography does not indicate which inherent schwas should
be deleted.

Schwa deletion has been well studied in the context
of TTS systems. There are well defined linguistic rules to
predict when a schwa gets deleted and when it does not.
However, there are exceptions to these rules that reportedly
affect around 11% of the vocabulary (Narasimhan et al.,
2004), including cases such as consonant clusters.

Previous work on schwa deletion includes ap-
proaches that take into account morphology to preserve
schwas that may otherwise be deleted (Narasimhan et al.,

2004). Other approaches have used syllable structure and
stress assignment to assign schwa deletion rules (Naim R
and Nagar, 2009). (Choudhury et al., 2004) uses ease of
articulation, acoustic distinctiveness and ease of learning to
build a constrained optimization framework for schwa dele-
tion.

Recently, (Sitaram et al., 2015a) proposed a tech-
nique to automatically discover LTS rules such as schwa
deletion using acoustics for low-resource languages. They
use the UniTran mappings and a cross-lingual technique
to automatically discover schwa deletion rules for Hindi,
which is considered to be a low-resource language in this
case, by using acoustic models trained on other Indian lan-
guages and schwa deletion rules for Assamese.

Schwa deletion for Hindi occurs in both word-final
and word-medial positions, while for languages like Ben-
gali it occurs only in word-final positions. The schwa dele-
tion rules we implemented in the Indic frontend are based
on a simpler version of (Narasimhan et al., 2004) and are as
follows:

• Process input from right to left

• If a schwa is found in a VC CV context, delete it

Taking the examples of kml ‘kamal’ and lgBg
‘lagbhag’ mentioned earlier, we now see how these rules
apply. In the case of kml, the consonants k, m, and l
all have inherent schwas, and the last schwa is deleted ac-
cording to the first rule. Since none of the other schwas are
in a VC CV context, they remain. In the case of lgBg,
the consonants l g B g also have inherent schwas, and
once again the final schwa gets deleted. The schwa attached
to the second g is in a VC CV context, and hence also gets
deleted. This rule gives us the correct pronunciation in both
these cases.

3.2. Contextual Nasalization
The anuswaar character is used to indicate nasaliza-

tion, which can be realized as different phonemes depend-
ing on the context. For example, in the words ev\, p\p, t\t� ,
and a\k (‘evam,’ ‘pump,’ ‘tantu,’ ‘ank’) the dot above the
consonants indicates nasalization, which is realized as dif-
ferent nasal phonemes in each of these words depending on
the consonant. We implemented rules for contextual nasal-
ization as follows:

• If it’s a schwa, it’s not nasalized. nX becomes m

• nX followed by velar becomes nG

• nX followed by palatal becomes n

• nX followed by alveolar becomes nr

• nX followed by dental becomes nB

• nX followed by labial becomes m

• all other nX become nB
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3.3. Tamil Voicing
Most Indian languages have distinct representations

in their orthography for voiced and unvoiced sounds. How-
ever, this is not the case with Tamil, which does not have
distinct letters for voiced and unvoiced stops. There are
well defined rules for predicting voicing in Tamil. For ex-
ample, the voiceless stop [p] occurs at the beginning of
words, while the voiced stop [b] does not.

(Ramakrishnan and Laxmi Narayana, 2007) de-
scribes a frontend for Tamil with rules for predicting voic-
ing, similar to those described below. They also use a lex-
icon for foreign words of Sanskrit and Urdu origin, which
do not follow these rules.

The rules that we implemented for Tamil voicing are
taken from (Albert and others, 1985) and are as follows:

• Initial and geminated stops are voiceless

• Intervocalic and postnasal stops are voiced

• Stops after voiced stops are voiced

3.4. Lexical Stress
Prosody and lexical stress have not been well studied

in Indian languages. A technique for automatically identi-
fying stress based on power, energy, and duration by clus-
tering units is described in (Laxmi Narayana and Ramakr-
ishnan, 2007). Experiments were carried out on Tamil for
syllable-level lexical stress, based on which a rule was cre-
ated for assigning stress in Tamil as follows: The first syl-
lable is stressed if it does not contain a short vowel; other-
wise, the second syllable is stressed.

Our implementation of stress rules for Indian lan-
guages is based on (Hussain, 1997). This is based on the
concept of syllable weights, which are decided by vowel
context. A light syllable ends in a short vowel, while a
heavy syllable ends in either a long vowel, or a short vowel
and a consonant. An extra-heavy syllable ends in either a
long vowel and a consonant, or a short vowel and two con-
sonants. This is similar to the ideas presented in (Pandey,
2014), who also describe pitch and amplitude based cues
for schwa deletion, which we did not implement.

Stress is based on the syllable with the highest
weight. In the case of a tie, the last syllable with the highest
weight is stressed. The last syllable of the word does not
participate in tie-breaking; it is stressed only when there
are no ties. For example, in the word kArFgrF (‘kaari-
igarii’), the syllables with highest weights are ‘kaa,’ ‘rii’
and ‘rii.’ Since the last syllable is not considered, the first
‘rii’ is stressed in this case.

3.5. Other Post-Lexical Rules
The halant character under a consonant indicates that

a schwa is deleted, so we remove schwas after consonants
that have this character under them.

We handle consonants with nukta characters under
them by mapping them to the consonant without the nukta,
as these characters are usually very rare in our training cor-
pora.

We also added rules for schwa realization, in which
the schwa is replaced with another vowel (rahna vs rehna),

for which we replace the schwa with the phoneme /e/ in the
post-lexical rules.

For Malayalam, we added rules to process Chillu let-
ters. Consonants represented by Chillu letters are never
followed by an inherent vowel, and we added appropriate
mappings in the frontend.

3.6. English Language Support
We extended the Indic frontend to be capable of syn-

thesizing not just words written in Indian languages in Uni-
code, but also English words. It is often seen on Indian-
language websites such as newspapers and Wikipedia that
a few English words are written in the Latin script.

The task was to synthesize test sentences containing
mixed-script sentences, but the training synthesis databases
contained no English in the recordings and their corre-
sponding prompts. However, there may have been some
words written in the native script that were not truly native,
such as proper names, technical terms, et cetera.

Since we only had data in the Indian languages to
train from, we employ a straightforward approach to han-
dle English words in Indian-language sentences. When
we detect a word in the Latin script, we use the US En-
glish text-processing frontend to process it. This means
that all Non-Standard Words that are covered by the (much
higher-resource) US English frontend are also available to
us, including special symbols except numbers, which we
describe next.

Then, we use a mapping between the US English
phone set and the Indic phone set (which is common for
all the lower-resource Indian languages) to convert the US
English phonemes to Indic phonemes. This is a simple
one-to-one mapping, which has its limitations, since some
phonemes in English do not exist in the Indian languages
and vice-versa. Mapping phonemes between English and
Hindi is a one-time cost, but ideally such mappings should
be done automatically. We are exploring techniques to
automatically map phonemes cross-lingually using knowl-
edge about phonetic features, context, and acoustics.

3.7. Numbers
There has been very little work in creating text-

processing frontends for Indian languages that can han-
dle numbers, abbreviations, and other non-standard words.
(Ramakrishnan and Laxmi Narayana, 2007) describes a
text-processing frontend for Tamil that categorizes and ex-
pands numbers into ordinary numbers, phone numbers,
dates, times, and currency, based on delimiters and length.

We provide support for synthesizing numbers writ-
ten as numerals in different scripts. Indian language texts
may employ the numerals native to the script of the lan-
guage, or may employ the standard numerals common to
most of the world today (known as “Arabic” or “Indo-
Arabic” numerals; we refer to them as “English” numer-
als for simplicity). In modern Indian-language texts, En-
glish numerals are more commonly used than native numer-
als—sometimes much more commonly, depending on the
language. In most cases, there is a one-to-one correspon-
dence between native and English numerals, so it is simple
to map from one numeric representation to the other. One
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exception is the Tamil system, which has distinct numerals
for 10, 100, and 1000, and hence is not a true base-10 sys-
tem. Another is certain traditional systems of writing frac-
tions, such as those of Telugu and Bengali. Writing rules to
handle these exceptions is future work.

In the case of integers, we currently synthesize num-
bers written with English numerals in English, and num-
bers written in a native script in the corresponding lan-
guage. This reflects a compromise between respecting the
desires both of authors who use English numerals and wish
the text to be accessible to a wide audience (including peo-
ple who may not have full familiarity with the native num-
ber system), and of authors who use native numerals and
wish to continue the traditions of the language. We plan
to make these representation options (English, native, or
mixed numbers) a choice in the future for the user.

Speaking numbers in Indian languages requires use
of a pronunciation lookup table for all numbers between
zero and one hundred, because these numbers take id-
iosyncratic forms that cannot be deterministically gener-
ated. For large numbers, one issue is when to speak num-
bers in multiples of “lakh” and “crore” (corresponding to
one hundred thousand and ten million, respectively), and
when to use “thousand,” “million,” et cetera. When a num-
ber in English holds to the lakh/crore pattern in comma-
separated groupings of digits, it is spoken according to that
paradigm. Thus, “12,34,56,789” is “twelve crore, thirty-
four lakh, fifty-six thousand, seven hundred eighty-nine”;
whereas “123,456,789” is “one hundred twenty-three mil-
lion, four hundred fifty-six thousand, seven hundred eighty-
nine.” Numbers over twelve digits are spoken one digit at
a time. For native-script numbers, numbers up to nine dig-
its are mapped to lakh and crore, and for longer strings are
spoken one digit at a time.

3.8. Creating Support for New Languages
The Indic frontend has explicit support for a number

of Indian languages and has been designed to make it sim-
ple to add support for new languages. To add support, all
the Unicode characters in the language need to mapped to
an ordinal as described earlier, and each ordinal needs to
be mapped to a phoneme from X-SAMPA. The UniTran
mappings can be used as a starting point for doing this.
The rules described above that have been implemented for
other languages can be toggled for any new language, and
any language-specific rules can be created in a similar man-
ner. For example, schwa deletion does not occur in all In-
dian languages, and can be toggled for Hindi, with both
word-final and medial schwa deletion, and Bengali, with
only word-final schwa deletion.

3.9. Creating an Offset-Based Frontend
So far, we described the design of the frontend avail-

able in Festival. Our Flite implementation of the frontend
follows an offset-based approach instead of having to cre-
ate explicit support for each Indian language. Chapter 9 of
the Unicode specification (Unicode Staff, 1991) has offset-
based character tables for each script, with each script con-
taining up to 128 characters. Within each script, there is a
fixed sequence of characters which makes it easy to build

general rules for the phenomena described above. This
makes it possible to have a single mapping with offsets for
all scripts for Indian languages.

4. Data and Experiments
The Blizzard Challenge (Black and Tokuda, 2005)

is an annual community-wide evaluation of TTS systems.
Participants are provided with common databases to build
synthetic voices, and a common test set to synthesize. Sys-
tems are evaluated on a wide variety of subjective metrics
by volunteers and paid listeners. In the last two years, the
Blizzard Challenge has included an Indian-language syn-
thesis task, which drove our work on the Indic frontend.

The metrics in the Blizzard Challenge did not test
the quality of frontends explicitly. The closest metric that
tested pronunciation quality was Word Error Rate, in which
our systems did well for Tamil, Telugu, Malayalam, and
Marathi.

The data for the Blizzard 2015 tasks consisted of six
Indian languages, with four hours of data each in Hindi,
Tamil, and Telugu, and two hours of data each in Marathi,
Bengali, and Malayalam. The databases were recorded by
professional speakers in recording studios. Each database
had corresponding transcripts in UTF-8. We used the data
from Blizzard 2015, as well as Assamese and Rajasthani
data from Blizzard 2014 (Prahallad et al., 2014), which also
consisted of two hours of data in each language.

In order to compare the knowledge-based Indic fron-
tend to previous grapheme-based approaches, we used an
objective metric of speech synthesis quality. We varied
only the frontends of the systems and kept everything else
the same. We compared the synthetic speech with held-out
reference recorded speech by computing the Mean Mel-
Cepstral Distortion (Mashimo et al., 2001) (MCD) of the
predicted cepstra. Since this is a distance measure, a lower
value suggests better synthesis. Kominek (Kominek, 2009)
has suggested that MCD is linked to perceptual improve-
ment in the intelligibility of synthesis, and that an improve-
ment of about 0.08 is perceptually significant and an im-
provement of 0.12 is equivalent to doubling the data. The
MCD is a database-specific metric which cannot be com-
pared across databases.

Table 1 shows the MCD for Hindi, Tamil and Telugu
built with the two grapheme-based frontends described ear-
lier and the Indic frontend. We performed this comparison
only on these languages, although we built systems using
the Indic frontend for all the languages mentioned above.

Table 1: MCD for languages built with Raw Graphemes,
UniTran, and the Indic frontend

Language Raw UniTran Indic Frontend
Hindi 5.10 5.05 4.94
Tamil 5.10 5.04 4.90
Telugu 5.54 5.85 5.12

From the results above, we can see that the MCD of
the voices built with the Indic frontend are significantly bet-
ter than the voices built with UniTran, which are in turn
better than voices built with the raw graphemes frontend
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except in the case of Telugu, where UniTran is significantly
worse.

5. Availability
The Indic frontend has been released as part of the

standard Festvox distribution. Documentation is provided
in the Festvox manual (Black and Lenzo, 2003) for building
voices using the Indic frontend and for adding support for
new voices. Our current version of Flite also has support
for Indic voices created using Festvox.

The Flite TTS for Android application is built with
support for Indian languages. Voices in Hindi, Gujarati,
Marathi, Tamil, and Telugu are available for download.

6. Conclusion
In this paper, we described the design and devel-

opment of the Indic frontend, a common frontend for
Grapheme-to-Phoneme conversion in Indian languages.
The Indic frontend has been designed to provide a common
framework to implement various Letter-to-Sound rules for
Indian languages, allowing easy extensibility to new Indian
languages.

We used an objective metric of speech synthesis qual-
ity to compare the Indic frontend with previous grapheme-
based frontends used for low-resource languages, and
found that voices built with the Indic frontend were sig-
nificantly better. We also described preliminary work on
synthesizing numbers in Indian languages and handling En-
glish words written in the Latin script.

We have recently begun work on synthesizing Code-
Mixed text using the Indic frontend, in which Indian lan-
guages may be mixed with languages such as English, and
in which the entire sentence may be written in the Latin
script. Synthesizing words that are written in the “wrong”
script can also apply to foreign words and Named Entities.
An additional challenge that such text poses is that spellings
are not standardized, particularly if the text is from Social
Media. Our approach to solving this problem is to identify
the language the word is in, normalize spellings and then
transliterate Indian language words into their native scripts
so that the Indic frontend can be used to synthesize them.

Text processing of non-standard words for Indian lan-
guages is an area where very little work has been done.
Text-processing modules are usually implemented on a
language-by-language basis, so creating a common text-
processing frontend for Indian languages would be an in-
teresting future direction. Likewise, there has been very
little work done on prosody in Indian languages for TTS
systems.

Finally, although the Indic frontend is a general g2p
converter, we have only performed experiments on Speech
Synthesis. Using the Indic frontend to generate or boot-
strap lexicons for Automatic Speech Recognition (ASR) in
Indian languages would be an interesting future direction.
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Abstract 

In this paper we present the details of an automatic phonetic alignment method based on a Hidden Markov model method which has 

been developed as a plug-in tool of the software Praat. This tool has been developed to serve the research interests of the languages 

of the Northeast India for the first time which are under described and under resourced in many aspects. At present, three Tibeto-

Burman languages of Northeast India namely, Tiwa, Dimasa and Kokborok are taken into consideration for the development of this 

tool, while work on some other languages of the region are under progress. We have collected original speech databases and also 

prepared phone level transcription for all the three languages. In this phonetic alignment tool, we build HMM models for each phone. 

Applying the HMM approach, a method of forced alignment is generated whereby phone boundaries are obtained. The tool 

constitutes primarily of Praat scripts which can be executed from Praat by adding a plug-in. To use the tool, the only requirement is a 

speech audio file and its corresponding phonemes as input. The outcome depicts tier-wise sentence, word and phonetic alignment of 

the corresponding spectrograms. 

Keywords: HMM, phonetic segmentation, Praat-Plug-in, forced alignment 

1. Introduction 
There is a growing need for speech technology in 

linguistic research to empower different linguistic 

communities to communicate among them and to the 

wider world. The Northeast part of India is well known 

for linguistic diversity. It is a linguistic hotspot with 

about 220 languages in multiple language families 

(Indo-European, Sino-Tibetan, Tai–Kadai, and Austro-

Asiatic). Assamese an Indo-Aryan language spoken 

mostly in the Brahmaputra valley, developed as a lingua 

franca for many speech communities. The Austro-

Asiatic family is represented by the Khasi, Jaintia and 

War languages of Meghalaya. A small number of Tai–

Kadai languages (Ahom, Tai Phake, Khamti, etc.) are 

also spoken. The large group Sino-Tibetan and its sub-

group of Tibeto-Burman is represented by a number of 

languages, some of which are: Bodo, Rabha, Karbi, 

Mising, Tiwa, Deuri etc. (Assam); Garo, (Meghalaya); 

Ao, Tangkhul, Angami, Sema, Lotha, Konyak 

etc.(Nagaland); Mizo, Hmar, Chakma(Mizoram); 

Hrusso, Tanee, Nisi, Adi, Abor, Nocte, Apatani, Misimi 

etc. (Arunachal). Manipuri is the official language in 

Manipur; but other Naga languages such as Mao, 

Maram and Tangkul, and Kuki languages such as 

Thadou, Hmar and Paite predominate in individual hill 

areas of the state. Because of the remote location of 

Northeast India from the rest of the country and the 

diversity of these languages, language maintenance and 

development of education in these languages have been 

close to impossible for successive Indian governments. 

By developing tools like these, the present research 

agenda seeks to address some such concerns in the 

maintenance of the language of the Northeast of India. 

Large speech corpora play an important role in both 

linguistic research and speech technologies. For speech 

corpora to be of any use to both researchers in 

linguistics and speech technology, it has to be annotated 

for its orthographic and phonetic representations. The 

phonetic alignment of a sound file can be done manually 

or automatically. In the fully manual approach, an 

annotator follows acoustic cues to mark segment 

boundaries which can be done in Praat (Boersma, 2010). 

The annotator looks at the information in the wave form 

and the spectrograms while listening to small 

components of speech before deciding to demarcate the 

boundary of each phone. The phones, in particular, must 

be time aligned with the sound. Manually aligning large 

corpora replete with drawbacks- mainly, this process is 

time consuming and expensive. To overcome the 

problems encountered in manual aligning, a user 

friendly automatic phonetic alignment tool is always 

much more desirable. 

Different techniques have been developed for 

phonetic alignment. Some of them have been borrowed 

from the automatic speech recognition (ASR) domain. 

But the alignment process is much easier than speech 

recognition as the task is not to guess which words and 

phonemes are pronounced, but when. For that reason, 

the (Hidden Markov Models) HMM-based ASR 

Systems are widely used in a forced-alignment mode for 

phonetic segmentation purposes (Goldman, 2011). The 

task requires two inputs: a recorded audio file and 

corresponding phone or word transcriptions. In this 

approach, each phone in a HMM has typically 3-5 

states. The speech signal is analyzed as a successive set 

of frames. The alignment of frames with phones is 

determined by finding the most likely sequence of 

hidden states (which are constrained by the known 

sequence of phones) given the observed data and the 

acoustic model represented by the HMMs (Jiahong, 

2013) 
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The proposed automatic phonetic alignment tool is 

based on the Hidden Markov model which is then 

implemented as a plug-in of Praat. It relies on a HTK 

toolkit (Young, 2010) and a trained HMM. The system 

(tool) is made of Praat scripts. The only requirement of 

the tool is a speech audio file and the phonemes of the 

language as input. The outcome depicts tier-wise 

sentence, word and phonetic alignment of the 

Spectrograms. 

Initially the tool is being developed for three 

languages of North-East India namely, Tiwa, Dimasa 

and Kokborok. 

 

2. The automatic phonetic alignment approach 
2.1 Collection of speech corpus and manual 

transcription 

The speech corpus has been collected as a part of a 

project entitled “Digital Preservation and analysis of 

technology development for the languages of Northeast 

India”. One of the goals of the project is also to develop 

an alignment tool for many languages of Northeast 

India. The three languages taken up for consideration 

for the development of the tool are Dimasa, Kokborok 

and Tiwa. These three languages are related to each 

other with very similar phone sets. Our aim is to club 

together languages with similar phone sets so that it 

leads to more data for the purpose of machine learning. 

In this project we will be collecting 100 speaker’s data 

for the development of various speech technology tools. 

Language researchers visit these areas of Northeast 

India in order to collect data in a quiet environment. A 

Tascam recorder DR-II fitted with a Shure SM10 CN 

head-worn microphone was used for the recordings. The 

recordings were digitized at a sampling frequency of 

44.1 kHz and 32 bit resolution. Each speaker spoke a 

balanced set of 1240 sentences which are generated 

from a list of 750 target words and 500 sentences. We 

carefully chose 2 hours of data from this corpus for the 

development of the tool. 

Collected database is transcribed using the phone 

sets of the respective languages. Transcription was done 

in normal text using the Praat software by carefully 

listening to wav files and by observing the 

spectrograms. Silence in the wave file is appropriately 

marked as SIL. 

Training of computational model 

2.2.1 Phonset 

For building HMM models for each phone, first step is 

to identify the phone set for each of the three languages. 

The HMM model has been created for each language 

separately. Table 1 shows the phone set along with their 

IPA representation for Dimasa, Tiwa and Kokborok, 

respectively. 

2.2.2 Building HMM models for performing forced-

alignment 

Our objective is to find the phone boundaries, given the 

phone sequence. Forced alignment is often useful during 

training to automatically derive phone level 

transcriptions using pronunciation dictionary. It can also 

be used in automatic annotation systems. HTK toolkit is 

used in this work to build the HMM models as well as to 

perform forced-alignment. 

A 3 state left to right HMM model is built for each 

phone as well as the silence. Each state uses 16mixtures 

continuous density diagonal covariance. The same 

system when built for the TIMIT database, the 

performance was found to be 66.33% using the optimal 

string matching algorithm based on dynamic 

programming. This models and phone transcription are 

used to forced-alignment. In this work we have not done 

any word level modeling therefore, the pronunciation 

dictionary contains phone level pronunciation which is 

nothing but the phone itself. 

 

 

Table 1. Phone set of Dimasa, Tiwa and Kokborok   

respectively. 
 

Dimasa Tiwa Kokborok 

Phone 

units 

Reduced 

Phonetic 
units 

Phone 

units 

Reduced 

Phonetic 
units 

Phone 

units 

Reduced 

Phonetic 
units 

O,o o r r p p 

t,ts,th t o o b b 

O,oaa,a a m m t t 

M m a a d d 

ai,aiN ai s s k k 

K k l l g g 

L l ai ai m m 

Dz ʤ ә ә n n 

R r n n ng ŋ 

sh ,s s u u r r 

Ei ei e e th tʰ 

Ng ŋ ŋ ŋ s s 

P p k,g k z z 

J j t,d t ch tʃ 

Ao ao ei ei j j 

ii,i i Ɂ Ɂ l l 

DZ,d d w w h h 

G g oi oi w ɯ 

H h i i kh kʰ 

u,uu u h h ph pʰ 

Z z eu eu e e 

W w P,b p i i 

Ch tʃ ʃ ʃ u u 

Oi oi i i a ɑ 

G Ɂ tʃ,dz tʃ W ɯ 

A ә   o ɔ 

 ai ɑi 

ei ei 

Wi ɯi 

ui ui 

oi ɔi 

ao ɑo 
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2.3 Integration of the computational model with 

Praat software 

This automatic phonetic alignment tool is developed as 

a plug-in of Praat. The plug-in is made of different Praat 

scripts, the viterbi function program HVite from the 

HTK toolkit, a shell script and a trained HMM for each 

language. The tool is compatible with both Linux and 

Windows environment. 

 To segment a given speech file the only requirement 

is its corresponding orthographic transcription 

(transcription is done in normal text) as an input and the 

outcome is a multilevel annotation TextGrid with 3 

tiers, sentence, words and phones as shown in Figure 4. 

Figure 2 shows the user interface of the tool. The 

following frame summarizes the whole procedure of 

using the tool to automatically segment a speech file. 

 

 
 

 

 

 

 

 

 

 

For segmentation a wave file is to be loaded in the Praat 

software along with its transcription. Since finally we 

need two levels of segmentation i.e. phone level and 

word level, the phones in the transcription is separated 

by symbol (,) and  phones corresponding to words are 

separated by symbol (/).  After loading the wav file and 

the transcription file, segmentation is performed by 

running a general Praat script for all languages, which 

can be done by a single click in the Praat interface. The 

Praat script converts the input transcription into HTK 

format and using the existing models it executes the 

forced-alignment function. Finally, the aligned label 

files which are in HTK format are converted to Praat 

format and displayed in the Praat interface. To display 

the word level boundaries, phones corresponding to the 

words are merged and starting of the first phone and end 

point of the last phone is displayed. 

The overall system of automatic phonetic alignment 

tool is depicted in the following block diagram.  

2.4. Evaluation 

As mentioned above, the main aim of this tool is to find 

the phone boundary of a speech file with the help of its 

orthographic transcription. In order to apply the tool on 

these three languages, viz. Dimasa, Kokborok and Tiwa, 

a transcription of a speech corpus of 2-3 hours was 

taken into consideration. 
 

Speech Audio Orthographic
Transcription

Training

Acoustic Model

Aligning

Training phase

Orthographic
Transcription

Speech Audio

Phone levelboundary

Word level boundary

Sentence level boundary

Automatic aligning

 
 

Figure 2: Overall schematic diagram of the automatic 

phonetic alignment tool 
 
 
 
 

 
 

Figure 3: User interface of the automatic alignment tool 

in the Praat software 

The accuracy of automatic alignment is generally 

measured in terms of percentage of the automatically 

labeled boundaries which is within a given threshold of 

the manually labeled boundaries. 

Segmentation performance is evaluated against the 

manually marked segmentation. 50 sentences from each 

of the three languages are randomly selected and 

segmentation boundaries are marked. Manually marked 

boundaries are considered to be the ground truth 

boundaries. For manual marking, Praat is used. A 

speech file is loaded in the Praat waveform panel and by 

carefully observing the temporal cues as well as the 

spectral features in the spectrogram the phone 

boundaries are marked. 

Two parameters are used for evaluating the 

performance. 

1. Detection rate (DR): Percentage of boundaries 

detected within 40 ms of the ground truth marking. 

2. Average deviation (AD): Average of the deviations of 

automatically detected boundaries from the ground truth 

boundaries. 

 

Step 1: Open the speech audio file using the free 

Praat software. 

 
Step 2: Open the user interface of the automatic 

alignment tool lies within the Praat by clicking 

on plug-in link, and input the orthographic 

transcription of the particular speech audio file 

and then press “ok”. 
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Language DR AD(ms) 

Dimasa 89% 15.4ms 

Tiwa 92% 11.7ms 

Kokborok 79% 18.7ms 

Table 2. Percentage of detection rate within 40 ms and 

average deviation of automatically detected boundaries 

for Dimasa, Tiwa and Kokborok. 

In this analysis it was also observed that there is roughly 

a difference of 1minute between a manually annotated 

sound file (sentence). We arrived at this difference 

because the manual transcription takes 1minute 

20seconds and an automatically aligned sound file is 

completed in 29 seconds. It is to be noted that, at times, 

the application of the tool requires a manual step 

wherein the tiers are to be verified as per the required 

phonetic segments. 

At present the application of the tool brings to the fore a 

possible number of errors regarding the alignment of a 

speech file. As such we will attempt to erase these errors 

by consistently improving on this speech alignment tool 

which would further ease the manual task. 

Figure 4: The resulting Text-Grid with 3 tiers (sentence 

word and phonetic alignment) for the sentence “buni 

no” 

3. Conclusion and Discussion
This paper reports the development of a speech 

alignment tool for the purpose of analyzing corpus of 

words and sentences which have been collected in order 

to create a database of the languages of Northeast India. 

The database is available here 

http://neild.iitg.ac.in/neild/. The development of tools in 

the place where these languages are spoken is believed 

to further enhance the efforts to digitally preserve these 

languages to the extent possible. 
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Abstract 

Speech synthesis in Urdu language using Natural Language Processing (NLP) and its development has been 

researcher’s interest for past three decades. Many major developments in this area have been made recently. 

Natural Language Processing (NLP) is essential for Text to Speech System (TTS), this process consists of 

three steps namely: “Text Normalization”, “Text Annotation” and “Phonological Annotation. This paper 

focuses on the text normalization techniques for TTS system in Urdu Language and elaborates the effects 

of techniques on the produced speech by the Urdu TTS system. 

Introduction 

All areas of speech technology and language 

processing require handling of the text in one way or 

another. A Text to Speech (TTS) system takes text as 

input and changes it to the corresponding speech 

signal. Raw text can consist of many nonstandard 

exemplifications like dates, integers, decimal point 

numbers, time, abbreviations, acronyms etc. All these 

nonstandard types must be normalized into a standard 

way so that they can be processed and used in TTS 

systems. Text to speech synthesis can be divided 

majorly into steps namely Natural Language 

Processing, text parameterization and speech 

generation (Hussain, 2005).  

Natural Language Processing (NLP) also known as 

computational linguistics is a branch of artificial 

intelligence which concentrates on creating computer 

systems which should be able to communicate with 

people in their own language. NLP also works on how 

understanding of human language can be made easy 

using computers. NLP in a TTS system includes 

processing the raw input data taken as input from the 

user and transformation of this data into its respective 

phonetic transcription using the defined rules for 

different categories of input data. The second step Text 

parameterization includes changing of these phonetic 

transcriptions into numeric forms which can then be 

changed into the desired speech signal by the Speech 

Generation module. 

In the past researches have been performed for text 

normalization in TTS systems using different 

techniques like text segmentation, tokenization, 

semantic tagging and text generation (Ridah, 2012). 

Text normalization also includes conversion of text to 

their correct phonological transcription for the correct 

speech production (Hussain, 2004), (Hussain, 2008) 

This paper provides a comprehensive review of the 

work towards development of Urdu text and its 

evolution over the decades and focuses on different 

aspect of text processing techniques responsible for 

the natural speech obtained through TTS systems. It 

handles the different forms of inputs a system can 

encounter like dates, time, phone numbers and 

numeric numbers. We also present preliminary results 

of a new Urdu TTS system currently under 

development. The rest of the paper is structured as 

follows: Section 2 describes the literature review, 

Section 3 describes NLP architecture, Section 4 

discusses process of text normalization whereas 

Section 5 consists of discussion about past work 

results and Section 6 concludes the paper. 

1. Literature Review

A coding standard similar to ASCII for Urdu language 

named as Urdu Zabta Takhti 1.01(UZT) was 

introduced by (Hussain, et al., 2001) .This standard 

was proposed for the development and propagation of 

urdu softwares. UZT 1.01 is a 256 bit code page which 

consists of many logical sections to make it similar to 
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the ASCII code. The format assumes that all characters 

are written from left to right. The sorting sequence is 

defined based on characters and aerab (diacritic mark). 

Speech Assessment Methods Phonetic Alphabets 

(SAMPA), an ASCII and Unicode compatible 

transcription for phonemes was proposed by (Wells. J. 

C.,1995) in cooperation with a team of European 

phoneticians and engineers, for the 6 

official languages of the EU in the 1980s. The 

extension X-SAMPA was developed 

by John Wells. Taken together, SAMPA and X-

SAMPA represent all IPA. SAMPA transcription was 

applied to the Urdu language and the classes were 

differentiated on the basis of manner of articulations, 

for example: 

Articulati

on 

Aspirati

on 

Dent

al 

Nas

al 

Retrofl

ex 

Symbol _h _d @~ 

and 

~ 

‘ 

(Kabir, et al., 2002) worked further on Text 

Normalization for high level synthesis. Text 

Normalization was made one part of the preprocessing 

module, which comprised of various phases like Text 

Segmentation and handling abbreviations, date/time, 

symbols and numerals. The analysis of Urdu also 

revealed the intonation pattern for declarative 

sentences of Urdu. Based on the pronunciation rules of 

Urdu Language (Hussain, 2005) classified letters and 

diacritics of Urdu. Letters were further classified into 

Consonantal, Dual, Vowel Modifier, Consonant 

Modifier and Composite characters. The aerab were 

also divided into Basic Vowel, Extended Vowel, 

Consonantal Vowel and Dual insertor specifiers.    

For developing intelligible speech (Hussain, 2005) 

designed algorithms for the letter to sound conversion, 

syllabification, sound change, stress assignment and 

intonation. The phonetic annotations were marked for 

their syllable boundaries. These syllabified phone 

strings were then marked for the stress and accents for 

intonation. Rule based system were also implemented 

for marking multiple stress patterns (Hussain, 2005). 

(Ijaz, et al., 2007) discussed the issues of orthography 

in developing Urdu lexicon. Research also described 

the processing, cleaning of corpus, POS tagging, 

diacritic analysis and patterns of lexicon. 

Two major online resources for Urdu language text in 

Unicode were identified by (Hussain, 2008). These 

sources were Jang News and BBC Urdu service. They 

identified a spelling error corpus which was derived 

from spelling and typographic errors in Newspapers 

and Student Papers. For some multilingual systems 

(Ali, et al., 2009) analyzed a transliteration system for 

English and Urdu in order to solve the problem of 

efficiency of the system using mapping rules, 

syllabification and out of vocabulary (OOV) words. 

(Trilla, 2009) observed that NLP mainly focuses on the 

text normalization of the input speech. Recent works 

are been done for emotions identification using 

emotags. The naturalness of the speech depends 

largely on the text processing module of NLP. 

(Ungurean, et al., 2011) used hybrid approaches and 

incorporation into the structure of SSML (Speech 

Synthesis Markup Language) for high quality speech 

synthesis. 

(Rida Hijab Basit, 2011) identified the basic steps for 

text normalization in Urdu TTS. (Durrani, et al., 2010) 

proposed a technique for Word Segmentation for Urdu 

TTS. The proposed technique was realized into 

prevailing machine translation system and was found 

to be advantageous to yield quality as an increase in 

BLEU score was observed.(Ashfaque, et al.) identified 

that certain fundamental tools like tone analysis, 

intonation analysis, stress analysis and 4 pause 

analysis square measure very important to growth of 

advanced speech process technology. This analysis 

reviewed completely different areas of Urdu speech 

processing like text-to-speech synthesis, automatic 

speech recognition (ASR), and language resources. It 

conjointly represented Algorithms for sentence break 

detection. These algorithms embody text constellation 

into word sequences, and distribution POS tags to each 

word sequence. 

NLP 

Text 

Normal

ization 

Text 

Annota

tion 

Phonol

ogical 

Annot

ation

 Raw 

input 

Phonetic 

String 

Figure 1 Architecture Diagram of 

NLP
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2. NLP Architecture 

Natural language processing can be divided into three 

major categories namely as Text Normalization, Text 

Annotation and Phonological annotation (Rida Hijab 

Basit, 2011) as shown in Figure 1.  Text normalization 

processes the input nonstandard text like numeric, 

dates, time, currency etc. and converts the text into a 

standard form of simple text so that it can be changed 

into acoustic speech signal directly. Text annotation 

assigns semantic sense to the normalized text and 

assigns linguistic tags. The annotated signal is then 

converted into their respective phonetic transcriptions 

and stress and intonations are marked following letter 

to sound conversion rules (Hussain, 2004). The details 

of the first phase i.e. text Normalization has been 

discussed in this paper. 

3. Text Normalization 

Text normalization module in a TTS system takes the 

raw data from the user that can consist of any type and 

converts it into a standard or normalized text. The 

input text is first segmented into sentences on the basis 

of punctuation marks. The major steps of Text 

Normalization are Tokenization, Token Classification 

and Standard word generation as shown in Figure 2.  

Tokenization module takes the segmented sentences, 

separates them into words and forwards it into the 

semantic tagger. Token Classifier processes each token 

and assigns it a relevant tag depending on the 

identified type of token. Standard word generator then 

processes each token and expands each token to plain 

text string. The semantic tagger and word generation 

module handles the complex type of inputs like 

numbers, symbols, time and dates. Each sub-process 

of text normalization is discussed further briefly. 

3.1   Sentence Segmentation 

Sentence segmentation first identifies sentence 

boundaries using full stops (. ), question marks ( ? ) 

and new lines (enter key). After punctuation mark 

identification the complete line before the specific 

punctuation mark is marked as a sentence. Also if a 

sentence is quite lengthy it is broken into two having a 

maximum limit for characters as 400 (Rida Hijab 

Basit, 2011). Every sentence is aassumed to start from 

left. The segmented sentences are then passed to the 

tockenization module for further processing. 

 

3.2  Tokenization 

Tokenization separates the segmented sentences into 

words based on the punctuation marks including () ‘ ! : 

/ ‘ ;  etc. and space. Space cannot be considered as the 

only criteria of separating words as in Urdu language 

there are two types of spaces one hard space and one 

normal space. Normal space is the space between 

characters of one word whereas hard space is the space 

between two words (Hussain & Afzal, Urdu 

computing standards: Urdu zabta takhti (uzt) 1.01, 

2001). Also if space is considered as the only criteria 

for word segmentation many ambiguities are likely to 

occur as those words which naturally have space in 

them will be separated into multiple tokens like phone 

numbers. Hence tokenization needs to be based on 

three major criteria (i.e. Stop words, white spaces and 

lowercase filter).  Based on these approaches the 

system provides four analyzers which tokenize the 

sentence in four different ways namely as White Space 

analyzer, Stop Analyzer, Simple analyzer and 

Standard Analyzer as shown in figure 3. 

There are also rules generated for handling special 

cases like time where alphanumeric are written 

together without any space between them like 2 بجے.  

 

Sentence 

Segment

ation 

Tokeni

zation  

Token 

Classific

ation 

Standard 

word 

generati

on 

Text Normalization 

Input 

Normalized text 

Figure 2. Text Normalization Module 

13



Figure 3. White Space Analyzer 

3.3 Token Classification 

It is essential to classify the tokens into their respective 

categories so that the standard word for that token can 

be judged. Like 22-10-2010 should have the speech 

output as ( "بائیس اکتوبر سن دو  ہزار دس " ) and not as ( 

" ہزار اور دسبائیس سلیش دس سلیش دو   "). This is 

achieved by marking the token as a date token instead 

of considering 22/10 as a fractional number. Token 

classifier tags the tokens in multiple categories which 

are plain text, numeric, decimal numbers, special  

symbols ($, %, #, @, &), punctuations ( !, ;, :, ‘), 

abbreviations, Parts of speech and acronyms.  Dates 

and time are tagged by analyzing the context of the 

appearing date or time like name of a month before or 

in between the token. Also some Arabic signs of sanah 

or hijri represent date. The tags assigned to input text 

can be seen in figure 4. 

3.4 Standard Word Generation 

The classified tokens are expanded into their standard 

forms. Every category of token is converted into plain 

text so that it can be directly interpreted by the text 

annotation module. There are multiple categories 

within a tag of date which represents different 

exemplifications of a same date. 

4. Discussion

A TTS system requires two level of processing one 
NLP stage and the other as speech generation stage. In 
order to make the speech intelligible and natural these 
two levels must cooperate with each other in form of 
data and directions. Hybrid approach for text 
normalization, syntactic sentence segmentation, and 
arithmetical syllabication and POS tagging, 
grapheme-to-phoneme conversion, and annotation 
assignment are a few techniques being used nowadays 
for text normalization.  

Figure 4. Text Tag Assignment 

Corpora is an essential factor for language computing 
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along with lexica, both play a significant role in 
developing language  (Hussain, Resources for Urdu 
Language Processing., 2008). The paper discusses a 
few fundamental phonological assets of Urdu. 
However, open distribution of these sources still faces 
the challenges like licensing which should be catered 
for further future development. The text processing 
technique described in (Hussain, Text Processing for 
Urdu TTS, 2012) was able to obtain 99% accurate 
results for whole numbers, 91 % for dates and 93% for 
miscellaneous strings. Their technique was unable to 
get accurate results for symbols instead it concentrated 
its accuracy to 50%. This technique scored an average 
of 90.5% but still had problem solving the space issue 
and invalid Unicode issue. The recommended future 
work is handling more formats of each submodule and 
handling more symbols. (Ashfaque, Naveed, Banu, & 
Ahmed) discussed the intonation and stress properties 
for a speech synthesis system. For the Urdu TTS 
system to be intelligible and natural the speech must 
have a lexical tone. The lexical tone depends majorly 
on stress and phrasal intonation. Work on Urdu speech 
prosody research is in progress. Urdu is a language 
which has complete lexical tone description in form of 
the written text. Further work is required for 
translation of these lexical transcriptions, phonetically 
rich and balanced speech corpuses, Speech data 
preparation and analysis, automatic Urdu speech 
segmentation, manual classification and validation of 
correct speech data, evaluation of Urdu ASR systems 
and software interfacing.  

Urdu uses Arabic script for its orthography, analyzing 
Arabic TTS systems,  Artificial Neural Networks are 
also being used in developing Arabic TTS systems 
(Al-Said & Abdallah, 2009). These systems involve 
diphones and triphones which can prove to be helpful 
if used. The developed system was able to produce a 
high quality speech having an average accuracy of 
99% for speech production using diphones and an 
average accuracy of 86.5% while using triphone based 
models. For Urdu TTS systems concept of Word 
Segmentation is also being used. Some work done on 
the hybrid rule based text to speech system for Arabic 
language shows that the system was independent of 
vocabulary and it generated the required 
understandable output so in result it can handle any 
type of input given to it in text form (Zeki, Khalifa, & 
Naji, 2010). The system had a quality of flexibility in 
a sense that it could easily change the sound changing 
from male to female and other tactics like whispering 
element. If this TTS is compared with other available 
TTS systems then it can be seen that it is more 
accurate, small in size, efficient and most important 
that it is independent of vocabulary. These techniques 
should be applied on the Urdu TTS systems for better 
speech. Different smoothing techniques should be 
applied to improve speech quality. 

The past decade of impecable research in urdu 
language development has improved  Urdu Text to 
Speech Synthesizers and the speech produced now can 
handle numerous exceptions in urdu writing but future 
work is recommended in intonation assignment and 
syntactic analysis. The world is now also moving 
towards emoticon recognition and optical character 
recognition (Javed & Hussain, 2009; Javed S. T., et al., 
2010) techniques for text to speech systems further 
work is required in these fields for Urdu Language 

5. Conclusion

This research describes the evolution of techniques of 

text normalization in Urdu Text to Speech Systems. It 

includes the background of Urdu text processing and 

its different modules. The research focuses on  the 

ongoing development of text to speech systems and 

discusses some of the effective techniques applied on 

other languages and are recommended to be used for 

Urdu TTS systems for further growth of high Quality 

Urdu TTS systems. 
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Abstract 
 

Disambiguating Multi-Word Expressions (MWEs) is often a critical task in NLP applications. Reduplications are an 

important subclass of MWEs and they are a high-frequency occurrence compared to other kinds of MWEs in Hindi. 

There are some linguistic challenges in classification and identification of Reduplicated Multiword Expressions 

(RMWEs) in Hindi. The aim of this paper is to demonstrate linguistic issues pertaining to the distribution of 

RMWEs, their formalization aspects using a CRF based CRF++ tool and testing and evaluation of the trained 

system. As per our knowledge, there is no available guideline for annotation of MWEs in Hindi. Therefore, we are 

presenting the first detailed guidelines for annotation of MWEs in Hindi and it can be applicable in other Indian 

Languages as well. 

Keywords: MWEs, RMWEs, CRF, CRF++, Hindi  

 

 

1. Introduction 

 
Hindi is an Indo-Aryan language spoken by 

258,000,000 people in India
1
 and written in 

Devanagari. With a phenomenal growth in the usage 

of Hindi on the internet, semantic resolution issues 

like MWEs are getting more attention from the NLP 

community.  MWEs have defined differently by 

various scholars. According to Choueka (1988), 

MWEs are “A unit whose exact meaning cannot be 

derived directly from the meaning of its parts.” 

Smadja, (1993) defines it as “Arbitrary and recurrent 

word combinations. Sag (2002) considers them   as 

“idiosyncratic interpretations and as cross word 

boundaries or space”.   Baldwin & Kim (2010) define 

it as “lexical items that can be decomposed into 

multiple lexemes and display lexical, syntactic, 

semantic, pragmatic or statistical idiomaticity”. 

Generally, MWEs are combinations of words which 

can be semantically unpredictable. Their meaning 

cannot be obtained from their component words but 

they give complete meaning as a whole. It is a well-

defined sequence of two or more lexemes which has 

some specific properties that are not predictable from 

the properties of the individual lexemes but when 

they are combined together then they give some 

specific meaning. The major issue in MWEs is its 

identification and classification but if they can be 

identified then incorporation of MWEs knowledge 

                                                           
1
http://www.ethnologue.com/language/hin 

 

can be used to improve accuracy and efficiency for   

NLP applications such as information retrieval, word 

sense disambiguation, dependency parsing (Nivre 

and Nilsson, 2004), supertagging (Blunsom and 

Baldwin 2006), sentence generation (Hogan et al. 

2007), machine translation (Carpuat and Diab, 2010) 

and shallow parsing (Korkontzelos and Manandhar, 

2010).  

There are several forms for MWEs in Hindi. They 

have various characteristics like complete, partial, 

idiosyncratically, paraphrasability, substitutability, 

syntactic fixedness, non-substitutability and non-

modifiability. Sinha (2011) has defined different 

types of Hindi MWEs: Replicating words, 

Doublets/pair of words, Samasa and Sandhi, „Vaalaa‟ 

morpheme constructs Complex and Compound 

Verbs, Acronyms and Abbreviations, MWEs with 

foreign words and terms.  

2. Related Work 

The basic definition of MWEs is given by Sag (2002) 

and Baldwin et al. (2010) have covered all types of 

MWEs. Brundage et al. (1992) has given non-

compositionality, non-substitutability and non-

modifiability characteristics of MWEs. Church et al. 

(1990), Smadja(1993), Pecina(2008) have given the 

design of general purpose automated MWEs 

extractors which  are dominated by using association 

measures such as point-wise mutual information and 

other statistical hypothesis tests. Pecina (2010) has 

evaluated the ranking of collocation candidates by 82 

lexical association measures. He concluded that it is 

impossible to select a single best universal measure 
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and that different measures give different results for 

different tasks depending on data, language and the 

types of MWEs. Lin (1999) extended association 

measure by adding substitution to test semantic and 

statistical idiomaticity. Moiron et al. (2006) has 

established non-compositionality of MWEs by using 

translation ambiguity. Attia (2010) has described 

approaches to extraction of Arabic MWEs. Ramisch 

et al. (2008) has described that MWEs can be 

detected solely by looking at the distinct statistical 

properties of their individual words and concluded 

that in co-occurrences of words, trends and 

preferences can be detected by association measures. 

A lot of work has concentrated on the task of 

automatic identification of MWEs for several 

languages besides English including Slovene (Vintar 

and Fišer, 2008), Dutch (Van de Cruys and Moiron, 

2006), Chinese (Duan et al., 2009), Czech (Pecina, 

2010), Latvian (Deksne, 2008) German (Zarrießand 

Kuhn, 2009), Arabic (Attia, 2006; Boulaknadel et al., 

2009). 

In Hindi, there are fewer investigations on MWEs 

identification. Venkatapathy et al. (2005) considered 

Noun-Verb collocation extraction problem having 

syntactic and semantic features. Mukerjee et al. 

(2006) used POS projection for extracting complex 

predicates from English to Hindi with corpus 

alignment. Chakrabarti et al. (2008) used linguistic 

features for extracting Hindi Verb-Verb compound 

verbs. Kunchukuttan et al (2008) used statistical co-

occurrence for extracting compound nouns. Sinha 

(2009) used a linguistic property of light verbs for 

extracting complex predicates by using Hindi-English 

parallel corpus. There are several other classifications 

of MWEs included Hindi morphemes (Sinha, 2009), 

replicating words (Sinha & Thakur, 2005), idioms 

(Priyanka & Sinha, 2014) and named entities (Saha et 

al., 2008; Srivastava et al. 2011). Sinha (2011) 

considered all possible aspects of Hindi MWEs using 

linguistic features. Martin (2011) and Knublauch et 

al. (2004) discussed ontology concepts. 

In the field of MWEs, there are some other authors 

who have done good research work on other Indian 

languages like Bengali (Gayen and Sarkar, 2013, 

2014, Chakraborty, 2010, 2011 and Manipuri 

(Nongmeikapam & Bandhyopadhyay, 2010, 2011, 

2012). 

3. Identification  and Annotation  

Scheme  

In Indian languages, reduplicated words are used 

very frequently which is problematic in MT sense 

disambiguation tasks. According to Abbi (1992), 

reduplication is the repetition of all or part of a 

lexical content carrying a semantic modification. The 

RMWEs in Hindi are broadly classified in complete 

and partial RMWEs. Complete RMWEs are defined 

as “the single word repetitions to form a single unit 

regardless of phonological or morphological 

variations”. These complete RMWEs can occur as 

Noun, Adjective, Verb, Adverb, Command and 

Request. It is sub-categories in Expressive RMWEs 

and Wh-Question type RMWEs. 

In Partial RMWEs, only one of the words is 

meaningful and the other word is a partial repetition 

of first. According to Abbi (1992), Partial RMWEs 

are further sub-divided into Echo and Compounds. 

Echo is defined as a partially repeated form of the 

base word in the sense that the initial phoneme is 

replaced by another phoneme. The Compound refers 

to the paired construction in which the second word 

is not an exact repetition of the first but has some 

similarity or relationship to the first word either on 

the semantic or on the phonetic level.  

 

 
**The Annotation Convention is done by using the level tag 

of the type hierarchy. The higher level tags should be 

stored automatically by selecting the lower level tag.  

*We will describe the Subtype (Level 2) of Subtype (Level1) 

later. 

Table-1: Annotation guidelines for MWEs 

As per our knowledge, no guideline for annotation of 

MWEs is available in Hindi. Therefore, we are 

presenting the first detailed guidelines for annotation 

of MWEs in Hindi and it can be applicable in the 
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other Indian Languages as well. Table 1 depicts the 

first ever documented annotation guidelines for 

MWEs in Hindi and they can be applied to other 

Indian Languages as well. It has five level 1 

categories of MWEs. They are as following: 

 

1.1 Reduplicated MWEs: In this paper, we are only 

focusing on Reduplicated MWEs which can be 

identified on the basis of phonological and 

morphological variations. According to our data 

set, we have categorized Reduplicated MWEs 

into five sub-categories as: 

 

1.1.1 Complete Reduplication RMWEs 

(MWE_R_C) where we consider only 

those words which are repeated 

completely on bases of Noun, Adjective, 

Verb, Adverb, Command, Request. 

Examples of MWE_R_C are चार-चार, 

साथ-साथ, जैसे-जैसे, छोटी-छोटी 

 

1.1.2 Collocation RMWEs (MWE_R_Cl) 

refers to the paired construction in which 

the second word is not an exact repetition 

of the first word but has some relationship 

to the first word either on the semantic or 

on the phonetic level and individual words 

have their own meaning but after 

combining them, they give the different 

meaning. Examples of MWE_R_E are 

अनुलोम-विलोम, खान-पान, पढ़ने-वलखने, 

आस-पास 
 

1.1.3 Echo RMWEs (MWE_R_E) where we 

only consider echo words which are 

repeated partially. Examples of 

MWE_R_E are छोटी-मोटी, मेल-जोल, वमले-

जुले, दखे-रेख 

 

1.1.4 Expressive RMWEs (MWE_R_Ex) such 

as onomatopoeias, sound symbolism, 

imitations, ideophones. . Examples of 

MWE_R_Ex are सूँ-सूँ, झन-झन, घँू-घँू, झर-

झर 

 

1.1.5 Wh-Question type RMWEs 

(MWE_R_Wh) where Wh-type words 

can be defined for asking questions. 

Examples of MWE_R_Wh are कौन-कौन, 

ककसी-ककसी, क्या-क्या, कैसे-कैसे  

1.2 Abbreviation MWEs: Where individual 

elements give different meanings but after 

combining as one, they give another meaning. 

 

1.3 Compound MWEs: In this level1 category of 

MWEs, we consider those MWEs words which 

are completely different from reduplicated 

words. They are the combination of Adjective-

Verb, Noun-Noun, Adverb-Verb, Verb-Verb, 

Noun-Verb and so on. 

 

1.4 Idioms and Phrases MWEs: In this level1 

category of MWEs, their meaning cannot express 

from the meanings of individual elements and 

come from some action or story behind them. 

 

1.5 Name Entity MWEs: In this level1 category of 

MWEs, we consider the name of persons, 

organization, location, brands and so on.  

There are some issues and challenges in annotating 

instances of RMWEs.  For example - कँप-कँपाहट 

Compound MWEs/Collocation RMWEs, कभी-कभार 

Collocation RMWEs/ Echo RMWEs, गुन-गुने 
Collocation RMWEs/ Expressive RMWEs and so on. 

 

 

4. Experimental Set-Up 

 
 Data Collection and Corpus Size 

In the present experiment, we have used data from 

ILCI project
2
. The corpus has selected from health 

and tourism domains. The size of training data is 75 

million tokens and test data is 10k tokens.  

 

 CRF 

The concept of Conditional Random Field is 

developed in order to calculate the conditional 

probabilities of values on other designated input 

nodes of undirected graphical models (Lafferty et al., 

                                                           
2
http://sanskrit.jnu.ac.in/projects/ilci.jsp?proj=ilci 
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2001). It encodes a conditional probability 

distribution with given set of features. For state 

sequence X= (x1, x2,..xT) and observation sequence 

Y=(y1, y2,..yT), the conditional probability is 

calculated as: 

 

 
 

where, fk (yt-1, yt, X, t) is a feature function whose 

weight λk is a learned weight associated with fk and to 

be learned via training and ZX is the normalization 

factor ,which  is used  to make the probability of all 

state sequences sum up to 1. To maximize the 

condition likelihood of training data is given as:  

 

 
 

CRF++ has two modules: The first is crf_learn which 

is used for data training and the second is crf_test 

which is used for data testing. For the crf_learn 

module, we have used feature selection from the 

template file because it is necessary for training 

purpose. For present experiment, C++ based CRF++ 

0.58
3
 package is used for data training because we 

have fewer amount of data for training. The template 

file is used for feature selection which is based on the 

Unigram in the form of default parameters. For data 

training, we have used ILCI POS Hindi annotated 

data. After annotation of data, it gets labeled 

according to RMWEs tag-set then it gets trained 

through the crf_learn file. After that, we have tested 

data via crf_test module. In this data, we have given 

only POS tagged data then proceed to the evaluation 

of RMWEs extractor.  

 

Figure-1 shows the GUI architecture of RMWEs 

Extractor. The architecture is further divided in two 

steps: in the first step, the user provides text data as a 

form of input then proceed for tokenization. The 

tokenized data is sent to Hindi POS Tagger
4
 where 

the input data is tagged and then it goes to second 

step, where it sends tagged data to be annotated with 

RMWEs tags, then the annotated file gets 

detokenized, after that we finally get detokenized 

RMWEs tagged text as output. 

                                                           
3
http://taku910.github.io/crfpp/ 

4
http://sanskrit.jnu.ac.in/pos/index.jsp 

 

 

Fig. 1: Architecture of RMWEs Extractor 

5. Evaluation of RMWEs Extractor  

In this section, we describe the accuracy of RMWEs 

Extractor. The overall accuracy of RMWEs Extractor 

is 89.76%. This accuracy is achieved based on 10k 

test tokens. During training, we have received more 

amount of data from Complete RMWEs, Echo 

RMWEs, Collocation and fewer amount of data from 

Expressive RMWEs and Wh-Question Type 

RMWEs. During manual data annotation, we have 

found 10k tokens of MWE_R_C, 9k tokens of 

MWE_R_Cl, 7k tokens of MWE_R_E, 3k tokens of 

MWE_R_Ex and 2k tokens of MWE_R_Wh.  

# Accuracy Precision Recall F-Score 

RMWEs 89.76% 88.89% 85.66% 87.32% 

 

Overall Accuracy, Precision, Recall and F-Score 

 
The RMWEs Extractor shows precision, recall and F-

Score of 88.89%, 85.66% and 87.32% respectively. 

 

Figure 2 shows the accuracy of RMWEs per tags 

such as MWE_R_C, MWE_R_Cl, MWE_R_E, 

MWE_R_Ex and MWE_R_Wh. 

MWE_R_C, MWE_R_Wh and MWE_R_E give the 

better result as compare to MWE_R_Cl and 

MWE_R_Ex.  
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Fig: 2 - Accuracy per RMWES tags report 

6. Conclusion 

In this paper, we have presented annotation guideline 

of MWEs, Experiment set-up for RMWEs and 

dealing with all issues that occurred during the 

experiment. The annotation guidelines for MWEs 

may be very useful in generating rules/classification 

for disambiguation of MWEs in general. This 

experiment was conducted with 75 million tokens for 

training and 10k tokens for testing. The accuracy of 

RMWEs Extractor is 89.76% and it was achieved 

without applying linguistic rules. There are some 

issues with Collocation RMWEs and Expressive 

RMWEs which affects the accuracy of RMWEs 

Extractor. They have reduced overall accuracy of 

Extractor. In future, we will fix all these issues and 

try to remove ambiguities in correctly identifying 

instances of RMWEs. In the current experiment, we 

have used only unigrams but in future, bi-grams or 

tri-grams may be used in order to minimize error rate 

and therefore, accuracy will be increased. 
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Abstract 

This paper presents our work on semantic representation of Tamil documents from sources such as Newswires, Wikipedia articles 
using conceptual graphs. A conceptual graph is a graph representation for logic based on the semantic networks of artificial intelligence 
and the existential graphs of Charles Sanders Peirce. A conceptual graph (CG) is a kind of semantic network, which is a network of 

concept nodes and relation nodes. The challenge in automatic representation of a natural language text in CG is the identification of the 
concepts and the relationships between them.  A concept is an abstract idea conceived mentally by a person. The words of the language 
are not the concepts but they are the symbols or signs of the concept. Tamil is a Dravidian language. It is a morphologically  rich 

language. In this work we pre-process the text for morph information, Part-of-speech and NP-VP chunks. After preprocessing, the 
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1. Introduction 

A conceptual graph is a graph representation for logic 

based on the semantic networks of art ificial intelligence 

and the existential graphs of Charles Sanders Peirce. A 
conceptual graph (CG) is a kind of semantic network, 

which is a network of concept nodes and relation nodes. 

Mathematically CG is a bipart ite graph consisting of two  
types of nodes; concept nodes and relation nodes. CGs 

was first introduced by Sowa in h is work on database 

interfaces (Sowa, 1976). It  illustrated CGs for 
representing natural language questions and mapping 

them to  conceptual schemata. Each  schema contained a 

declarative CG with attached actor nodes that represented 
functions or database relations. Sowa (1983) explains 

CGs for the representation of natural language texts. The 

concept nodes represent entities , attributes, events, 
actions. And relation nodes represent the kind of 

relationship between the two concept nodes. The main  

advantage of representing natural language text in the 
form of CG is that, CGs can be easily converted to any 

Knowledge Interchange Format (KIF) such as first order 

logic, hence semantic processing is possible. The 
challenge in  automatic representation of a natural 

language text in CG is the identification of concepts and 

the relationships between them. A concept is an abstract 
idea conceived mentally by a person. The words of the 

language are not the concepts but they are the symbols or 

signs of the concept. A concept will have same meaning 
across the languages, but may have different terms or 

words to represent. For example the word “Drinking 

Water” in English denotes the concept “a liquid which is 
made up of two parts of hydrogen with one part of oxygen, 

animals and humans drink it to quench their thirst”. In  

Tamil the same concept is denoted using the terms “kudi 
neer”. A concept is  a thought on notions formed in our 

mind about objects, processes, events. There are concepts 

which cannot be seen, but only perceived or only felt such 
as tastes, emotional feelings. As a child we are taught 

about several concepts, their definitions for the objects, 

processes and events that we see around. As the child  

grows, it  tends to build upon this knowledge and learns 

new concepts. Hence we can say concept format ion 
depends on our ability to understand and discriminate. 

And our ability to identify concepts is also dependent on 

the native language of the person.  
    Here we have worked on the Tamil text. Tamil is a  

morphologically rich language. In this work we 

pre-process the Tamil text  for obtaining informat ion such 
as morph informat ion, Part-o f-speech and NP-VP chunks. 

After preprocessing, the concepts and the relationship 

between the concepts are identified and the CG is 
generated. Thus obtained CGs can be further used in  

applications such as machine t ranslation, informat ion 

retrieval etc. In the literature we find that CGs  have been 
used for English texts and applied for improving the 

performance of question answering systems, informat ion 

retrieval systems. In the literature we find that for 
identifying concepts and relations, most of them have 

used full in-depth parser. In  this work we use only shallow 

parser. Our approach can be used for any less resource 
languages; we have used shallow parsing for 

preprocessing and it is the first attempt in Indian  

languages for semantic representation of text us ing CGs.  

1.1 Applications of Conceptual Graphs 

Conceptual graphs have been used in applications such as 

question answering systems and informat ion retrieval 

systems to improve the performance of the systems. 

Deigo Molla and M Van Zaanen (2005) bu ild  

“AnswerFinder” - a framework for QA systems – in 

TREC 2004. Here in the graph patterns between the 

questions and answers is learnt. The conceptual graphs 

are based on translation of logical fo rms of sentences in 

the training data o f question and answers given in  TREC 

2004. The graph matching algorithm is based on the 

maximal graph overlap.  Here they obtain average 

accuracy of 21.44% and average MRR of 25.97%.   

Siddiqui and Tiwary (2006) use CGs for representing text  
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for the informat ion retrieval task. They use CG in  

conjunction with VSM model for representation. Here the 

informat ion retrieval task is done in a two phased manner. 

In the first phase the relevant documents are retrieved 

using the VSM model. The resultant documents are used 

as input for the CG model and the finally most relevant 

documents are retrieved. Here a small set of semantic 

relations are used to construct CGs, these relat ions are 

developed based on the syntactic patterns. CACM-3024 

data collection is used for the experiments. They show an 

increase of 34.8% in precision and overall 7.37% 

improvement in retrieval performance. 

Conceptual graphs have also been used for developing 

knowledge base. Karalopoulos et al (2004) use CGs for 

representing geographic knowledge. In their work, they 

create a CG for each geographical definition. All such 

created CGs are inter-connected to form a network, thus a 

geographic knowledge base is developed. Once the 

semantics is captured using the CGs we can use for patent 

document processing and legal document processing. 

 

The paper is further organized as follows: section 2, 

discusses generation of conceptual graphs for different 

Tamil sentences. Section 3 describes our experiments and 

results. Section 4 concludes the paper. 

2. Generation of Conceptual Graphs 

A conceptual graph has no meaning in isolation; only 

through the semantic network are its concepts and 

relations linked to context, language, emotion, and 

perception. As described in the previous section, the most 

important task in the construction of CG for a document 

or even a single sentence is the, identification of concepts 

and after that finding the relationships between these 

concepts. The figure 1 shows the broad system 

architecture of our system. 

Figure 1 Generation of CGs – System Architecture 

 
A conceptual graph is represented in main ly two forms  
viz., i) Display fo rm and ii) Linear fo rm. The display fo rm 

uses the traditional graph form, where concept nodes are 

represented by rectangular boxes and relat ion nodes are 
represented by ovals. In the linear form concepts are 

represented by square brackets and relation nodes are 

represented using parenthesis. To represent these graph 

internally  inside the computer system we use a list data 
structure consisting of triplet value (c1, c2, r), where c1 is 

concept one and c2 is concept 2 and r is the relationship 

between the concepts c1 and c2. This triplet structure can 
be again represented using traditional matrix 

representation currently followed by  information systems. 

Further in this section we will see few examples of CGs  
for some common Tamil sentences. These examples 

would give more insight into CGs. 

 
Example 1: English Sentence:  

   “Marie hit the piggy bank with a hammer.” 

Figure 2 A CG - English Example 

 

The examples shown above are in display form. At an 

outer glance these conceptual graphs apparently look 

similar to a parser output. But actually it is not. The main  

differentiat ing aspect of CGs is that they are not restricted 

by any grammar formalism. 

 

Example 2: Tamil Sentence 

Ta: naNRAka   patiththAl     nalla    mathippeN    

En:   well          read+cond    good      marks  

 
Ta: peRalaam 

En: obtain+future 

  (If we read well, good marks can be obtained.) 

Figure 3 A CG – Tamil Example 1 
Example 3: Tamil Sentence 
Ta: mazai   peythathaal      nilam   kuLirnthathu 

 En: Rain   raining+cause   land     cool+past 

    (The land cooled because of rain.) 

Figure 4 A CG – Tamil Example 2 

2.1 CGs Vs Parsing 
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CGs is not just syntactic analysis. CGs is flexib le and not 

based on any grammar formalis m. CGs has concept nodes 

and relation nodes. CGs does not describe just the 

governor and dependent relations, relat ion nodes show the 

relation between concepts of any nature and manner. 

These relation nodes capture the semantics. Parsing is a 

syntactic analysis of a sentence, identifying d ifferent 

components of the sentence and their syntactic roles, 

following grammar formalism. Parsing generally depicts 

dependency relations. CGs is a bipartite graph which 

could be easily translated to first order logic. 

2.2 Concept Identification 

Concepts are identified using ontological resources, 
lexicons and knowledge databases. In the earlier works 

we find that a generative probabilistic model of bag of 

words in the collection of documents such as Latent 
Semantic Analysis (LSA), Latent Dirichlet Allocation 

(LDA) and other non-parametric extensions of these 

models have been popularly used for the identification of 
concepts. Other common approaches are to build 

discriminative probabilistic models based on feature 

learning such as Conditional Random Fields (CRFs), 
Support Vector Machines (SVMs). And it has been 

observed that SVMs, CRFs have given better results than 

LSA, LDA. One of the main prob lems of these is the 
necessity of large annotated or labeled data. When we 

build systems for open domain availability of labeled data 

is very much difficult. There is need to use methodologies 
which are unsupervised or semi-supervised such that very 

litt le amount of labeled data would be quiet helpful.  Deep  

learning methodologies are unsupervised techniques of 
machine learning which are very much helpfu l. 

Non-linear  approaches  to  dimensionality  reduction 

have  shown  to  extract  better  abstract  level  
representation of text  for “semantic” comparison (Hinton 

et al, 2006). Hinton (2006) clearly outline the suitability 

of deep learning for identificat ion of abstract projections 
of text. In the present work we have used Deep Boltzman  

Machines (DBM), a deep learning method along with 

shallow parsed text for extracting CGs from sentences . 
We make use of DBMs with layers of Restricted 

Boltzmann Machines (RBMs). An important feature of 

RBMs is that they solve the problem of d irected graphical 
models by having a complementary prior over hidden 

units. RBMs can be efficiently trained (e.g. Using 

Contrastive Divergence), in ferring the state of the hidden 
units is exact, but the model defines a rig id, implicit prior 

(Srivastava et al, 2013).  In this work we make use of 

over-Replicated Softmax model as described in 
(Srivastava et al, 2013). Our work is closer to the works of 

Shih-Yao (2013)] and Pattabhi et.al (2014) which were 

used for English text documents . Shih-Yao (2013) have 
used a ru le based approach to develop conceptual graphs 

from patent claims in the domain of chemical engineering. 

Here they use heuristic ru les to first simplify the long 
complex sentences and then use pattern matching rules to 

identify concepts and relations. They have obtained a 

precision of 78.75% and recall of 70.2%. One of the major 
drawbacks is its domain portability, scaling and loss of 

meaning. Pattabhi et  al., (2013) have used Conditional 

Random Fields (CRFs) to identify concepts and relations. 
They have used patent documents/claims in the domain of 

mobile communicat ions, biological drug discovery and 
general electronics documents. And have obtained results 

of 73.3 % precision and 68.3% recall.  

Pattabhi et al., (2015) have used DBMs to automatically  
extract CGs. A two layered DBM architecture has been 

developed in the present work following Pattabhi et  

al(2015). The first layer consists of words or tokens. In  the 
second layer the part-of-speech (POS) information is 

provided and in the third layer the named entity 

informat ion is provided to the machine. The real valued 
n-dimensional vector fo r each word is formed using the 

word2vec algorithm (Mikolov, 2013).  Here for each layer 

of deep learning we make use of the word2vec neural net. 
All the layers real valued n-dimensional vector is fed as 

the input layer of the Deep Boltzmann Machines (DBM). 

The DBM arch itecture has one input layer and two hidden 
layers and the fourth layer consists of softmax classifier. 

This is the output layer. 

Word2vec creates or extracts features without human 
intervention, including the context of indiv idual words. 

That context comes in the form of multiword windows. 

Given enough data, usage and context, Word2vec can 
make highly accurate word associations. Word2vec 

expects a string of sentences as its input. Each sentence – 

that is, each array  of words – is vectorized and compared  
to other vectorized lists of words in an n-dimensional 

vector space. Related words and/or groups of words 

appear next  to each other in that space. The output of the 
Word2vec neural net is a vocabulary with a vector 

attached to it, which can be fed into the next layer of the 

deep-learning net for classification. We make use of the 
DL4J Word2vec API for this purpose.  

Once the concepts are identified we then identify  the 

relations between those form conceptual structures. We 
first make use of linguistic rules to identify well defined 

relations. The linguistic ru les use syntactic structures. We 

also make use of Support Vector Machine (SVM) 
classifier to identify relat ions independent of the rule 

based engine. The output of SVM classifier and the output 

of the rule based engine are merged to get the set of all 
relations. In the SVM engine output we only consider 

those relations which get higher confidence score of more 

than 0.75 in the SVM as valid relations. 

3. Experiments, Results and Discussions 

In this work we have collected a corpus consisting of 1000 

Tamil documents. These are obtained by crawling  the web.   

The document collection consists of 1000 documents 

taken from online Tamil News magazines Dinamani and 

Dinamalar. The content is taken from various categories 

such as political, touris m and travel, sports, business of 

these portals. The corpus was divided into two sets, 

training and testing. In the training phase we preprocess 

the documents for morph analysis, part-of-speech tagging 

and NP-VP chunking. These preprocessing tools are 

developed in house. These perform in the range of 90 to 

95% accuracies. After preprocessing we tag the words 

with concept classes. The concepts are represented as 

vectors of 100 d imensions using the Word2Vec algorithm. 

These vectors are then presented in the format as required  

by the DBMs and trained. The test documents are also 

preprocessed similar to the training phase. 

The evaluation metrics used are the precision, recall and 
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f-measure as used in the earlier works. Table 1 shows the 

results for <concept-relation-concept> tuple. Since this is 

the first work in Tamil using CGs we compare our results 

with the earlier reported works in English. We perform a 

10-fo ld experiment. The average results of the 10-fold  

experiments are reported in the Table 1. 

 

Table 1 System Results – with respect to earlier reported 

works in English. 

Method Precision 

(% ) 

Recall (% ) F-measure 

(% ) 

Shih-Yao 

(2012) 

78.75 70.2 74.22 

Pattabhi et 

al  (2013) 

73.3 68.3 70.71 

Pattabhi et 

al (2015)   

79.34 72.54 75.79 

Our 

Approach 

74.27 67.98 70.98 

We observe from the above results table that our results in 

Tamil are comparab le with the works in  English. We 

observe that main ly the recall is lesser. Th is is due to  the 

fact that the system has problem in the identificat ion of 

the concepts. The main problems are due to improper 

identification of span of the concepts. We observe that 

approximately  40% of the erro rs have occurred due to 

improper identificat ion of subject – object conceptual 

relations. This problem could be overcome by developing 

a lexical resource which maps the relationships associated 

with the postpositions. And also the complexity of the 

problem is increased because of the morphological 

richness, the case markers which are in flected with the 

nouns have to be identified properly and a semantic 

relation association has to be derived. 

4. Conclusion 

We have presented a detailed description of Tamil text  

representation using CGs. These capture the conceptual 

structures of the text hence we get the semantic 

representation of the text. In the literature we find that all 

the works make use of a deep parser to construct CGs and 

is predominantly work is done for English documents, 

except for very few works on Spanish, French and 

German. We find that there are other works towards 

semantic representation for Indian language texts using 

UNL and navya - nyaya theory. Ours is the first attempt to 

use CGs for Tamil, one of the Indian Languages. Our 

methodology can be applied for any language, doesn’t use 

high sophisticated tools such as deep parsers. 
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Abstract 

The present paper describes the suitability of TypeCraft framework through valance annotation and construction for Hindi. This paper 

deals with the different levels of annotation provided on TypeCraft and source for initiating construction labeling using syntactic and 

semantic information embedded in the language. The annotation challenges in presentation of some major constructions in Hindi like 

idiomatic expressions, reduplication, conjunct verbs and explicator verbs are discussed along with the construction labeling for Hindi 

which is a new technique for closer syntactic analysis. This platform also supports more than one free translations and discourse sense 

labeling for each sentence. 
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1. Introduction 
This paper is the description of attempts made to annotate 

Hindi corpus at TypyCraft Platform. This is part of project 

running in collaboration between the ILCI (Indian 

Language Corpora Initiative) group at Jawaharlal Nehru 

University, India and the TypeCraft (TC) group at NTNU 

(Norwegian University of Science and Technology), 

Norway. In its first phrase, the task is to find a suitable 

theoretical framework for Hindi by annotating for valance 

at different linguistic levels and the parameter for labeling 

them in detail along with the challenges at the word, phrase 

and syntactic levels with the modified TypeCraft interface. 

The goal is to provide the languages with more exhaust 

description, to find out the relation between the valance 

and the structure of the framework and its usefulness in 

terms of annotation consistency. 

1.1. The ILCI platform 
The Indian Languages Corpora Initiative (ILCI) project 

was initiated by the Technology Development for Indian 

Languages (TDIL) program of the Department of 

Electronics and Information Technology (DeitY), 

Government of India in 2009 to facilitate parallel corpus 

building for the scheduled languages of India, including 

English (Jha, 2010). The consortium partners are major 

universities representing their state languages. Phase 1 of 

the project, which ended in 2012, contained 50,000 parallel, 

manually translated and Part Of Speech (POS) annotated 

sentences in 12 Indian languages, including health and 

tourism in Hindi. The project is currently in Phase 2, with 

an inclusion of 5 new languages, most notably from the 

Tibeto-Burman language family of north-east India aiming 

to add another 50,000 sentences in each of the 17 

languages (Bansal et al, 2013). 

ILCI uses the Bureau of Indian Standards (BIS
1
) scheme 

for POS annotation devised in 2011 based on the Indian 

Languages Machine Translation (ILMT) guidelines. This 

tagset considers various characteristics of languages 

spread across different language families in India and offer 

                                                           
1 http://www.tdil-dc.in/tdildcMain/articles/134692Draft%20POS

%20Tag%20standard.pdf 

 

selection to the best fit designs for them. The tagset has 11 

major lexical categories with further sub-categories 

(Nainwani et al, 2011). The online ILCIANN
2
 tool is 

available on ‘sanskrit.jnu.ac.in’ website which facilitates 

the collection, annotation and translation of the corpus by 

semi-automated process using prior information (Kumar et 

al, 2012). 

1.2. The TypeCraft platform 
 
TypeCraft is an online Multi-lingual database service. 

Online Interlinear Glossing, morphemic and word level 

annotations along with phrase level tagging are the 

features, unique to TypeCraft (Beermann and Mihaylov 

2013). The standard tier format design makes it convenient 

for all world languages. Some languages like German, 

Italian from outside India and Hindi, Bengali and Odia 

(Indian languages) are already under process on the open 

access TypeCraft
3
 website. 

With slight modification, the earlier interface provided 
space for the source and metadata of the corpus. The 
different pop-up windows from the left are screenshots of 
the user page with information and guidelines, word and 
phrase level tag list for annotation and the 8 construction 
labeling parameters, as shown in fig 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 1: TypeCraft interface 

                                                           
2ILCIANN-ILCI Annotation and Translation tool. 
3 http://typecraft.org. 
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The latest interface has also added space for inserting the 
discourse sense for each sentence along with the comment 
line from the annotator which looks like figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 2: Latest TypeCraft interface 

TypeCraft offers annotation at morphological level, word 

level and phrase level with the valance information. The 

concept of valance by Tesniére’s (1988) is modified to 

make a simpler and comprehensive interface to facilitate 

annotators (Jha et al, 2014). It firstly discusses the concept 

of valance in detail. This includes syntactic and semantic 

argument structures like subject, object theta roles, their 

relation and grammatical function. Along with it, the 

aspectual and situational information are some other 

features found on TypeCraft platform, followed by the 

construction level tags.  

1.3. Hindi Data on TypeCraft 
The data input was initiated with the child stories with 

relatively short and simple sentences in order to develop 

familiarity with the tool. Later on, a random collection of 

different sentences with varied constructions and sentence 

length were included with the expected corpus length to 

reach at least 150 sentences for better analysis. The vast 

range of linguistic information is required for rigorous 

analysis of each string; therefore, the annotation is being 

done in two stages. The present stage of annotation 

includes analysis up to grammatical level and theta roles. 

Only readily available semantic inputs and construction 

tags are covered. A detail analysis of construction tags and 

discourse sense will be discussed in the second phase. The 

examples from Hindi data in this paper are transliterated 

using ‘Itrans’
4

 standard for transliterating Indian 

Languages which is not part of the online interface as such. 

2. Annotation on TypeCraft 
The morpho-syntactic information on TypeCraft is fed in 

the following order: 

2.1 Morpheme and word level annotation 
TypeCraft facilitates import of corpus data to the interface. 

After generating the phrase inside it, following tiers 

appears:  

                                                           
4http://www.aczoom.com/itrans/#itransencoding 

(a) Word: Number of words present in a sentence in the 

script of the language. 

(b) Morph: Breaking each word to its morphs. A word can 

be subdivided into more than one columns depending upon 

the number of morphemes present in that word. For 

Example: 

(1)  मटके     मटका +ए 

maTake    maTakA +e 

pot     pot  +AGR
5
 

(2) तोड़कर    तोड़  +कर 

toDxakara    toDxa +kara 

 having plucked   pluck + INFV
6
 

(c) Citation form: In this column, the basic word form is 

inserted. For example karanA (to do), AnA (to come) 

2.2 POS and GLOSS tagging 
The next two columns after word level processing are the 

POS and GLOSS tagging of the tokenized text. TypeCraft 

has produced an exhaust POS and GLOSS tag list which 

includes all possible features found in different world 

languages from different language families. 

(a) Gloss tags: Tense, aspect, mode, person, number, 

gender, distinction of +/- features for animacy and human 

property of the word. Grammatical functions (as subject, 

object etc) along with a detailed listing of cases, agreement 

and semantic roles are listed under this section.  

(b) POS: Classification of different grammatical categories 

and types and sub categories, their contrasting features are 

richly available under this section. 

2.3 Construction tags 
The syntactic constructions are discussed using eight 

parameters. These are represented in a hyphenated string 

marked just above the annotation at morphological level as 

mentioned in the previous section. These tags are as 

follows: 

 Syntactic Argument Structure- It includes subject, object, 

adpositions and predicate in the order they appear in the 

exemplar sentence. 

 Situation Type- This gives information about the situation 

of the sentence as accusation, benefaction, causation, 

mental state and visual experience etc. 

 Diathesis- Diathesis includes the nature of sentence 

whether it is active, passive anti passive, inverse, 

reciprocal and reflexive etc. 

 Adjunct of Interest- The additional information about the 

time place and manner of the action in the sentence is 

grounded under this label. 

 Salient Sentence Pattern- This state whether extraposition, 

idioms, topicalization etc. are operated within in the 

sentence. 

 Modality focuses the possibility, dubitive, optativeness of 

the sentence. 

                                                           
5
 AGR-agreement 

6
 INF-non-finite verb 
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 Force and Evidentiality- Whether the statement is 

declarative, interrogative, introspective, imperative etc. is 

enlisted under this section. 

 Sentence Aspect- It refers to the static, dynamic, telic, 

atelic, inchoative and progressive states of the sentence. 

This level requires the closer understanding of language 

and linguistic ability both for any language. Considering 

this fact, this section is dealt with great care and the crucial 

sentence constructions are not readily marked. Annotation 

upto the level of grammatical information and case 

marking is only focused in this paper.  

3. Hindi on TypeCraft 
Hindi is an Indo-Aryan Language with relatively free 

word-order which enables the linguistic units to scramble 

within the string without any noticeable change in its 

meaning. Hindi is official language of 12 states in India. It 

is inflectional and morphologically rich language. It has 

gender, number, person (GNP) and tense aspect and mood 

(TAM) information embedded with the verbs; rich use of 

idiomatic expressions like collocation and metaphors are 

also found. Conjunct verbs, causativization, ECV 

(Explicative compound verbs), passivization, scrambling, 

and PRO drop are commonly found in Hindi. The particles 

like ‘hI’, ‘bhI‘ and ‘to‘ etc. are free floating and capable of 

occurring with many lexical categories in the sentence 

depending upon the focus of discourse (Jha, 2014).  

The suitability of the a parallel platform like TypeCraft for 

Hindi where such fine grained analysis of languages are 

taking place, is the motivation of the study with an 

objective of providing it with the detailed description of 

Hindi in its different aspects.    

Example: 

(3) Phrase:  एक कौआ था 

Itrans:  eka kauA thA 

Free Translation: There was a crow 
Construction parameters: state-declarative 
---S:time- 

 
 
 
 
 
 
 
 
 

 
Figure 3: Example (3) 

The present exampe is a simple sentence with a subject and 
a verb. The subject has a cardinal eka (one) and a common 
noun kauA (crow) which is a third person, masculine 
animate object in nominative case and the verb thA is the 
past form of verb be.  The annotation for this example has a 
clear distinction of each morpheme in its respective 
category. 
Example: 

(4) Phrase: उसने झााँक के मटके में दखेा 
Itrans: usane jhA~Mk ke maTake meM  dekhA 

Free translation:  He peeped into the pitcher 

Construction parameters: declarative 

-adverbPhrase:manner-directedMotion-NP+ADVPpr

ed-perfective 

 

 

 

 

 

 

 

 

 

Figure 4: Example (4) 

The inflected morphemes are separated out during 

annotation for describing the nature and case of each 

marker. From example 4, the subject usa-ne (he) is in 

ergative case and demands for separating out the ‘–ne’ 

marker from the root usa. The ‘ke’ morpheme in the 

conjunct verb ‘jh~AMk ke’ has the citation form ‘kara’ 

meaning ‘having done’. The agreement marker ‘–e’ in 

Hindi in ‘maTak-e’ for ‘pitcher’ is also separated into its 

base forms ‘maTakA’ and ‘-e’. 

The above annotated example 3 and 4 states that a word is 

first looked upon for its morphemes followed by the base 

or bare form of the word with the supplied meaning of the 

word. It further extens to two importatnt sub-sections 

namely POS and Gloss tags. The POS (Parts of speech) tag 

given to each word on the basis of the category which it 

belong to and how it functions within  the sentence . In 

some cases the grammatical catagory of a word does not 

agree to its function in context, as in Idioms, where 

metaphorical meaning is important before deciding a tag. 

4. Annotation Challenges 

4.1 Idioms and phrases in Hindi 
Tokenizing and breaking down a phrasal word into its 

morphs is tedious task. Similarly, glossing of idioms and 

morpheme separation in an inflecting language like Hindi 

is complex too. Word to word translation and glossing of 

phrases might hamper the meaning of the phrase and 

semantic meaning cannot be given in gloss. Considering 

the above issue, an extension of space for feeding the 

sentence with its contextual meaning has been introduced 

in the latest interface which helps relating the literal 

meaning to the metaphorical/functional meaning of the 

phrase/sentence.  

Example: 

(5)  Phrase:  चारों   तरफ़ 

Morph:  cAr-oM  tarafa 

Citation form: cAra   tarafa 

LM
7
:   four   sides 

FM
8
:    all   around 

Gloss:   PL
9
.AGR 

                                                           
7 LM-Literal meaning 
8 FM-Functional meaning 
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POS:   CARD  N 

The phrase ‘cAr-oM tarafa’ literally means ‘four sides’ but 

metaphorically it means ‘all around’. In the above example, 

the phrase is firstly broken into its morphemes ‘cAr’ (a 

cardinal, four) and ‘–oM’ (plurality marker) and tarafa 

(side) followed by literal and metaphorical meaning of the 

phrase. The plural marker ‘–oM’ is glossed as PL.AGR in 

agreement with the word ‘cAra’ and at the POS level both 

words are tagged as a cardinal and a noun, respectively. 

On adding discourse sense to the same sentence, it 

becomes easy to explain that it is an idiomatic expression 

and although the phrase contains an adverbial function, it 

has been tagged according to their root category at the level 

of Parts of Speech. 

4.2 Reduplication 
Reduplication, as described by Abbi (2001), is a 

process of word formation in which a word or its part 

(syllable) is duplicated in order to express a certain 

meaning to put emphasis of some kind. It is one of the 

important features of Indian languages. Hindi is rich in 

reduplication (both complete and partial) which intends 

different meaning in different context.  

The representation of these reduplicated words also brings 

the dilemma whether to keep whole as a single phrase or 

separate out its reduplicate counterpart as a different 

lexical item. In both the ways, the problem of correct 

glossing and translation persists. 

Example: 

(6) Phrase: उड़ते उड़ते

Morph: uDxa-te uDxa-te 

Citation form: uDxanA uDxanA 

LM: flying flying 

FM:  while flying 

POS:  V V 

Figure 4: Example (6) 

In the present example (6), the reduplicated word uDxate - 

uDxate (flying) is derived from a single morpheme ‘uDxa’ 

with the citation form ‘uDxanA’ meaning ‘to fly’. For the 

present purpose, the word and its reduplicated counterpart 

is separated out and supplied with morphological 

information for each. Like idioms, the phrasal level 

meaning is acceptable over the lexical /literal meaning but 

POS annotation is done considering its lexical category 

only. Contextually, this phrase contains adverbial 

information (while flying) which can be fed in the 

discourse sense section.  

9
 PL-Plurality marker 

4.3 Conjunct Verbs  
Conjunct verbs are the combination of noun and verb 

(N+V) together functioning as verb in a sentence. Some of 

the most common examples of conjunct verbs are ‘koSiSa 

karanA’, ‘yAda AnA’ meaning ‘to try’ and ‘to miss’.  

While annotating a conjunct verb construction, both the 

lexemes (noun and verb) are separated in two columns and 

glossed as per their morphemic break. At the POS level, 

the noun and verb counterparts are given their respective 

categories due to unavailability of a distinct tag for 

Conjunct verbs. At this level, the inclusion of this tag can 

be proposed which might help in the feature listing for 

Hindi. 

Example:  

(7) Phrase: उसने पानी पीने की कोशिि की

Itrans: usane pAnI  pIne kI koSiSa kI

Free translation: he tried to drink water.

Figure 5: Example (7) 

In the above example, the noun koSiSa (effort) and past 

form of verb karnA (to do) are conjunct verbs. Instead of 

tagging it as N and V at the POS level new tag label if used 

can mark this feature at the POS and Gloss levels. 

4.4 Explicator compound verbs (ECV) 
The explicator verbs are serial verb constructions. These 

constructions look like other verbs forms with ‘Vmain + 

Vaux + Vaux’
10

 pattern. But there are some selected words 

in Hindi responsible for such constructions like jA (to 

go) ,A (to come), baDh (to rise) etc. The difference in both 

the construction is shown in the following examples: 

(8) Phrase: वे हाथ से सूखी घास तोड़ कर खाते जा रह ेथे

Itrans: ve hAth a se  sUkhI ghAsa toDxa kara khAte

jA rhe  the

Free Translation 1: Plucking dry grass with hands, he

started eating.

Free translation 2: He plucked some dry grass and ate.

Figure 6: Example (8) 

There are two free translations for example (8), where the 

10
 Vmain-main verb; Vaux-auxiliary verb 
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first is the literal translation and the second, with context 

based translation. The first verb of the serial verb 

constructions are advisably marked as the main verb 

followed by other verb series. Therefore, in this case, the 

verb khAte (eat) is marked as a main verb followed by 

other three auxiliary verbs jA, rahe and the meaning ‘go’ 

(here, in sense of progression) ‘live’ (continuous marker) 

and ‘was’ (the past tense auxiliary) respectively. These 

verbs when combined to form an explicator verb mean 

‘went on eating’ which gives sense of some action in 

progress. At the POS level, the four verbs are tagged as V, 

V1, V2, and V3. 

Contrary to the above, other verb phrases with main and 

auxiliary verbs are tagged as per the category they belong 

to.  

Example: 

(9) Phrase: वे हाथ से सूखी घास तोड़ कर खा रह ेथे

Itrans:   ve hAth a se sUkhI ghAsa toDxa kara khA 

rhe  the

Free Translation: He was eating the dry grass plucked

with hands.

The verb phrase ‘khA rahe the’ means ‘were eating’ where 

khA means ‘to eat’, rahe is a ‘continuous marker’ and the is 

the ‘past tense auxiliary’. Therefore, at the POS level, the 

threes three verbs are tagged as Verb main followed by two 

auxiliaries. 

5. Conclusion
Recent modified design of TypeCraft is more user friendly 

and suitable for all the languages. It has widened the space 

for linguistic analysis of different languages by 

understanding and contrasting their features, to explore the 

languages for their deeper level of construction. The 

present interface also adds to the semantic input by 

providing additional space upto two free translations and 

discourse sense for each sentence.  Hindi, on TypeCraft, is 

in its initial stage and analysis on the data from different 

domains and nature is under process. Constructions like 

idiomatic expression, conjunct verbs and ECVs etc. are to 

be handled carefully. The categorization and multiple-level 

tagging of such constructions has been discussed in section 

4 in the paper. Present paper is focuses and is limited to the 

labeling of grammatical information and annotation upto 

case marking only. Once this cycle of annotation is met 

with the expected data length, the semantic analysis and 

construct labeling will be dealt in detail. With all these 

implementations and online data integration with other 

platforms like ILCI, which is another goal of the project, 

this multi-lingual interface can be developed more to 

benefit the research community. 
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Figure 1: The Configuration File for SVM 
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Abstract 

The authors present an SVM-based POS tagger for Odia language in the paper. The tagger has been trained and tested with Indian 
Languages Corpora Initiative (ILCI) data of 2, 36, 793 and 1, 28, 646 tokens respectively which has been annotated following Bureau 
of Indian Standards (BIS) annotation scheme. The evaluation has been undertaken under two sections: the statistical and the human, 
guided by the two approaches of research: quantitative and qualitative. Evaluation results on precision, recall and F measure metrics 
demonstrate accuracy rates of 93.99%, 92.9971 and 93.49% respectively. So far as the human evaluation is concerned, the agreements 
are 93.89% (percentage agreement) and 0.87 (Fleiss’ Kappa). Finally, the issues and challenges have been discussed in relation to manual 
annotation and statistical tagger-related issues with a linguistic analysis of errors. On the basis of evaluation results, it can be stated that 
the present POS tagger is more efficient than the earlier Odia Neural Network tagger (81%) and the SVM tagger (82%) in terms of both 
accuracy and reliability of the tagger output data. 
 
Keywords: SVM, statistical POS tagger, Odia, Fleiss’ Kappa, ILCI, BIS, IA agreement, Indo Aryan language. 
 

1. Introduction 

Parts of Speech (POS) annotation is the method of 

assigning a grammatical category label for each token 

based on the linguistic and contextual information within a 

sentence. A POS tagger is a piece of computational 

software which automatically labels grammatical 

categories to the input data. There are broadly three types 

of taggers: rule-based, statistical and hybrid. 

Odia1 /oɽIɑ/ is recently declared as one of the classical 

languages (Jha et al., 2014; Pattanayak and Prushty, 2013) 

of India. It was a Scheduled Language and owes its genesis 

to the Indo-Aryan language family. As opined by Patnaik, 

apart from the reason that it inherits most of the salient 

linguistic features from the Indo-Aryan (IA) group, it also 

has some features (e.g. agglutination) that has a strong 

resemblance to the Dravidian languages as it spreads to the 

adjacent area where both the IA and Dravidian languages 

converge (Behera, 2015). The Odia speaking population is 

41, 974, 241 2  as reported by the population census, 

Government of India, 2011.  

Since it is quite difficult to incorporate diverse features 

in a Hidden Markov Model (HMM) tagger (Singh et al., 

2008), we have experimented with CRF and SVM in Indian 

languages (Hindi, Odia and Bhojpuri) initially (Ojha et al., 

2015) and achieved considerable accuracy rates with a fair 

amount of data. Because of the fact that Indian languages 

are morphologically rich and CRF and SVM can better deal 

with the complex features (Singh et al., 2008), we have 

experimented with a large amount of training and test data 

for Odia SVM tagger in this current study.   

2. Odia POS Annotation Literature  

Das and Patnaik (2014) have developed Single Neural 

Network-based POS Tagger which performs annotation by 

voting on the output of all single neuron tagger. Errors have 

                                                           
1 The nomenclature ‘Oriya’ was formerly used which is changed 

to ‘Odia’ ; similarly the state of ‘Orissa’ to ‘Odisha’ 

been corrected applying the ‘feed forward method’ in the 

neural network of multiple layers. A morphological 

analyzer has been utilized to enhance the accuracy which is 

81%. 

Das et al., (2015) have developed an SVM Tagger with a 

training data set of approximately 10k. They have reported 

a fair amount of accuracy i.e., 82%, an increase of 1% from 

the earlier tagger. The tagset applied by them for the 

manual POS annotation comprises of only five labels and 

they have selected features for different POS categories 

along with careful handling of affixes (prefixes and 

suffixes). For increasing the accuracy, a set of lexicon 

consisting of around 200 words has been used. 

Ojha et al., (2015) have reported two statistical POS taggers 

using CRF and SVM algorithms for three IA languages viz. 

Hindi, Odia and Bhojpuri. The accuracy of SVM taggers 

ranges from 88 to 93.7 whereas the CRF tagger has 82 to 

86.7% of accuracy with a training data size of 90k tokens 

each.  

The present POS tagger has not been supported with any 

external tool like morphological analyzer as in the case of 

the Neural Network tagger and lexicon as in the previous 

SVM tagger. This POS tagger is an improvement upon the 

earlier reported taggers by Ojha and others in 2015 in terms 

of the application of the amount of corpus i.e. 236k tokens.  

3. The Theory of SVM 

In machine learning, support vector machines by Vapnik 

(Joachims, 1999) are supervised learning models that 

analyze data and recognize patterns, used 

for classification and regression analysis. 

Given a set of N training examples {(x1, y1),…, (xN, 

yN)} where every instance xi stands for a vector RN and 

class label is yi∈ {−1, +1}, an SVM learns a linear 

hyperplane that separates the set of positive examples from 

the set of negative ones with maximal margin (Gimenenez 

2 http://www.census2011.co.in/census/state/orissa.html 
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Table 2: Recall, Precision and F Scores of POS Categories 

 

                                                           
3 http://www.cs.upc.edu/~nlp/SVMTool/ 
4http://www.tdildc.in/tdildcMain/articles/134692Draft%20 

and M`arquez, 2006). A non-linear classifier decides f 

(x)=sign(g(x)) for an input vector where f(x)=+1 (x is a 

member of a given class), f(x)=-1 (x is not a member of a 

given class). g(x) is proportionate to m, zi s are support 

vectors and K stands for kernel. 

 

 

 

Hence, we have developed our system applying SVM 3 

(Joachims, 1999), which performs classification by 

constructing N-dimensional hyperplane that optimally 

separates data into two categories. 

4. Methodology 

The methodology has been divided into two broad 

categories: method of corpora collection and annotation 

and method of data analysis. 

4.1 Methods of Corpora Collection and 
Annotation  

During the phase-I of the ILCI project (Banerjee et al., 

2013), 50k sentences corpora were collected in Hindi and 

translated into 12 major Indian languages in the domains of 

health and tourism (Choudhary & Jha, 2011) including 

Odia. In phase-II, other scheduled languages have been 

incorporated with another 50k sentences collected in 17 

scheduled Indian languages including English. The project 

includes translation, POS annotation and chunking of data 

running into 100k sentences each in 17 languages. The BIS 

tagset4 is a combination of both hierarchical and flat tagset 

designed by the POS Standardization Committee appointed 

by the Department of Information and Technology, 

Government of India. It has 39 fine-grained labels and 11 

broader tags for POS. The manual annotation is conducted 

by a semi-automated annotation tool namely, ILCIANN 

App (Kumar et al., 2012). 

4.2 Method of Data Analysis  

4.2.1. Experimental Set-up 
The features for SVM have been selected taking into 
consideration the word, POS, ambiguity and may_be’s. 
The configuration file (Fig. 1) that has been used during 
learning phase contains medium verbose (-V 2) and the 
mode of learning and tagging has been set to left-right-left 
(LRL). And the rest of the features like sliding window, 
feature set, feature filtering, model compression, C 
parameter tuning, dictionary repairing and so on have been 
set to default. The following feature template has been 
configured for the known and unknown ambiguous words. 

Figure 1: Feature Template 
SVM Tool learning module: Given a training set of 
examples (either annotated or unannotated), it is 

POS%20Tag %20standard.pdf 

POS Recall Precision F Score 

CC_CCD 99.51 98.94 99.22 

CC_CCS 98.67 97.70 98.18 

DM_DMD 98.46 99.67 99.06 

DM_DMI 99.13 99.13 99.13 

DM_DMQ 94.04 99.37 96.63 

DM_DMR 95.37 99.12 97.21 

JJ 85.75 88.67 87.18 

N_NN 94.07 90.80 92.41 

N_NNP 70.36 80.32 75.01 

N_NNV 69.23 96.71 80.69 

N_NST 97.43 96.71 97.07 

PR_PRC 92.30 100.0 96 

PR_PRF 99.09 99.77 99.42 

PR_PRI 94.44 94.44 94.44 

PR_PRL 93.68 94.68 94.17 

PR_PRP 99.68 96.11 97.86 

PR_PRQ 100.0 100.0 100 

PSP 99.13 96.54 97.82 

QT_QTC 98.86 99.19 99.03 

QT_QTF 96.26 96.60 96.43 

QT_QTO 97.06 98.77 97.91 

RB 88.46 94.56 91.41 

RD_ECH 66.66 66.66 66.66 

RD_PUNC 99.69 99.99 99.84 

RD_RDF 100 64.77 78.62 

RD_SYM 99.72 99.63 99.67 

RD_UNK 71.20 83.18 76.72 

RP_CL 97.10 94.06 95.56 

RP_INJ 94.11 80.0 86.48 

RP_INTF 90.50 95.75 93.05 

RP_NEG 99.77 99.32 99.55 

RP_RPD 99.62 97.36 98.48 

V_VAUX 91.36 98.04 94.58 

V_VM 89.27 89.18 89.23 

V_VM_VF 99.09 97.80 98.44 

V_VM_VINF 93.80 97.51 95.62 

V_VM_VNF 88.97 92.62 90.76 

V_VM_VNG 91.86 97.83 94.75 

TOTAL 92.99 93.99 93.49 
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responsible for the training of a set of SVM classifiers. For 
training (see table 2), 77, 772 tokens (first phase) and 1, 59, 
021 tokens (second phase) data have been used. 
SVM Tool tagger module: Given a text corpus (one token 
per line) and the path to a previously learned SVM model, 
it implements the POS annotation of a sequence of words. 
Calculated part–of–speech tags feed directly forward next 
tagging decisions as context features (Giménez and 
M`arquez, 2006). 
SVM Tool evaluation module: Given a text corpus of the 
tagger output and the gold corpus, the SVM evaluation 
model automatically performs the evaluation function and 
generates the report at different levels: a detailed summary 
of the POS results, at the level of POS, and at the level of 
ambiguity. The data for testing (see table 1) is 47, 098 and 
81, 548 in the phase 1 and 2 respectively. 

Phases Domains Train Test 

I Phase Health 46, 785 32, 691 

Tourism 30, 987 14, 407 

II Phase Entertainment 30, 929 18, 463 

Agriculture 29, 470 17, 885 

Literature 98, 622 45, 200 

Total 
tokens 

2, 36, 793 1, 28, 646 

Table 1: Training & Testing Data Sets for Odia SVM 
Tagger 

5. Evaluation

This section is categorized into three sub sections: 
statistical and human evaluations. The former encapsulates 
the results summary of the SVM tagger at the level of parts 
of speech. The latter consists of the inter-annotator 
agreement of human annotators with percentage agreement 
and Fleiss’ Kappa. 

5.1 Accuracy per POS Category 

So far as the accuracy per POS level (see table 2) is 
concerned, the present SVM tagger performs brilliantly 
with the categories such as coordinating conjunctions, 
cardinals, punctuations, negative particles, reflexive and 
interrogative pronouns and symbols with the accuracy 
above 99%. The tagger registers lowest number of accuracy 
in categories like proper nouns, foreign words, echo, 
unknown words and so on. One example could be 
instantiated with regard to proper nouns to account for the 
error. The Tagger output gets error-prone when the training 
data has the highest number of a particular label for a given 
word form. In the following instance, the part of the proper 
noun ‘national’ gets the label of adjective and ‘institute’ 
gets the tag of a common noun because in the training data 
the frequency of these labels for the corresponding forms is 
high.   

ɟɑt̪ijɔ/JJ prɔd̪joɡɪkɔ/NNP ɔnusʈʰɑnɔ/NN ‘National Institute 

of Technology’ 

5.2 Percentage IA Agreement 

The Inter Annotator (IA) agreement is evaluated based on 
the data of 3k tokens by 3 annotators. The tabulated data 
demonstrates the fact that the average accuracy of the SVM 
IA judgment of all the annotators (see table 3) is 93.88%. 

annotators Ann1+2 Ann2+3 Ann3+1 

Average agreement 
(%) 

93.88 93.94 93.84 

Table 3: Percentage IA Agreement of the SVM 
Tagger 

5.3 Kappa IA Agreement 

Fleiss introduced the Fleiss’ Kappa in 1971 to measure the 
agreements between multiple raters by extending Cohen’s 
Kappa. It is an improvement from simple percentage 
agreement and Cohen’s Kappa as it takes into account both 
the observed and the chance agreement. As far as this 
measurement is concerned, we have taken three annotators 
who are trained in linguistics and have given them tagger 
output data of approximately 3k tokens. They had to rate 
the data on the three-point scale: agree, neutral and 
disagree. 
The Kappa measurement is based on the explaination by 
Cohen as in the following. 

 values ≤ 0 = no agreement
 values from 0.01 to 0.20 = slight
 values from 0.21 to 0.40 = fair
 values from 0.41 to 0.60 = moderate
 values from 0.61 to 0.80 = substantial
 values from 0.81 to 1 = almost perfect

Fleiss’ Kappa (Fleiss, 1971) is defined as 

The factor provides the degree of chance agreement and 
refers to the actual observed agreement. Where pa

refers to the proportion of observed agreement and pε 
suggests the proportion of agreement by chance. When the 
raters are in complete agreement, K equals to 1. If they are 
not, K equals to 0. The Kappa results is 0.87 which is 
almost perfect agreement. 
The cases of parts of speech where the annotators have 
largely disagreed are common and proper nouns, 
adjectives, coordinating and subordinating conjunctions, 
and deictic and indefinite demonstrative. 

6. Odia POS Annotation: Issues and
Challenges

There are significant issues and challenges in developing a 

POS tagger. They can be broadly categorized into two 

heads: manual annotation and statistical tagging issues. 

6.1 Manual Annotation Challenges 

During manual annotation, the label for quotative 

expressions CC_CCS_UT has been done away with 

because these expressions are extended to include the titles 

of movies and other such constructions apart from 

quotatives. 

 Hyphenated proper nouns: The compound proper

nouns with hyphenation are one of the most

interesting phenomena to deal with. These kinds

of nouns originate from especially the

transliterated data into Odia.
In the following examples, it becomes more 

obvious as the examples are the transliterated data 
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in Odia from other languages: English and Urdu.  

For Example, ɟɔn-ɪn-d̪ɪ-ʋɪlɖɔrnes\N_NNP 

χɪt̪ɑb-e-hɪnd̪ \N_NNP 

The data in the form of compound expressions 
demonstrated above cannot be presented by 
separating all the parts of the proper nouns. 
Besides, it does not fall into any of the category 
prescribed in the BIS. So, the tag of compound 
proper noun NNPC can be borrowed from the 
ILMT tagset. 

 Punctuations: It is clear that punctuations perform 
several functions other than their canonical 
functions (Behera et al., 2015). For instance, the 
hyphen functions as coordinator (coordinator 
words, phrases and clauses), list item markers, 
section headers, for frozen expressions etc. Hence, 
they need special attention while annotating. 

 Reduplications: It is indispensable that 
reduplication is one of the most important 
linguistic features of most of the languages and so 
is in the case of Odia. Since BIS does not have a 
label of reduplication, it can be incorporated into 
the scheme from the ILMT tagset (Nainwani et al, 
2012).  
For instance, pʰɔɖ\REDP pʰɔɖ\REDP heɪ ʊɖɪɡɔlɑ 
‘flew away by flapping wings’ (complete verbal 
reduplication) 

 Agglutination: It is one of the issues of concern as 

it alternates with many categories (noun, verb, 

demonstrative, adverb, quantifiers) as already 

discussed sabove. Handling agglutination. 

Mohaptra (2010) has stated that Odia is an 

agglutinating language morphologically (Jena et 

al., 2011). In addition, Padhy and Mohanty (2013) 

have concluded that the “suffixes, postpositions 

and case endings agglutinate with the verbs, 

nouns, adverbs or pronouns”. At these instances, 

the categorical decision has been made on the 

basis of the head word and not the agglutinating 

suffixes. For instance, if the agglutinating suffixes 

are attached with the numeral words they are 

annotated as classifiers or else they are annotated 

on the basis of the category of the head word.  

For instance, 

ek-ʈɪ\RP_CL ‘one’ 

lɒkɔ-ʈɪ\N_NN ‘the man’ (-ʈɪ is a classifier) 

6.2 Statistical Annotation Issues 

The tagger has ambiguity issues with 374 classes grouped 
under forty sub-classes. All the ambiguity classes are 
grouped based on 22 single categories that alternate with 
other POS labels. They are discussed as follows (see table 
4) 

 Two-class ambiguity: It encapsulates word forms 
having two-class possible labels. For instance, the 
categories of coordinating and subordinating 
conjunctions have been used alternately for one 
word form. Similarly, the labels of common noun 
and postposition are used for one word because 
postpositions agglutinate with nouns, 
demonstratives, cardinal numbers and verbs.  
For example, 

sehɪ ʈʰɑrʊ/N_NN ‘from that place’  

mɒ\PR_PRP ʈʰɑrʊ\PSP ‘from me’ 

 Three-class ambiguity: This level contains three 
labels used for one word form. The word /bɔhʊt̪/ 
is a quantifier when it is used before nouns 
whereas it is an intensifier when it intensifies an 
adjective or adverb. Analogously, the word form 
/mɑne/ is alternately used for coordinating 
conjunction, common noun and postposition.  
For instance, 

mɑne\CC_CCD ehɪ ʈren ɟeʊ̃ʈʰɑrʊ bɑhɑre seɪʈʰɑre 

cʰɑɖɪnɔt̪ʰɑe  

“It means, this train does depart where it starts 

from”.  

Ehɑrɔ mɑne\N_NN ‘it’s meaning’  

lɒkɔ mɑne\PSP ‘people’ 

 Four-class ambiguity: It encapsulates four 
possible labels for one word form. For example, 
the labels of main, finite, infinitive and non-finite 
verbs are used for one word form.  
For example,  
t̪ʊme kɔrɪ\V_VM pɑrɪbɔ\V_VM_VF ‘you can do’ 
t̪ʊme kɔrɔ\V_VM_VF ‘you do’ 
kʰɑɪ\V_VM kɔrɪ\V_VM_VNF ɑsɪle ‘after eating 
he came’ 
ɑsɪle kʰɑɪ\V_VM kɔrɪ\V_VAUX ‘came after 
eating’ 

 More than four-class ambiguity: It contains more 
than four classes of ambiguity. In this class, 
different labels of categories of verbs are used for 
one verbal form and some other categories. 
 

2 class CC_CCD_CC_CCS, N_NN_PSP 

3 class QT_QTF_RP_INJ_RP_INTF, 

CC_CCD_N_NN_PSP 

4 class V_VM_V_VM_VF_V_VM_VINF_V_VM_V

NF 

More 

than 4 

V_VAUX_V_VM_V_VM_VF_V_VM_VNF, 

N_NN_PSP_RB_RD_ECH 

Table 4: Ambiguity Classes 

Figure 2: Error Types and Rates 

6.3 Linguistic Analysis of Errors 
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The errors (from an output of 3k token data) have been 

categorized under 9 broad categories (Manning, 2011). 

They are as follows. The highest number (40.75) of errors 

is figured in the category of ‘plausibly correct’ whereas the 

‘open-class categories’ and ‘wrong gold data’ have 1.34% 

error rate each (see figure 2).  

6.3.1 Open-class Category 

The open-class categories are words that can change over 
time or which can add new or loan words to its lexicon. For 
instance, nouns, verbs, adjectives and foreign words can 
add to the lexicon by enculturation, getting transliterated or 
used Odia-like.  
For example,  

Erɪɟenkɪs\N_NN (‘Erizenkis’ a proper noun from 
English) 

6.3.2 Unknown Words 

The unknown words are the words that do not appear for 
even a single occurrence in the training corpus.  
For instance, 

Sɪsʈɔm\N_NNP ɔpʰ\N_NNP 
ɪnʈensɪpʰɪkesɔn\N_NNP ‘System of 
Intensification’ 

6.3.3 Lexicon Gap 

If a word (mɒʈ) has occurred several times in the training 
data with a specific tag, but when it is evaluated, it gets a 
different tag by the tagger. 
Training data token 

mɒʈ\QT_QTF ɑɭʊrɔ\N_NN ‘total amount of 
potatoes’ 

Evaluation data token 
mɒʈ\N_NN ɑɭʊrɔ\N_NN 

6.3.4 Difficult Linguistics 

When some problematic and ambiguous tags are not even 
decidable by the human annotator correctly and the tagger 
labels it incorrectly they are included in this category. 

In Odia, it is quite difficult to judge in the conjunct verb 
constructions (JJ/N_NN+V_VM) whether the first lexical 
component is noun or adjective in several cases. Similarly, 
the cases of adverbs, demonstratives etc. are the other cases. 
For example 

mʊ̃\PR_PRP t̪ɑkʊ\PR_PRP nɪjɔnt̪rɪt̪ɔ\N_NN or JJ 

kɔlɪ\V_VM_VF 

“I controlled him” 

6.3.5 Under-specified Labels 

Unclear, ambiguous or under-specified words are the words 
having more than one tags in the whole training corpus or 
contextually unclear or undeterminable. 
/mɑne/ is a word having three tags which create ambiguity 
during the processing of evaluation data.  
For instance, 

/mɑne/ (CC_CCD or N_NN or PSP) ‘meaning’ 

6.3.6 Inconsistent Gold Data 

There are some cases where it becomes quite difficult to 
take proper judgment and the annotators disagree to arrive 
at a mutual consensus. As a result of the disagreement, they 
annotate some words based on their linguistic knowledge; 

thereby making the data inconsistent. Because of the 
inconsistency of both gold and training annotated data, the 
evaluated data becomes error-prone. In the data explained 
below, /hɔɟɑrɔ/ and /sɔhɔ/ in both the training and gold file 
have been tagged inconsistently which results in an 
inconsistent tag.  
For example, 

hɔɟɑrɔ\QT_QTF hɔɟɑrɔ\QT_QTC lɒkɔ\N_NN 
‘thousands of people’ 

6.3.7 Wrong Gold Data 

When the data in the gold file has been annotated wrongly, 
the evaluated data also becomes wrong. For example, the 
multi-word in the gold data has been annotated wrongly; 
thereby making the evaluated data wrong.  
For instance, 

ɔnt̪ɔrrɑsʈrijɔ\JJ ɑɭʊ\N_NN ɔnʊsɔnd̪ʰɑnɔ\N_NN 
kend̪rɔrɔ\N_NN ‘International Potato Research 
Centre’ 

6.3.8 Multi-words 

Multi-word is ‘any phrase that is not entirely predictable on 
the basis of   standard grammar rules and lexical entries’. 
They could be of several types: replicating, doublets, 
compound and complex verbs, acronyms and abbreviations 
(Sinha, 2011). For example, the acronym for a proper noun 
below is sometimes annotated as common wrongly.  
For example, 

ɡɔ.me.bɪ.\N_NN (stands for Gangadhar Meher 
University) 

6.3.9 Plausibly Correct 

There are some cases that suggest that even if there is 
correctness in both the training corpus and the gold file, 
they are tagged quite inconsistently by the taggers. These 
cases behave quite peculiarly. The word /ɑɡrɔhɔ/, which is 
a common noun, has been tagged as an adjective by the 
tagger.  
For example, 

ɑɡrɔhɔ\JJ srʊsʈɪ\N_NN kɔrɑɟɑɪcʰɪ\V_VM_VF 
‘interest has been created’ 

7. Conclusion

In this paper, we have reported overwhelming accuracy 

rates of 93.99% (precision), 92.9971 (recall) and 93.49% 

(F-measure) for the Odia SVM-based tagger. This is 

indicative of the fact that the present SVM Odia tagger 

outperforms the existing SVM (82%) and Single Neural 

network (81%) taggers in terms of accuracy. In addition, 

the evaluation is also conducted manually through Inter-

annotator Agreement to ensure the reliability of the 

linguistic output provided by the statistical SVM tagger for 

Odia. The IA agreements are 93.89% (percentage 

agreement) and 0.87 (Fleiss’ Kappa) for the tagger’s output. 

During the manual evaluation, it has been observed that the 

tagger wrongly annotates the data specifically with respect 

to common nouns, adjectives, proper nouns, coordinating 

and subordinating conjunctions, and deictic and indefinite 

demonstratives (Behera, 2015). The performance of the 

POS tagger can be enhanced by introducing tools like an 

NER, discourse anaphora resolver, a morph analyser, 

WSD, lemmatizer or making it a hybrid tagger. 
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Abstract
Part-of-Speech (POS) tagging is the prerequisite for all Natural Language Processing (NLP) applications be it Sentiment Analysis,
Natural Language Parsing, Word Sense Disambiguation, Text to Speech Processing or Information Retrieval among others. Maithili
is one of the staple languages of Bihar. It is spoken by approximately 34.7 million people as of 2000. Despite the fact that POS
tagging for major Indian languages has been done in recent years, Maithili has not been delved into much. Consequently, developing
a Part-of-Speech (POS) tagging system for Maithili is vital. This paper deals with the collection and developing an automated system
for POS tagging at word level for Maithili Tweets using both coarse-grained and fine-grained tagsets. Although code-mixing with
English, that too, Indian languages written in romanized phonetics is the prevalent practice in Indian social media but in this paper, only
monolingual tweets, written in Devanagari are considered. The efficiency of different tagging systems based upon four machine learning
algorithms (Naive Bayes, Sequential Minimal Optimization, Random Forest and Conditional Random Field) is noted.

Keywords: Maithili, POS

1. Introduction
A POS tagger assigns appropriate POS categories to each
word of a text. POS tagging has been extensively scruti-
nized in the past two decades and for major Indian lan-
guages, it has come into the fray in the past decade. The
rudimentary bottleneck in POS tagging stems from the fact
that a word may assume different lexical categories depend-
ing upon its usage in a particular sentence.
Maithili is an Indo-Aryan language spoken in northern Bi-
har, a state in eastern India and adjoining areas of Nepal. It
is the 16 th most spoken language in India and 40 th most
spoken in the world. It is spoken primarily in the regions of
Bhagalpur, Darbhanga, Madhubani, Purnia, Saharsa among
others. The language map of Bihar1 is shown in Figure 1.
Linguistically, Maithili which is currently written in De-
vanagari script is a stress language with a relatively free
word order and yet it is predominantly a Subject Object
Verb (SOV) language. Albeit Maithili has certain simi-
larities with Hindi, it cannot be considered as a dialect of
Hindi.

Figure 1: Language Map of Bihar

The challenge with working on Indian languages in gen-

1commons.wikimedia.org/wiki/File:Languages of Bihar.gif

eral and Maithili in particular is in their morphologically
rich and tenacious nature which makes the task of creating
an efficient tagging model a challenge. Ambiguity of the
words also adds another dimension to the task.
POS tagging of Social Media Text (SMT) presents di-
verse challenges as it is characterized by high percentage
of spelling errors, aggressive and impromptu use of punc-
tuations, representation of a word in several ways, to name
a few in the monolingual unicode domain. Tagging tweets
requires dealing with certain twitter exclusive entities (@,
#, RT, URL, emoticons) for which a twitter specific tagset
would need to be used. These challenges are relatively
tougher when any kind of code mixing is incorporated:
when English words get transliterated in Devanagari and
mixed in Maithili. For example:

Aaib rahal aech maithili TV serial #Made In Mithila #MadeIn-
Mithila #DDBihar Link par click karu- https://t.co/mHtDFNmTa9

Maithili TV serial #Made In Mithila coming #DDBihar . Click
on the link-https://t.co/mHtDFNmTa9

The rest of this paper is organised as follows, Section 2
describes the related work. Section 3 describes the corpus
acquisition. In this section, we discuss the acquisition, pro-
cessing and the tagset used for annotation of the corpus.
Section 4 describes the annotation as well as bootstrap-
ping. Section 5 describes the performance of the various
machine learning algorithms. Section 6 analyses the results
obtained.Section 7 sums up the conclusion of the paper and
lists future endeavours.
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2. Related Works
POS tagging has been profoundly delved into in the past
two decades. For major Indian languages, there has been
some significant work done in the past decade. Yoonus and
Sinha, (2011) built a hybrid tagging system for 12 Indian
languages viz. Assamese, Bengali, Bodo, Gujarati, Hindi,
Malayalam, Manipuri, Nepali, Oriya, Punjabi, Tamil, and
Urdu wherein Punjabi language achieved highest accuracy
of 94.06%. N. Garg et. al., (2012) built a rule based POS
Tagger for Hindi which achieved an accuracy of 87.55%.
Shrivastava and Bhattacharyya (2008) built a Hindi POS
tagger based on a Hidden Markov Model (HMM) using
a longest suffix matching stemmer to achieve an accuracy
of 93.12%. Singh et. al. (2006) built a POS tagger for
Hindi based upon morphological analysis bolstered by high
coverage lexicon and a decision tree based learning algo-
rithm achieving an accuracy of 93.45%. Ekbal and Bandy-
opadhyay (2008) built a POS tagging system for Bengali
news corpus using Support Vector Machine (SVM) achiev-
ing an accuracy of 86.84%. Mukherjee et. al., (2013) de-
veloped a Bengali POS tagging system using Global Lin-
ear Model (GLM) wherein the sentence structure features
are defined by syntactical, morphological and ontological
features of Bengali. This tagger achieved an accuracy of
93.12%. Dandapat et. al., (2004) had developed a POS
tagger for Bengali based on a combination of supervised
and unsupervised learning with or without morphological
analyzer restriction using HMM which achieved an accu-
racy of 95.00%. Singh et. al., (2013) built a POS tag-
ger for Marathi using N-grams (trigram) thereby achieving
an accuracy of 91.63%. Shambhavi et. al., (2012) built
a POS Tagger for Kannada based on second order HMM
and Conditional Random Field (CRF) achieving accuracies
of 79.9% and 84.58% respectively. Singha et. al., (2012)
developed a POS tagging system for Manipuri text based
upon HMM and achieved an accuracy of 92%.
POS tagging in Maithili, however, is relatively untouched.
Maithili POS tagging has never been applied to social me-
dia text especially Twitter. The telling factor for it not being
applied is the lack of significant amount of annotated data.
Previously done work on Maithili POS tagging would con-
stitute the work done at Linguistic Data Consortium for In-
dian Languages (LDC-IL)2 entitled Towards Maithili POS
Tagging.3

3. Corpus Acquisition and Processing
The scarcity of any significant amount of annotated data led
us to try and create our own corpus. Although Maithili is
spoken by approximately 25 million people, it is not preva-
lent in social media. Therefore corpus acquisition was a
tough challenge for Maithili language. Another major chal-
lenge was to separate out Maithili from other closely related
languages that use Devanagari script like Hindi, Nepali,
Bhojpuri and so on. Corpus Acquisition and Annotation
process has been detailed in the following paragraphs.

2www.ldcil.org
3http://www.ldcil.org/Download/POSANIL2011/7Towards%

20Maithili%20POS%20Tagging.pdf

3.1. Acquisition
Twitter API allows keyword based search for data acqui-
sition. We downloaded two Maithili e-newspaper web-
sites viz. Mithila Mirror4 and e-samaad.5 A standard web
crawler tool HTTrack6 was used for this purpose. Since
the corpus acquired was in HTML format, we needed to
perform detagging in order to get only the text and remove
the HTML tags. We created a frequency based word list
consisting of 40317 words, a 20% shortlist of which was
then used to search for Maithili tweets. A standard JAVA
based Twitter API7 was used to get all the tweets. One of
the challenges of working with Maithili is that it has signifi-
cant amount of lexical overlaps with both Hindi and Nepali.
Another major problem with Twitter is its language mark-
ings for Indian languages. Twitter language identification
module is not capable of differentiating Maithili with other
languages like Hindi or Nepali that use Devanagari script.
Twitter attaches language mark ”in” as Indian for all those
languages.
The corpus we obtained had a large percentage of Hindi
as well as Nepali words. We decided to perform a differ-
ence operation between this obtained corpora with a Hindi
corpus which was obtained from the Hindi e-paper Amar
Ujala8 and a Nepali corpus in order to filter out the typi-
cal Maithili words. We got a refined list of 2015 frequency
based words out of which the first 403 were for the collec-
tion of tweets. We obtained about 5000 tweets from this list
of words. Even though the number of Maithili tweets in-
creased after performing this difference operation, we still
could get only about 20-25 usable tweets from about 800-
1000 tweets collected which was unsatisfactory.

3.2. Language Identification
The tweets obtained using the refined word list was still
a mixture of Hindi, Nepali and Maithili tweets. In order
to avoid the tedious task of manually examining and sep-
arating each tweet, we decided to build a language detec-
tion model which would automatically separate the Maithili
tweets from the rest. Apart from that, since Twitter’s lan-
guage marker is not very efficient in marking of Indian lan-
guages, the model would also act as a language marker.
The language model was trained on a golden set of 100
manually annotated tweets and a Naive Bayes, Sequential
Minimal Optimization (SMO) as well as a Random Forest
classifier was used to build the model. We used a trigram
of characters for building the feature vector for training the
model. The RF based language detection model achieved
reasonably good accuracy and is being used further. The re-
spective F-Measure values for the different Machine Learn-
ing algorithms are given in Table 1.The model obtained was
extremely efficient and could isolate all the Maithili tweets
from the other irrelevant ones. Upon separation, tokeniza-
tion was performed. A standard CMU Tokenizer9 was used
for the task.

4www.mithilamirror.com
5www.esamaad.com
6https://www.httrack.com
7https://twitter4j.org
8www.amarujala.com
9http://www.ark.cs.cmu.edu/TweetNLP
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ML Algorithm F-Measure
Naive Bayes 88.80
SMO 96.14
Random Forest 96.44

Table 1: Performance of Maithili Language Identification

3.3. Tagset
Twitter being a social media platform, allows users to ex-
press their views without applying any kind of grammatical
constraints. There is , however, a constraint which restricts
the user from tweeting anything longer than 140 charac-
ters. As such, tweets generally contain a lot of non textual
entities. Also, due to the 140 character limit, a lot of abbre-
viations are used which adds to the complexity of the data
being examined. Thus in order to prudently tag the data,
we need to use a relevant tagset.
A 38 tag fine-grain tagset and a 12 tag coarse-grain was
used to annotate the corpus. The tagset is shown in Ta-
ble 2. As can be inferred, the fine-grained tagset includes
both Twitter specific tags introduced by Gimpel et. al.,
(2011) and a set of POS tags for Indian languages that
combines the ILPOST tags introduced by Baskaran et al.,
(2008), the tags developed by the Central Institute of In-
dian Languages (LDCIL)10, and those suggested by the In-
dian Government’s Department of Information Technology
(TDIL)11. The coarse-grained tagset combines Gimpel et
al.’s Twitter specific tags with Google’s Universal Tagset
designed by Petrov et al., (2011) 12. The mapping of the
fine-grained tagset with the Google Universal Tagset is also
shown in the table.

4. Experiment
Once a collection of around 800 processed tweets was
made, we decided to go for annotation. Indeed performance
of a POS tagging engine directly depends upon the amount
of data it is trained with but manual annotation of large col-
lection is time consuming. Therefore we decided to go for
bootstrapping, which is ideal for these kinds of situations.
We started by manually annotating a golden set consisting
of 100 unlabelled tweets. The annotation was not done by
any linguist but by a native speaker. This golden set would
be the benchmark for the tweets that are automatically an-
notated by the models built upon the Machine Learning al-
gorithms. It would also serve as the base of the bootstrap-
ping performed.
Bootstrapping is a technique used to iteratively improve a
classifier’s performance. We annotate a golden set consist-
ing of 100 tweets and make a model of the set by training

10www.ldcil.org/Download/Tagset/LDCIL/ 6Hindi.pdf
11www.tdil-dc.in/tdildcMain/articles/780732DraftPOSTag

standard.pdf
12Google’s Universal Tagset is designated as- G N (Noun),

G PRP (Pronoun), G V (Verb), G J (Adjective), G R (Adverb),
G DT (Determiner and Articles), G PRE (Pre and post-position),
G NUM (Numeral), G CONJ (Conjunction), G PRT (Particles),
G SYM (Punctuations) and G X (a tagset for miscellaneous
words such as abbreviations or a foreign word).

Category Type Description
N NN Common Noun

Noun N NNV Verbal Noun
(G N) N NST Spatio-temporal

N NNP Personal Noun
PR PRP Personal

Pronoun PR PRL Relative
(G PRP) PR PRF Reflexive

PR PRC Reciprocal
PR PRQ Wh-Word

Verb V VM Main
(G V) V VAUX Auxiliary

Adjective
(G J) JJ Adjective

Adverb RB ALC Locative Adverb
(G R) RB AMN Adverb of Manner

DM DMD Absolute
Demonstrative DM DMI Indefinite

(G D) DM DMQ Wh-Word
DM DMR Relative
QT QTF General

Quantifier QT QTC Cardinal
(G SYM) QT QTO Ordinal

RP RPD Default
Particles RP NEG Negation
(G PRT) RP INTF Intensifier

RP INJ Interjection
RD RDF Foreign Word

Residual RD SYM Symbol
(G X) RD PUNC Punctuation

RD UNK Unknown
RD ECH Echo

Conjunction, Pre CC Conjunction
& Postposition PSP Pre-/Postposition

Numeral & Numeral
Determiner DT Determiner

@ At-Mention
Twitter - Specific ˜ Re-Tweet/discourse

(Gimpel et al. E Emoticon
2011) U URL or email
(G X) # Hashtags

Table 2: POS Tagset

a classifier on it. Then we let the model tag another set of
100 tweets. The errors made by the model are corrected
and then this data is fed to the model again.
For the training of the classifier, we made a feature vec-
tor which would comprise of the word itself, its prefix and
suffix, its two preceding words, and two succeeding words.
The complete bootstrapping procedure is given below:

1. Take 100 unannotated tweets and annotate them man-
ually to prepare a golden set.

2. Train a classifier based on a Machine Learning algo-
rithm.

3. Get the F-Measure and accuracy of the model by per-
forming a 5 fold cross validation.
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4. Annotate 100 unlabelled tweets using the trained clas-
sifier.

5. Manually check for errors and fix them in the anno-
tated tweets.

6. Add the new data with the golden set and retrain the
classifier.

7. Iterate steps 3 to 6 till the F-Measure and accuracy
becomes saturated.

By the end of the bootstrapping cycle, we had a set of 6291
POS tagged words over 10 iterations.

5. Performance
We experimented with various machine learning algorithms
on the tweets in order to find the most efficient algorithm.
We used methods like Naive Bayes, Random Forest and
Sequential Minimal Optimization (SMO) using the Weka13

toolkit. We also experimented with Conditional Random
Field (CRF) using Miralium14. All the methods were tested
based on a five fold cross-validation based on the word it-
self, its prefix and suffix, its two preceding words, and two
succeeding words.
The relevant statistics for each of these methods are given
in Table 3.

Fine - grain Tagset

ML Method
Total

number of
Instances

Correctly
Classified
Instances

F-Measure

Naive Bayes

6291

3073 48.84
Random Forest 3776 60.02

SMO 3704 58.87
CRF 1635 26.24

Coarse - grain Tagset
Naive Bayes

6291

3596 57.16
Random Forest 4328 68.79

SMO 4238 67.56
CRF 2580 41.28

Table 3: Accuracy Measure of the POS tagger

We got the best accuracy measure using the Random For-
est machine learning algorithm measured at 60% for the
fine grain tagset and 68.7% for the coarse grain tagset.
The graphs for the bootstrapping performed on the fine and
coarse grained tagset are shown in Figures 2 & 3.

6. Discussion
While the accuracy and the F-measure achieved was not
impressive, it did relay a lot of information to analyse as
to why such values were obtained and how to try and im-
prove them. From the different confusion matrices, it was
found that for the fine-grained tagset, there existed a high
percentage confusion between common noun and proper

13http://www.cs.waikato.ac.nz/ml/weka/
14code.google.com/p/miralium/

Figure 2: Accuracy vs no. of words for Fine grained tagset

Figure 3: Accuracy vs no. of words for Coarse grained
tagset

noun, common noun and adjectives as well as the main
verb and the auxiliary verb. The tagging of hashtags was
also askew. However, this issue was resolved by designing
a post-processor which performed this task effectively.
The reasons for the above mentioned confusion to be in-
corporated in the model primarily were the non consistent
style of tweeting and the lack of usable data. Due to the non
consistent style of tweeting the same word would be writ-
ten in different ways or the word would be combined with
a punctuation symbol without use of a whitespace, which
would then create a series of different trigrams for the same
word thus accumulating confusion for the model.
For instance in the tweet given below, the following errors
were observed:
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As can be inferred from the example, confusion arises in the
tagging of proper nouns and they are sometimes tagged as
common nouns. Words ’Narendra’ and ’Modi’ which rep-
resent the name of a person, and hence should have been
tagged as proper nouns, were erroneously tagged as com-
mon nouns. The main verb was also wrongly tagged as the
auxiliary verb. Also, when a punctuation symbol was used
with a word without whitespace, the model tagged it as a
punctuation.

7. Conclusion and Future Direction
In this paper we intended to build a POS tagging system
for Maithili Tweets for language processing. We describe
the collection, processing, and tagging of the tweets using
both a coarse-grained and a fine-grained tagset. Four ma-
chine learning algorithms were applied (Naive Bayes, Se-
quential Minimal Optimization, Random Forest and Con-
ditional Random Field) and each of their respective F-
Measures noted. The accuracy obtained may only be de-
cent, but it acts as a stepping stone for further experiments
and observations. The Random Forest based model re-
ported the best accuracy only marginally greater than the
SMO model. The field of NLP is filled with boundless pos-
sibilities. Now that we have a model capable of POS tag-
ging the Maithili tweets, our next endeavour would be to in-
corporate chunking to this model and consider code mixed
tweets in Maithili as this paper deals only with monolingual
tweets. While working with code mixed tweets we would
try to determine the point and extent of the mixing. Indeed
we plan to release this data for future research possibilities.
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Abstract 

The present paper attempts at exploring, classifying and resolving various types of divergence patterns in the context of English-Urdu 
Machine Translation where English and Urdu are SL and TL respectively. So far as the methodology is concerned, we have observed 
the English-Urdu pair sentences and analyzed the translated output taking into consideration different areas of translational 
divergences. We have taken one thousand corpus of the ILCI English sentences for this study and analyzed the translated Urdu output 
in bulk taking into consideration different areas of translational divergences on web-based Machine Translation platforms namely, 
Bing and Google Translate. Dorr’s (1994, 1995) theoretical framework has been adopted for the classification and resolution of the 
linguistic divergences in this undertaken study. Dorr has classified the divergences into two broad categories (lexical-semantic and 
syntactic divergences) and proposed Lexical Conceptual Structure-based resolution for them. This study would help identify, classify 
and resolve the underlying divergence patterns between these languages so as to develop MT systems considering the divergence errors 
and enhance the performance of the MT. 

Keywords: lexical-semantic divergence, syntactic divergence, Lexical Conceptual Structure, English-Urdu MT 

1. Overview

Divergence is one of the pertinent issues in the arena of 

machine translation (MT) which is responsible for the 

inefficiency of the systems. Translation involves 

translating from a source language (SL) to a target 

language (TL) using all the linguistic-contextual 

knowledge by a human translator. Thus, there could be 

less number of errors in human translation in comparison 

to an automated MT which performs translation with the 

help of computers. The issue of divergence crops out 

owing to the inherent dissimilar structural variations 

between languages.  

According to Dorr [1993], “translation divergence arises 

when the natural translation of one language into another 

results in a very different form than that of the original.” 

English is a European language while Urdu belongs to the 

Indo-Aryan (IA) group of languages. There are several 

salient linguistic features that prove to be mutually 

incompatible and basically pertain to morphology, syntax 

and semantics. Like most of the IA languages, Urdu is a 

morphologically rich and relatively free word-order 

language whereas English is a morphologically weak and 

of fixed word-order. English applies expletive and 

existential subjects which are not true to Urdu. In 

addition, Urdu being an IA language does have an 

inanimate entity commonly as the agent of the action 

which is not a common feature in case of English. 

Furthermore, Urdu lexically marks the honorifics in the 

verbs while the English counterpart does not do so. 

Dorr (1993) has categorized the divergences into two 

major classes: syntactic and lexical-semantic. Further, 

each of the classes has been sub-categorized and the 

corresponding instances have been drawn as the 

following. 

2. The LCS for Identification of
Divergences 

The divergences between languages can be identified 

from two approaches: syntactic structure and 

lexical-semantics (lexical conceptual structures-LCS)1. 

2.1 Syntactic Structure 

English: [CP [IP [NP Rahim]  

[VP [VP [V went] [ADV fast]] [PP to [NP the 

market]]]]] 

Urdu: [CP [IP [NP Rahim] 

[VP [ADVP [A t̪ezɪ] [P se]] [NP bɑzɑr] [V 

ɡəjɑ]]]] 

Where in English, verb [V went] is the syntactic head, 

noun phrase [NP Rahim] is the syntactic subject, 

prepositional phrase [PP to [NP the market] is the syntactic 

object and adverbial [ADV fast] is the syntactic modifier. In 

Urdu, the object constituent ‘the market’ is a syntactic 

phrase which possesses an object namely, [NP bɑzɑr]. 

1 For more basics on notation convention please refer to Dorr 

(1994), Gupta and Chatterji (2003). 
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2.2 Lexical Semantics 

Constituents are analyzed to make an intermediate 

representation in a form known as LCS. The LCS can be 

obtained by the unification of Root Lexical Conceptual 

Structure (RLCS) of the constituents. It is an adapted 

version of the initial representation as propounded by 

Jackendoff (1983, 1990) which conforms to the following 

form:  

[T(X') X' ([T(W') W’], [T(Z’1) Z’1]…[T(Z'n) Z’n] [T(Q'1) 

Q'1]…[T(Q'm) Q'm])] 

Further, this is compositional and language independent 

in nature and provides an abstraction for representation of 

a sentence. The sentence “Rahim went fast to the market” 

is represented in the LCS as the following. 

[Event GOLoc 

 ([Thing RAHIM], 

  [Path TOLOC ([Position ATLOC [Thing 

RAHIM],[Location THE MARKET])])] 

   [manneer FAST])] 

Where GOLoc is the head of LCS, RAHIM is the LCS 

subject, TOLOC is the LCS object, FAST is the LCS 

modifier. 

The Root Lexical Conceptual Structure (RLCS) is ‘an 

un-instantiated LCS’ which is associated with the 

definition of a word in the lexicon. For instance, the 

RLCS of the verb ‘go’ is as follows. 

[Event GOLoc 

   ([Thing X], 

[Path TOLoc ([Position ATLoc ([Thing X],[Thing Z])])])] 

To get a composed (CLCS) we unify RLCSs for ‘go’ and 

‘Rahim’. 

Generalized Linking Routine (GLR) correlates the 

constituent words of the syntactic representations to those 

of the LCS by the mappings as demonstrated in the 

following. 

 V’ ⇔ V ([GOLoc] ⇔ [V went]) 

 S’ ⇔ S ([RAHIM] ⇔ [NP Rahim]) 

 O’ ⇔ O ([TOLOC] ⇔ [PP to …]) 

 M’ ⇔ M ([FAST] ⇔ [ADV fast]) 

Lastly, the lexical-semantic items are related in a 

systematic manner to their corresponding syntactic 

categories by applying Canonical Syntactic realization 

(CSR): For instance: 

 

LCS Types Syntactic Category 

Event, State V (Verb) 

Thing N (Noun) 

Property A (Adjective) 

Path, Position P (preposition) 

Location, Time, Manner, 

Intensifier And Purpose 

ADV (Adverbial) 

 

Table. 1 CSR mapping between LCS types and syntactic 

categories as adapted from Dorr (1994) 

 

 

3. The Classification of Divergences 

3.1 Syntactic Divergences 

The graphical data (see chart 1) shows the rate of syntactic 
divergence in Google and Bing MT platforms at seven 
major levels: constituent word order, adjunction, 
preposition-stranding, movement, null-subject, 
dative-subject and pleonastic divergence. The highest rate 
of syntactic divergence is registered in the constituent 
word order (23% and 19%) whereas the lowest rate is 
figured in the preposition-stranding (6% and 8%) in both 
of the said platforms. In adjunction divergence, Google 
registers 15% whereas Bing has a 1% decreased 
divergence rate. In movement, null-subject, dative-subject 
and pleonastic divergence, Google and Bing have rates of 
21% and 16%, 11% and 13%, 9% and 11%, 15% and 19% 
respectively. 

 

Chart 1: Syntactic Divergence Rates on Google and Bing 

 

The divergence pertaining to syntactic structure has been 

sub-categorized into seven broader classes: constituent 

order, adjunction, preposition-stranding, movement, 

dative-subject and pleonastic divergence. 

3.1.1. Constituent Order Divergence 

English is a configurational language with a rigid pattern 

in word order which is not true to Urdu language as it 

allows scrambling. The former follows SVO order while 

the latter has different orders like SOV, SVO and OVS. 

 (Eng) Tamam is doing hard labour. 

S  V  O 

 (Urdu) t̪əməm kəɖi mehnət̪ kər rəhɑ hɛ. 

S  O  V  

 

3.1.2. Adjunction Divergence 

The position of the ‘ʋɑlɑ’ adjectival adjunct can form the 

left modifier position while in English it is not the case as 

it leads to grammatically unacceptable constructions as 

instantiated in the following example. 

 (Eng) * (NP the (ADJP(help doing)) (NP(man))) 
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 (Urdu) (NP(ADJP kʰɪd̪mət̪ kərne ʋɑlɑ) 

(NP(ɑd̪mɪ)) 

 

3.1.3. Preposition-stranding Divergence 

In English, preposition stranding is one of the commonest 

features used by speakers. Prepositions are used at the 

penultimate position of an interrogative sentence. This 

construction is itself is controversial in terms of 

prescriptivism and descriptivism which is not the concern 

of our paper. So, Urdu or any other Indian language 

doesn’t have this feature and if it gets translated, it would 

result in wrong translation as in the following example. 

Apart from this, prepositions cannot be stranded as 

postpositions are used instead to position the noun with 

other categories in the sentence. 

 (Eng) What are you talking about? 

 (Urdu) *Kɪs çɪz ɑp ɡʊft̪ɡʊ kər rəhe hɛ̃ bɑre me 

 

3.1.4. Movement Divergence 

In English, the constituents cannot be moved around as 

freely as in Urdu with vthe same meaning being intact. As 

instantiated in the following example, when we change 

the word-order of the English input sentence, it becomes 

grammatically acceptable but semantically inappropriate 

Urdu output. 

 (Eng) Rizwi(S) took(V) the dog(O). (*The dog 

took Rizwi) 

 (Urdu) rɪzʋɪ-ne kʊt̪t̪ɑ le lɪjɑ. (kʊt̪t̪e-kɒ Rɪzʋɪ-ne 

le lɪjɑ) 

 

3.1.5. Null Subject Divergence 

In Urdu, the subject can be left implicit unlike English. In 

other words, it is grammatically unacceptable to leave the 

position of subject as null in English. To make it a 

standard construction English uses existential ‘there’ 

constructions unlike Urdu as exemplified in the 

following. 

 (Eng) There was a king. 

 (Urdu) ek rɑɟɑ t̪ʰɑ (without an implicit subject as 

an agent) 

 

3.1.6. Dative Divergence 

In English, subject NP cannot occur with overt dative case 

marker whereas Urdu allows such constructions. In the 

following, ‘I’ gets dative case or more specifically 

accusative case in Urdu which is not true to its 

counterpart. 

 (Eng) I am feeling hungry 

 (Urdu) mʊjʰ-kɒ bʰʊk ləɡɪ hɛ 

I-DAT hunger feel-PRS.PRFV 

 

3.1.7. Pleonastic Divergence 

Since in English, it is ungrammatical to leave the place of 

the subject null, therefore ‘it’ is inserted in that place. This 

construction wrongly gets translated into the TL as it does 

not have this feature. 

 (Eng) It is raining heavily 

 (Urdu) *jəh bəhʊt̪ zɒr se bɑrɪʃ hɒ rəhɪ hɛ 

3.2 Lexical-semantic Divergences 

The chart (see chart 2) demonstrates the rate of 

lexical-semantic divergence in six broad categories on 

Google and Bing. They are thematic, promotional, 

structural, inflational/conflational, categorial and lexical. 

The highest rate of divergence is registered in the 

thematic category ranging from 23-26 in both the 

platforms whereas promotional divergence has lowest 

rate which ranges between 11 and 12. Structural, 

inflational/conflational, categorial and lexical 

divergences have been registered rates of 13 and 17, 23 

and 21, 13 and 14 each in Google and Bing respectively. 

 

3.2.1.         Thematic Divergence 

This divergence arises owing to the differences in 

realization of the arguments of a verb. In the examples 

below, the English sentence has the nominative case with 

the pronominal and the accusative case with the other NP 

(sweets) whereas in Urdu, the pronominal seems to 

possess dative case and the NP (mɪʈʰɑɪjɑ̃) has nominative 

(Muzaffar et al., 2015).  

 (Eng) I-NOM like sweets. 

 (Urdu) mɪʈʰɑɪjɑ̃ mʊɟʰ-kɒ-DAT pəsənd̪ hɛ̃  

 

 

Chart 2: Lexical-semantic Divergence Rates on Google 

and Bing 

3.2.2.  Promotional Divergence 

It is the divergence where the logical modifier (adverbial 

phrase) in SL gets promoted to the status of a syntactic 

head (verbal phrase) in TL output. The adverbial modifier 
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in English (off) has been promoted to the logical head of 

the sentence (bənd̪ hɒ ɡəji hɛ) in Urdu. 

 (Eng) His shop is off. 

 (Urdu) ʊskɪ d̪ʊkɑn bənd̪ hɒ ɡəji hɛ 

 

 

 

3.2.3. Structural Divergence 

It occurs when an NP argument in source language is 

realized by a PP adjunct in the target language. The NP 

argument (the room) in English is realized by a PP adjunct 

(kəmre mẽ) in Urdu. This divergence creates a lot of 

discrepancy in Machine Translation as it owes its origin 

from the inherent linguistic structure of languages and not 

two languages are identical linguistically.  

 (Eng) I entered the room 

 (Urdu) mɛ̃ kəmre me ̃d̪ɑkʰil hʊɑ 

 

3.2.4. Inflational and Conflational Divergence 

When one word is inflated to be realized in more than one 

word in the other language it is inflational divergence. 

When two or more words are conflated to translate into 

one word in another language, it is conflational. The 

English word ‘killed’ is inflated to (ɟɑn leli) in Urdu.  

 (Eng) He killed the man. 

 (Urdu) ʊsne ɪs ɑd̪mɪ ki ɟɑn leli 

 

 
3.2.5. Categorial Divergence 

It occurs when a category is “forced to have a different 

value” than usually would be assigned to. For instance, in 

the following the adjectival ‘thirsty’ in English gets 

translated into Urdu as a nominal entity ‘thirst’. This list 

of divergence is huge in translating English structures into 

Urdu or per say any other Indian language. 

 (Eng) I am thirsty. 

 (Urdu) mʊɟʰe pjɑs ləɡi 

 

3.2.6. Lexical Divergence 

It occurs as a result of the combination of two or more 

divergence types from the above-discussed types or the 

unavailability of an exact translation for a structure 

(Shukla and Sinha, 2011). 

 (Eng)- Good luck!  

 (Urdu)- Allah Ka Fazal Ho 

4. The Identification and Resolution of 
Divergences 

4.1 Thematic Divergences 

In the thematic divergence, the GLR invoked is as the 

following which creates divergence. 

 Relate the logical syntactic subject to the LCS object 

= S’ ⇔ O 

 Relate the logical syntactic object to the LCS subject 

= O’ ⇔ S 

The syntactic structure and the CLCS are exemplified 

below: 

[CP [IP [NP I] [VP [V like] [NP sweets]]]] 

⇔ [State BEIIdent ([Thing I], 

 [Position ATIdent ([Thing I], [Thing SWEETS])], 

   [manner LIKINGLY])] 

 ⇔ [CP [IP [NP mʊɟʰ-kɒ] [VP [NP [N mɪʈʰɑɪjɑ̃]] [VP [N 

pəsənd̪] [V hɛ̃]]]]] 

 

In the instance mentioned above, the subject has reversed 

places with the object. If the subject of the SL is realized 

as the object of the TL, then it is thematic divergence. 

 

4.2 Promotional Divergence 

In this divergence, the GLR augments the following 

structure: 

 Relate the LCS verb to the syntactic object = V’ ⇔ 

O 

 Relate the LCS modifier to the position of syntactic 

verb = M’ ⇔ V 

The syntactic structure and the CLCS are exemplified 

below: 

[CP [IP [NP [N His shop]] [VP [V is] [ADV off]]]] 

  ⇔ [State BEIIdent ([Thing HIS SHOP],  
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   [Position ATIdent ([Thing HIS SHOP]), [manner 

OFF])] 

    ⇔ [CP [IP [NP ʊskɪ d̪ʊkɑn] [VP [A 

bənd̪] [VP [V hɒ] [V ɡəji] [V hɛ]]]]] 

 

Here English adverbial modifier is realized as the verbal 

head in Urdu. If the adverb of SL is changed into V of TL, 

then it is promotional divergence. If it is otherwise, then it 

is demotional divergence. 

 

4.3 Structural Divergence 

The GLR augments the following structure: 

 Relate the LCS subject to the syntactic modifier V’ 

⇔ M 

 Relate the LCS object to the syntactic head verb O’ 

⇔ V 

The syntactic structure and the respective CLCS structure 

is provided below: 

[CP [IP [NP I] [VP [V entered] [NP the room]]]] 

⇔ [Event GOLoc 

 ([Thing I],  

   [Path TOLoc (Position INLoc ([Thing I],[Thing THE 

ROOM])])])] 

  ⇔ [CP [IP [NP mɛ̃] [VP [NP [NP [N kəmre] [P me]̃]] 

[VP [N d̪ɑkʰil] [V hʊɑ]]]]] 

 

In this instance, the object (noun phrase) of the verb in 

English is realized as a prepositional phrase. 

If NP of SL is changed into the PP of TL, it is a structural 

divergence. 

 

4.4 Conflational Divergences 

The syntactic structure and the CLCS are presented 

below. 

[CP [IP [NP He] [VP [V killed] [NP the man]]]] 

⇔ [Event CAUSE 

([Thing HE 

  [Event GOPoss 

    ([Thing KILLED-TO-DEATH], 

[Path TOWARDPoss ([Position ATPoss ([Thing 

KILLED-TO-DEATH],[Thing THE MAN])])])])] 

⇔ [CP [IP [NP ʊsne] [VP [NP [NP ɪs ɑd̪mɪ] [P ki] [N ɟɑn]] [V 

leli]]]] 

Here, English counterpart applies “killed” for the two 

Urdu words “ɟɑn” “le lɪ”. 

 

4.5 Categorial Divergences 

The syntactic structure and the corresponding CLCS has 

been provided below. 

[CP [IP [NP I] [VP [V am] [AP thirsty]]]] 

⇔ [State BEIIdent  
([Thing I],[Position ATIdent ([Thing I], [property 

THIRSTY])] 
⇔ [CP [IP [NP mʊɟʰe] [VP [N pjɑs] [V ləɡi]]]] 

In the above instance, the object is adjectival in English 

while nominal in Urdu. 

If SL A/N/PP is changed to N/V/V respectively, then 

there is categorial divergence. 

5. Conclusion 

In this paper, we have dealt with the concepts of 

equivalence and divergence in terms of English to Urdu 

language pairs by classifying and analyzing the data from 

Google and Bing. From the data on both broader 

categories of divergences it can be observed that Bing 

provides syntactically more divergent patterns than 

Google. So far as the lexical-semantic divergence is 

concerned, Google is more divergent than Bing except the 

promotional and structural sub-categories. Both the 

platforms have the same amount of divergent patterns in 

terms of categorial and lexical sub-categories. The 

rationale for taking on divergence is to observe the cases 

where structures of both SL and TL are similar and where 

they are divergent. For divergence, we have adhered to the 

LCS framework as provided by Dorr for classification and 

resolution of divergences. This analytical study would 

prove to be fruitful in terms of building machine 

translation platforms more efficient as it conducts a 

detailed analysis of what kinds of linguistic patterns can 

complicate translation process. In addition, the analysis 

on divergence of English and Urdu may prove to be 

fruitful for any Indo Aryan language to develop efficient 

and qualitative Machine Translation platforms. 
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Abstract
Over the years, Automatic Text Summarization is widely studied by many researchers. Here, an attempt is made to generate an
automatic summary of a given text document based on an unsupervised hybrid model. The model comprises of an extractive method: a
Graph-based text ranking and K-means: a clustering algorithm. Ranked sentences are obtained using the graph-theoretic ranking model
here word frequency, word position, and string pattern based ranking are calculated. The K-Means algorithm generates the coherent
topic clusters. Using the output of Graph-based method and K-means clusters, Sentence Importance Score(SIS) is calculated for each
sentence, where top 70% ranked sentences and centralised topics of each cluster ( excluding those topics which fall in the outlier zone )
are used. The unsupervised hybrid approach is an attempt to inherit one of the human practice of reading and then summarizing the text
in short while keeping the original insight of that text by the virtue of important sentences and keywords. The system is tested on dataset
for Summarization and Keyword Extraction from Emails which on evaluation gives an average of 0.57 score on ROUGE 2.0 tool.

Keywords: Extractive Summarization, Graph Based Seantence Ranking, K-Means Clustring, Unsupervised method, Collocation
Score

1. Introduction
The era of 21st century; is all about how rapidly one can
grow and how efficiently one can utilize their time for
the productive work and innovative development. Rapid-
ness and efficiency of any individual depended on his/hers
grasping and learning powers. The e-Mail system has be-
come one of the important components to any individual
having an on-line conversation with the other person. The
e-Mail system is being drastically used in industries for
having formal communication. It is also being used by
the common people to have a private conversation. In in-
dustry every individual have to deal with their clients,team
lead,boss and many other things via e-Mails. With such
a pressure cooker situation Automatic Summarization Tool
will always be handy giving a gist of every mail from the
inbox.
The natural language always consists of multiple informa-
tion; among them 1: surface information: where one can
capture just by reading the text and 2: hidden information:
where one need to understand the contextual information
hidden in the given text along with the surface information.
In this paper, we are dealing with the surface information,
where the attempt is made to use the human phycology of
picking up the key sentences and keywords to generate the
summary.
Here we have chosen an e-Mail domain considering it as
one of a small subdomain but an important aspect of the
on-line text for every individual who are connected to the
e-Mail system. As e-Mail forms the major means of formal
communication across all forms of industry, a lot of text is
being generated on every individual e-Mail portal.

2. Related Work
A need of automatic text summarization was felt in 1958
by (Luhn, 1958) where the attempt was made to summarize
the technical document that describes the research at IBM

in the 1950s. The frequency of each word was counted;
this count was a measuring factor of finding the word use-
fulness in the article. Each word was initially stemmed and
later they were indexed in the decreasing frequency. The in-
dex provided the significance level of the words. At a sen-
tence level, a significance factor was derived that reflects
the number of occurrences of significant words within a
sentence and the linear distance between them due to the
intervention of non-significant words. Ranking of all sen-
tences was done on the basis of a significant factor and top
ranked sentences were selected to be the part of an auto-
summarized abstract.
Later (Baxendale, 1958) in his work concluded that posi-
tional feature plays an important role in selecting the topic-
oriented sentences. The author examined 200 paragraphs
where the findings were such that in 85% position appeared
as the topic sentence and in 7% of the paragraph the topic
sentence had appeared at last position. Thus, one of the
better ways is to select the topic sentences from these two
positions and since then, these positional features have been
used in many complex machine learning based systems.
(Edmundson, 1969) work had added two new features to
Automatic Text Summarization in addition to existing pre-
vious work features. Two new features used were: the pres-
ence of cue words (presence of words like significant, or
hardly), and the skeleton of the document (whether the sen-
tence is a title or heading). The development of a typical
structure for an extractive summarization experiment was
the primary contribution of the author.
With the emergence of Machine Learning (ML) techniques
along with Natural Language Processing (NLP) in 1990, a
series of seminal publications appeared that employed sta-
tistical techniques to produce document extracts. Most of
the system initially relied on Naive-Bayes methods which
were independent of features; others have focused on the
choice of appropriate features and on learning algorithms
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that make no independence assumptions. Hidden Markov
models (Conroy and O’leary, 2001) and log-linear models
(Osborne, 2002) where the significant approaches which
improved the extractive summarization. In contrast, use
of neural networks and third party features (like common
words in search engine queries) was made to improve
purely extractive single document summarization. Graph-
based ranking methods were introduced for sentence ex-
traction; which primarily ranks the sentences. In this ap-
proach, an effort was made to capture the silent features
of the text. Page Graph-based ranking algorithms, such as
Kleinberg’s HITS algorithm (Kleinberg, 1999) or Google
PageRank (Page et al., 1999), have been traditionally and
successfully used in citation analysis, social networks, and
the analysis of the link structure of the World Wide Web. In
short, a graph-based ranking algorithm is a way of decid-
ing on the importance of a vertex within a graph, by taking
into account global information recursively computed from
the entire graph, rather than relying only on local vertex-
specific information. On similar grounds, the Graph based
ranking called TextRank (Mihalcea and Rada, 2004), can
be applied for lexical or semantic graph extracts.
(Radev et al., 2000) in his work claimed that centroids play
central role in summarization. Later (Radev et al., 2004)
developed a centroid-based approach called MEAD sys-
tem. Recently in (Ingole et al., 2012) used the Expectation-
Maximization (EM) algorithm to find out sentence similar-
ity along with Natural Language Processing (NLP) tech-
niques at the initial stages. The findings of this paper were
that their technique was better than the previous state of art
approaches in terms of time and space consumption.

3. Proposed System
The proposed system is divided in two parts; one compris-
ing of a Graph Based Sentence Ranker and other consisting
of K-Means clustering algorithm producing topic clusters
The proposed system works on a general methodology of
how a human being would try to produce a summary of a
given text. The methodology is divided in two parts:

• Finding important sentences. (As humans remembers
the important sentences)

• Finding topics based on its information and impor-
tance levels.(As humans remembers the key words)

3.1. Graph Based Sentence Ranker
The method focuses on obtaining the sentence rank based
on the word frequency, word position, and string pattern.
The entire text is represented as a weighted undirected com-
plete graph G (V,E); where vertex represents sentence and
edges represents the similarity between each sentence. This
method is further divided into two parts as follows:

3.1.1. Sentence Weight
An affinity weight is calculated to find relativeness of each
word in the text document based on the word frequency
score. This ensures the importance of each word in the text
document. An affinity weight (AW) of each word is stated
as a ratio of the occurrence of each word (wi) in given doc-
ument D with the number of words (N(w)) in the given
document D; its mathematical formulation is given as

Figure 1: A block diagram of Extractive Email Summa-
rization using An Unsupervised Hybrid Approach of Graph
Based Sentence Ranking and K-Means Clustering Algo-
rithm

AW (wi) =
n(wi)

N(w)

Sentence weight is calculated using above affinity weights
obtained for each word(wi). Each sentence comprises of
n number of words and each word knows its own affinity
weight; summing over the n affinity weight in the sentence
Si will produce the sentence score for sentence Si . The ra-
tio of sentence scores with the number of words in sentence
Si will give the sentence weight (SW). The mathematical
formulation of sentence weight (SW) is given as

SW (Sj) =

∑
wi∈Sj

AW (wi)

n(Sj)

3.1.2. Vertex Weight
Levenshtein Similarity Weight (LSW ) is calculated to find
the similarity distance between two sentences Levenshtein
Similarity Weight (LSW ) is calculated as the ratio of dif-
ference between the maximum length of two sentences and
Levenshtein Distance(LD) with the maximum length of the
two sentences and it is formulated as

LSW (Si, Sj) =
maxLen(Si, Sj)− LD(Si, Sj)

maxLen(Si, Sj)

Given a sentence Si; its Levenshtein Similarity
Weight(LSW) is calculated with all remaining S(N − 1)
sentences from the document D. As discussed, set of
edges(E) represent the similarity weights between sen-
tences and set of vertices(V ) represent sentences. The
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vertex weight of vertex Vi is computed as an average of all
the edges associated with vertex Vi ; mathematically vertex
weight is written as .

VW (Si) =

∑
∀Si 6=Sj∈D LSW (Si, Sj)

n(S)

Sentence rank(SR) is obtained by averaging the results
of Sentence Weight (SW) and Vertex Weight (VW ) of
each sentence Si as shown in the equation below; where,
SW (Si) gives the information of sentence importance in
the given document based on affinity weight and VW (Si)
provides the information of largest common subsequence
using LSW.

SR(Si) =
SW (Si) + VW (Si)

2

In this method, the proposed system gains the knowledge
of an important sentences from a given document.

3.2. Information Level Wise Cluster Generation
The second phase of the proposed system is to find the im-
portant topics from the input text document D. The K-
Means clustering algorithm have been used in order to find
the topic clusters of the given text document D. On a suc-
cessful run of this step we obtain K clusters where each
cluster signifies its level of importance in the text document
D. Each text document consists of an information which
spreads across the document. A major part of a document
revolves around the core idea and an important informa-
tion; but there are other contextual and related information
present across the document making a core idea to be sen-
sible and meaningful. The level of information of every
topic is defined by its collocation scores. Collocation score
of words are used as an input feature-set to K-Means algo-
rithm, each cluster form contains a certain level of colloca-
tion information. For instance, if size of K = 3 in K-Means
algorithm then the obtained clusters will have three levels
of information :

• High : Cluster having highest collocation words to-
gether,

• Medium : Cluster having medium collocation words
together,

• Low : Cluster having low collocation words together.

The K-Means clustering algorithm takes a numerical data
as an input to produce output. Hence, the given text data
is converted in numerical form having three features; an
affinity score, an expected bigram collocation score and an
expected trigram score.

3.2.1. Dataset
The dataset consists of three features for a given word (wi)
in document D:
Affinity Score: This score gives the information of word
importance in given document D.
Expected Bigram Collocation Score EBCS: Collocations
are expressions of multiple words which commonly co-
occur. Similarly, bigram collections are an expression

consisting of two words which commonly co-occur. The
dataset intends to find the importance of a word (wi) in the
given document D; therefore, we compute the average bi-
gram collocation score which gives an expected score of the
word (wi) with respect to document D.

EBCS(wi) =

∑
j BigramCollocationScore(wi, wi,j)

Count(BigramCollocation(wi, wi,j))

where wi coreesponds target word, wi,j corresponds to
word co-occurring with target word and j range from 0 to
m; where m represents the number of co-occurring words
with respect to target word wi.
An expected bigram collocation can be looked upon as the
following observation; let us consider a classroom where
there are many objects having different properties and its
usage. For instance, let’s consider an object; a Ram’s wa-
ter bottle. A water bottle can contain water, juice or other
liquid; it can also be empty or full; it can be used by Ram
or by his friends and many such things can co-occur with
Ram’s water bottle. In order to find the expected impor-
tance of Ram’s, water bottle in a classroom one can average
all such co-occurring scores. Similarly, we treat classroom
as a document, Ram’s water bottle as a word (wi) and all
other co-occurring relation with Ram’s water bottle as co-
occurring words wi,j with the given word(wi); hence the
Expected Bigram Collocation Score.
Expected Trigram Collocation Score ETCS : This score
are generated on similar basis as Expected Bigram Collo-
cation Score. Only difference of this feature is that a word
wi co-occurs with a pair of words wi,k.

ETCS(wi) =

∑
k TrigramCollocationScore(wi, wi,k)

Count(TrigramCollocation(wi,k))

Where wi,k is the co-orccuring pair of words and k repre-
sents the range i.e. (0 to m) of pair of words that co-occur
with word wi

3.2.2. Averaged Elbow Method:
In K-means algorithm, the document D is treated as beg of
words containing n words. All words are considered to be
likely distributed. Random k value is chosen to initiate the
algorithm. The choice of an approximate size of K is a de-
cisive factor for the successful run of K-Means algorithm.
Elbow method is one of the known techniques used to find
the size of K. Plotting the percentage variance explained
by clusters against the number of clusters will produce an
elbow shaped graph on the x − y scale. At the start when
the K value is less the clusters add much information but
as it increases at some point the marginal gain drops, giving
an angle in the graph. This point forming an angle on the
x − y graph is called as elbow and its corresponding value
on x − axis is chosen as K value for K-Means algorithm.
In order to find the exact estimation of K value; the elbow
method is iterated over for N times and average elbow plot
is obtained which gives the correct estimation of K.
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(a) iteration :1 (b) iteration :2

(c) iteration :3 (d) iteration :4

(e) iteration :5 (f) iteration :6

(g) iteration :7 (h) iteration :8

(i) iteration :9 (j) iteration :10

Figure 2: Cluster plots from (a) − (j) shows the cluster
formation for k = 3 of a random document D. At every it-
eration from (a)− (j) the K-Means algorithm is clustering
the words groups having simillar collocation score. At 10th

iteration we can see the 3 clusters formed are based on thier
feature-set score that includes affinity weights and colloca-
tion scores. The cluster formed at 10th iteration visually
shows the 3 level of information that is being captured in 3
clusters.

3.2.3. Clustering Output
The K-Means algorithm is used to partition the n observa-
tion of the dataset into k clusters. The second part of the
proposed system is to find important topics. The dataset
created contains the word importance scores for each word
wi in the document D. On successful run; the K-Means
clustering algorithm gives k clusters. Each cluster formed
is based on the level of importance (a collocation factor)

the word wi have in document D. ”Level of importance” is
a vital feature for any human being; for instance, many in
India will remember ”Sachin Tendulkar” as a cricket player
due to his immense contribution to Indian cricket but very
few will remember ”Robin Uthappa”. Considering above
instance and also knowing the craze of cricket in India if
we ask any Indian about ”Indian Cricket” then, more often
than not the co-occurring reply will be ”Sachin Tendulkar”.
In this case, for keyword ”Indian Cricket”, there is a high
probability that a keyword ”Sachin Tendulkar” will co-
occur more frequently than the keyword ”Robin Uthappa”.
In above instance, we see that ”Sachin Tendulkar” and
”Robin Uthappa” co-occur with ”Indian Cricket” explain-
ing how ”Level of Importance” influences the choice of a
human being. On similar basis if we consider a keyword
”World Cricket” the impact of ”Sachin Tendulkar” will be
much higher than that of ”Robin Uthappa” as the gap of
co-occurrence between ’”world Cricket” - ”Sachin Ten-
dulkar”’ and ’”world Cricket” - ”Robin Uthappa”’ will in-
crease exponentially. The gap increases exponentially since
there are many legendary cricketers across the world and as
Sachin himself is one of the legends and Robin is not.
From above discussion, we can say, that ”Sachin Ten-
dulkar” forms a global keyword and ”Robin Uthappa” on
a local keyword. The dataset discussed above makes sure
that it captures all the co-occurrence features by using bi-
gram, trigram Collocation features from the given docu-
ment. Obtained K size from elbow method defines the num-
ber of clusters. Each cluster formed gives us a group of
keywords that falls in one ”Level of Importance”.For in-
stance, if K=3 then the output of K-Means will give 3 clus-
ters where each cluster will be having keywords belonging
to the same ”Level of Importance” in the given document
D. Now we know that a document D is consists of the mix-
ture of words, knowing this we also say that a document
D will also have words which may fall in global and local
keywords category. Such keywords help us to define the
”level of Importance” of the word in a given document. The
dataset designed comprises of co-occurrence scores which
will help K-Means algorithm to form the clusters based on
”Level of Importance” of a word in given document D. The
size of K defines the number of clusters and each cluster
will comprise all words belonging to same ”Level of Im-
portance”.
The purpose of K-Means algorithm to obtain the topics
clusters based on the level of word importantance was
achieved.

3.3. Outlier Removal
Graph-based Sentence Ranker outputs the ranked sen-
tences. Top 60% of ranked sentences are considered for
further processing and remaining 40% are treated as out-
liers (less important). Similarly, K-Means output gives the
topic cluster based on the word level importance. Comput-
ing the distance between the centroid and furthest point in
that cluster gives the maximum radial distance of the clus-
ter. The cluster points that falls within the 70% of the maxi-
mal radial distance (MRD) are used for further processing
and remaining are treated as outliers. In order to summarise
any document, we use most important keywords, phrases
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or sentences and hence discarding the less important data
as outliers are oblivious.

3.4. Summary Generation
Summary Generation consists of two steps as follows:

3.4.1. Text Ranking
The clustering algorithm outputs the clusters of word level
importance. These clusters are used to estimate the sen-
tence importance score (SIS). The sentence importance
score is calculated as below:

SIS(Si) = SR(Si) ∗ CW (Si)

where Cluster Weigth(CW) of sentence Si is writen as be-
low:

CW (Si) =

∑
i MRD(wi)

C

where C = number of cluster Si belongs to.
Higher the value of CW more important is the sentence.

3.4.2. Summary Generation
In Text Ranking step we obtain the final ranking score of
each sentence. In this step, a sorting is performed on the
sentences based on their score. We aim to produce an ex-
tractive summary of 1 to 8 sentences for every document.
Depending upon the size of document predefined rule has
been defined. For document having less the 25 sentences,
we decided to keep top 40% of the sentences while for doc-
ument larger than 25 sentences a threshold of top 5-8 or 5%
sentences has been kept ( whichever condotion yeild less
sentences will be chossen as output ). The sentence order
has been taken care by the sentence index which can be
used to resort the top sentences.

4. Analysis and Evaluation
For experimental testing, two categories of email are be-
ing used. The first category is a formal co-operate email
conversation consisting of single mail and second category
comprises of informal personal email conversation over a
single mail. Based on the obtained result we analysed that
informal conversation rarely happens on a specific set of
topics on other hand the formal conversation contains its
own limits resulting in focus concersation.

Document Category ROUGE-1 Score ROUGE-2 Score
Formal Emails 0.59 0.57
Informal Emails 0.49 0.35

Table 1: ROUGE score

The experimental result of the proposed system is evaluated
using ROUGE 2.0. The testing of the system is done us-
ing a ”Dataset for Summarization and Keyword Extraction
from Emails (Loza et al., 2014)”. As discussed above, two
sets of email conversation were taken. The resulted sys-
tem summary for formal conversation gives the ROUGE-2
score of up to 0.86 and on an average, the system score
for formal mail conversation set is 0.57. On the other hand,

system heavily suffered on informal mail conversation. The
highest score recorded is up to 0.53 and the average score
lowering to 0.35.

5. Conclusions and Future Scopes
K-means plays an important role in identifying the clus-
ter groups of words in document D. Each cluster shows
its own dominance in document D at its own level. The
dominance information is captured to obtain the extractive
summary from ranked sentences obtained by Graph-Based
Sentence Ranker.
Pre-processing steps like stemming, POS tagging and de-
pendency parsing were not performed on the raw data. For
future, we need to incorporate these steps and find its im-
pact on the end result.
Another module of sentiment score generator could be
added to the system resulting into subjective based sum-
marization. A paraphrase module can be used on extracted
summary to generate the abstractive summary.
The proposed system currently is working for English lan-
guage and can easily be extended to various other lan-
guages. Especially for Indian languages where most of
them lack the pre-processing tools needed for automatic
text summarization. This tool can be easily used for any
given language as a text summarizer with some needed mi-
nor changes to it.
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Abstract
Sentiment Analysis (SA) is the process of analyzing and predicting the hidden attitude/opinion in the given text expressed by an
individual. Till now, ample amount of work has been carried out for the English language. But, no work is performed for the language
Konkani in the field of Sentiment Analysis. Lexicon-based SA is a good beginning for any language, especially if the digital content
is limited. Hence, the main motive of this paper is; to present the sentiment lexicon called SentiWordNet for Konkani language.The
process of creating Konkani SentiWordNet is under progress using the Supervised Learning Approach. In this approach, the training set
is generated using a Synset Projection Approach and Support Vector Machine (SVM) algorithm to classify the data. The reason behind
using the Synset Projection Approach for building a training dataset is; English Sentiwordnet is developed using Semi-Supervised
Approach where the training dataset is generated using WordNet lexical relations but; in Konkani WordNet, lexical relations are not yet
developed. Hence, Synset Projection Approach is preferred. Conducted experimental results for the proposed algorithm are reported in
this paper.

Keywords: Sentiment Analysis, sentiment lexicon, Konkani SentiWordNet (K-SWN), Hindi SentiWordNet (H-SWN), English
SentiWordNet (E-SWN), IndoWordNet, Supervised Learning Approach, Synset Projection Approach

1. Introduction
Nowadays, as mentioned by (Pontiki et al., 2015) sen-
timents expressed by the people plays a crucial role in
decision-making such as which product to buy, which
movie to watch, which the political party to be supported
etc. These Sentiment values of a document, text, article
and the topic are computed using Sentiment Analysis algo-
rithms. Most of the work in Sentiment Analysis has been
carried out for the English language. For which, many of
the resources are already developed and made available for
the use, such as SentiWordNet 3.0 (Esuli and Sebastiani,
2006).
SentiWordNet is a lexical resource where each synset of the
WordNet has an additional field of sentiment/polarity infor-
mation associated with it. Polarity information includes po-
larity labels(positive, negative, neutral) with corresponding
scores describing how positive, negative or neutral a given
synsets is. These scores of the single synset range from 0.0
to 1.0 and its total sum should be equal to 1.
We know that web content is enriched with English data.
But, in recent times, an observation have been made that
non-English data are increasing at an exponential rate. Such
content also contributes largely in decision-making. Hence,
the need to perform text processing on such content to gen-
erate valuable information from it.
Konkani language belongs to non-English language cate-
gory. It is the official language of the state Goa and also it
is a part of Indo-Aryan Languages. It is very difficult task to
perform Sentiment Analysis on the text, document or arti-
cle present in the Konkani language due to lack of resource
availability. Therefore, to perform Sentiment Analysis for
the Konkani language, there is a need to develop resources
required for it.
So far no work has been performed in the field of a Sen-
timent Analysis for the Konkani language. Therefore, the

attempt is made to build Konkani SentiWordNet, which is a
very useful resource for the Lexicon-based Sentiment Anal-
ysis. Another reason of building Konkani SentiWordNet
is; to extend existing Konkani WordNet1 where lexical re-
lations for the Konkani WordNet can be developed using
polarity(positive and negative) information of each synset.
The present work is about generating sentiment lexicon for
Konkani language named Konkani SentiwordNet using the
Supervised Learning Approach. In this approach, we use
Support Vector Machine (SVM) as a Supervised Learning
Algorithm for the data classification and prediction. To im-
plement an SVM Algorithm, training and testing datasets
are very much essential and hence, to generate this required
training dataset we use a Synset Projection Approach and
to generate testing dataset we use human annotator.
Once training dataset is obtained from the Synset Projec-
tion approach, it is manually verified by a human annotator.
In Synset Projection Approach, IndoWordNet by (Bhat-
tacharya, 2010) and Hindi SentiWordNet by (Joshi et al.,
2010) are two main resources which play the key role in
training set generation task.
IndoWordNet is a knowledge base where most of the Indian
language WordNets are linked to each other using unique
synset identification number called as synset id of each
synset.
In this paper, our main contribution is generating a train-
ing set using Synset Projection Approach, manual verifi-
cation of training data, training an SVM model using the
obtained training dataset and passing the human annotated
testing data to it, where the SVM model makes prediction
of polarity class labels for each synset given in the testing
file. By following this procedure we are building a Konkani
SentiWordNet i.e. sentiment lexicon for Sentiment Analy-

1http://konkaniwordnet.unigoa.ac.in/
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sis. Evaluation of SVM Model prediction accuracy is being
carried out using the testing dataset. In evaluation task, pre-
dicted synset polarity labels by the SVM Model are com-
pared with a human annotated synset polarity class labels
and the model efficiency is calculated using precision, re-
call, F-score measure and accuracy.
Synset Projection Approach is used in the creation of a
Hindi SentiWordNet by (Joshi et al., 2010) where it is men-
tioned that the synset coverage of H-SWN is 10 percent
of the English SentiWordNet as the IndoWordNet linking
task is still in progress. This is the second reason; we are
using Synset Projection Approach in the creation of a train-
ing dataset for the Konkani language rather than using it as
an approach for building a Konkani SentiWordNet.

2. Related Work
As described in (Das and Bandyopadhyay, 2010), till date,
a SentiWordNet is being developed for English, Hindi, Tel-
ugu and Bengali languages. In (Das and Bandyopadhyay,
2010) paper, a game called Dr. Sentiment has been in-
troduced in order to create SentiWordNet for Hindi, Tel-
ugu and Bengali languages. At present using online game
approach, Bengali SentiWordNet contains 20,546 entries,
Hindi SentiWordNet contains 13,889 and Telugu Senti-
WordNet contains 10,204 unique entries. (Esuli and Sebas-
tiani, 2006) created an English SentiWordNet using Semi-
Supervised approach, where it contains overall ∼ 1,17,684
synsets. Here, glosses of each synset are properly analyzed
and processed in order to perform Semi-Supervised synset
classification.
One of the examples is being taken from the English Sen-
tiWordNet2, where pretty#1 is an instant (synset) of the
English SentiWordNet along with its concept and polarity
scores are as given follow:
pretty#1 pleasing by delicacy or grace; not imposing;
”pretty girl”; ”pretty song”; ”pretty room” , Positive score
(pretty#1) = 0.875, Negative score( pretty#1) = 0.125 and
Neutral score( pretty#1) = 0.0 and total sum of the scores
is (0.875+0.125+0.0) = 1.0.

Figure 1: Visualisation of synset pretty#1 in English Sen-
tiWordNet.

Hindi SentiWordNet (H-SWN) developed at IIT-Bombay
using two existing lexical resources, they are English-Hindi
WordNet linking by (Karthikeyan and Arun, 2010) and
SentiWordNet of the English language by (Esuli and Sebas-
tiani, 2006). The overall synset coverage of the H-SWN is

2http://sentiwordnet.isti.cnr.it/search.php?q=pretty

∼16000, which is just 10 percent of the English SentiWord-
Net. This approach is highly dependent on Hindi-English
WordNet linkage(IndoWordNet), where this linking task is
still under progress as mentioned in (Joshi et al., 2010).

3. Need For a Konkani SentiWordNet
• As of now, no attempt being made to work for a

Konkani language in the field of Sentiment Analysis.
On the other hand, the English language is far ahead
in this field. Therefore to begin with the new language
Lexicon- based Sentiment Analysis is most preferable.
But, so far no sentiment lexicon is created for Konkani
language and hence, there is a need to develop a Sen-
tiWordNet (lexicon) for the Konkani language.

• Such resources are also useful in the task of a code
mixed data(Barman et al., 2014) Sentiment Analysis.

4. Approach used
This paper mainly focuses on the creation of a Konkani
SentiWordNet using the Supervised Learning Approach.
As SVM is the Supervised Learning Algorithm and
Konkani being the new language, there is a need to create
the training and testing datasets from scratch. The train-
ing and testing datasets are used to train and test the SVM
algorithm.

4.1. Generating a Training Dataset
Synset Projection Approach is used to generate the training
set. This section describes the steps undertaken to generate
training dataset as follows:

• Projecting synsets from the Hindi SentiWordNet to the
Konkani synset file along with their polarity labels by
using Synset Projection Approach is shown diagram-
matically in figure 2.

– In the first step, a synset is extracted from a Hindi
SentiWordNet along with its corresponding po-
larity labels, synset id and polarity scores.

– Since, Konkani WordNet and Hindi WordNet are
linked to each other using common synset id.

– Search is made with the help of the synset id in a
Konkani WordNet to find whether entry of corre-
sponding extracted synset is present in it or not.

– If an entry of a synset is not found then, it is dis-
carded.

– If an entry of a synset is found in a Konkani
WordNet then, the same synset from a Hindi Sen-
tiWordNet, along with its sentiment polarity la-
bels are projected to the Konkani synset file.

• Discarded synsets which are absent in the Konkani
WordNet but present in Hindi WordNet are stored in
the file so that later on, it can be added to Konkani
WordNet.

• Konkani synset file contains a list of synsets which
have prior assigned three polarity labels such as pos-
itive, negative and neutral (also called as an objective
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Figure 2: flow diagram of Synset Projection Approach.

label). There are total 2920 synset entries in Konkani
synset file with four POS categories. Obtained results
are depicted in Table 1.

POS Category Number of Synsets
Adjectives 1293
Adverbs 65
Verbs 368
Nouns 1194
Total No. of Synsets 2920

Table 1: Statistics of Konkani synset file along with its POS
categories.

• In the first step, we are concern about only binary
classification i.e. a given synset has a positive or
negative label. Hence, we extract only those synsets
which have either positive or negative labels from the
Konkani synset file. The count of positive, negative,
and neutral synsets from the Konkani synset file is
given in table 2.

Polarity labels Number of Synsets
Positive 160
Negative 209
Neutral 2551
Total No. of Synsets 2920

Table 2: Count of positive, negative and neutral synset in a
Konkani synset file

• Then, the obtained positive and negative synsets are
given to the human annotator for verification and re-
sults are as follows:

– Out of 160 positive synsets, the annotator de-
tected 18 negative,1 redundant while remaining
as positive synsets.

– Out of 209 negative synsets, the annotator de-
tected 26 positive and 183 negative synsets.

– Now, 26 positive synsets are added to positive
synset set containing 141 positive synset entries
and 18 negative synsets are added to negative
synset set containing 183 negative synset entries.

– Total estimation count of positive and negative
synsets after manual verification and correction
is given in table 3

Total no. of positive synsets 141+26 = 167
Total no. of negative synsets 183+18 = 201

Table 3: Estimation count of positive and negative synsets
after manual verification and correction

• After manual verification and correction of positive
and negative synsets, 167 positive and 167 negative
synsets are kept for training an SVM model. The rea-
son behind keeping 167 negative synsets for the train-
ing rather than 201 negative synsets is; in the training
dataset, the proportion of both positive and negative
synsets must be same to get fair results.

• Therefore, the training set contains 334 synset entries
along with their polarity labels +1 or -1.

• Next, each synset from training set is replaced by its
corresponding concept and examples using Konkani
WordNet API3

4.2. Generating a Testing Dataset
Testing dataset is created manually by assigning sentiment
polarity labels to 80 synsets. Among which 23 are posi-
tive and 57 are negative.This dataset is required, to check
whether a trained SVM model gives a correct polarity label
to each synset from the testing dataset or not.
Before giving the test data to SVM model, all synsets are re-
placed by gloss and examples of the corresponding synset.
Then the textual content of testing data is converted to nu-
merical content. Further, same preprocessing steps are fol-
lowed as training dataset.

4.3. Getting training and testing data into SVM
data format

Initially, the content of the training and test dataset is
present in the textual form. The training dataset contains
334 synset entries and test dataset contain 80 synset en-
tries. The format of data(training/testing) once all synsets
are replaced by its corresponding gloss/concept and exam-
ples looks like as follows:
< polarity label -1 or 1> <concept> <examples of synset
1>
< polarity label -1 or 1> <concept> <examples of synset
2>

3http://indradhanush.unigoa.ac.in
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.

.

.
<polarity label -1 or 1> <concept> <examples of synset
n>
We are using Libsvm tool4 for the classification and pre-
diction of polarity class label for the given synset. Libsvm
tool accepts the training or the testing data as an input if
only if data is present in the particular format. This format
is obtained using following steps.

• Creating a vocabulary

– In this step, unique words from overall available
data (training and testing) are fetched and stored
in the vocabulary text file.

• Generating a document-term matrix for each sentence
which is present in the obtained training and testing
dataset.

– In this matrix, data representation is done in the
following way. Here, numerical data representa-
tion is shown for two textual sentences:
+1 1:2 0:1 4:1 9:1
-1 0:1 7:1 6:1 9:1
+1 and -1 represents class labels i.e. positive or
negative.
<Index value of a word in the vocabulary from a
sentence > : <number of times a word occurs in
the sentence i.e. frequency count of a word in the
sentence>
In this manner both testing and training data are
represented in a document-term matrix format.

• Sorting index values of each word from a sentence in
the ascending order.

– An example is given below for two sentences:
+1 0:1 1:2 4:1 9:1
-1 0:1 6:1 7:1 9:1

4.4. Training an SVM Model
Support Vector Machine (SVM) is one of the Supervised
learning algorithms. Given a dataset, it does classification
of data into two classes by drawing hyperplane between the
data points in such a manner that it always try to maximize
the margin. Here, we use positive and negative polarity
class labels.
SVM training is performed using Libsvm packages(Chang
et al., 2011). Libsvm uses Radial Basis Function (RBF)
kernel by default for the classification. It is also named
Gaussian kernel. The overall flow of the proposed approach
is shown in figure 3.

4.5. Experimental Results
We give human annotated testing data to the trained SVM
model, where it does the prediction for each synset present
in the testing dataset. Based on the SVM model predicted
class labels and human annotated class labels, SVM model

4http://www.csie.ntu.edu.tw/ cjlin/libsvm
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efficiency is calculated using following parameters such as
precision, recall, f-score and accuracy. Results of the ex-
periment are depicted in table 3.

Parameters used for the measure Scores
True Positive 22
True Negative 16
False Positive 41
False Negative 1
Precision Rate 0.349
Recall Rate 0.9565
F-Score 0.5114
Accuracy 0.475

Table 4: Experimental results to check the SVM model ac-
curacy

4.5.1. Key Observation
The SVM model evaluation is performed using two param-
eters namely ”F-score measure” and ”accuracy” where, it is
being observed that to obtain a good F-score measure along
with good accuracy, a more training data is needed to train
the SVM model.

5. Conclusion and Future Work
In this paper, we present the Konkani SentiWordNet by us-
ing a Supervised Learning Algorithm where we use Synset
Projection Approach for generating a training dataset.
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To generate testing dataset we use human annotator who
does manual annotation. The two main reasons behind us-
ing the proposed approach are:

• The H-SWN creation approach depends on the
English-Hindi WordNet Linking task, which is still in
progress. Therefore, we use this approach to get train-
ing dataset ready for the Konkani language.

• In the E-SWN creation approach, a training dataset
is created using synset lexical relations, which are
present in the English WordNet but, not yet developed
in the Konkani WordNet.

This proposed approach gives accuracy 0.475 and 0.5114
F-Score measure. Based on these outcomes we conclude
that there is a need for a more training data for the further
improvement of F-Score measure and accuracy.
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Abstract 

Creating a Fully Automated Machine Translation is a challenge. MT system developers have to take care of all minute aspects of both 
the language pairs (i.e.  the Source Language and the Target Language).  Issue of verb mapping between language pairs needs a careful 
study of verb pattern of those languages. A close look towards verb pattern indicates the importance of the conditional use of verb 
forms in a language. The conditional use of the verbs is a challenge for MT systems. As Sanskrit-Hindi Machine Translation (SHMT) 
is an ongoing task and the Sanskrit Consortium, funded by the DIT, Govt. of India, has already finished its first Phase, this study 
becomes more relevant. The proposed SHMT– Sampark System is not functional yet.  An Interface of SHMT- Anusaaraka is available 
on the website of Sanskrit Department, HCU, Hyderabad. In this study, some challenging aspects of verb mapping have been noticed as 
the dilemma in SHMT. 

Keywords: SHMT, Verb Mapping, lakra, Sanskrit, Hindi

1. Introduction:

The Sanskrit language is inflectional and the Hindi is post 

positional in nature. Therefore there is a difference in the 

verb pattern of both the languages.  

These are the following differences: 

1. Sanskrit Verbs are inflected with the suffix

markers but the Hindi verbs are periphrastic.

2. Sanskrit verb forms are classified into ten

lakras in which the six lakras (la, li, la, lu,

lu, l) denote the tense and rest four (lo,

vidhi-li, rli and l) denote the mood.

Hindi verbs are not classified like Sanskrit and

the verbs which denote the mood in Hindi, are

discussed as modal verbs which comes with the

main verbs in a sentence.

3. Sanskrit has tmanepada and parasmaipada

forms but Hindi has no such divisions.

4. The main difference between both the languages

is that the Hindi is aspectual language and

Sanskrit is not.

5. Sanskrit verbs (tianta) don’t agree with the

gender but the Hindi verbs agree with the gender.

The Sanskrit roots take the following suffixes (in 

tmanepada and parasmaipada) in the ten lakras:

Parasmaipada 

singular Dual Plural 

Third Person tip tas jhi 

Second Person sip thas tha 

First Person mip vas mas 

tmanepada

Singular Dual Plural 

Third Person ta t jha 

Second Person ths th dhva

First Person i vahi mahi

2. Sanskrit-Hindi Verb Mapping:

Sanskrit has approx 2000 roots listed in the Painian

dhtuph. But Hindi does not have such dhtuph.  The

list of Hindi roots can be created by translating the 

Sanskrit roots into Hindi.    For example- Sanskrit root k

becomes kara, pah becomes paha, bh becomes ho,

khd becomes kh.  So Hindi has roots kara, paha, ho,

kh etc. To map the Sanskrit verbs into Hindi, we can first

replace the Sanskrit roots with the Hindi forms of those 

roots and we can add the meaning of the Sanskrit suffixes 

to the Hindi roots. Sanskrit verbs have two forms- 

tmanepada and parasmaipada, but Hindi verb forms are

unchanged for both the forms of Sanskrit verbs.  

Here the general verb mapping rules are written:  

2.1 la lakra (Present tense)

Sanskrit root + ti = Hindi root +t hai/t hai/ te hain/rah

hai/ rah hai/ rahe hain/rah hain

Sanskrit root + ta = Hindi root + te hain/ t hain/ rahe

hain/ rahi hain 

Sanskrit root + anti = Hindi root + te hain/ t hain/ rahe

hain/ rahi hain 

Sanskrit root + si = Hindi root + te ho/ t ho/ rahe ho/ rah

ho 
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Sanskrit root + tha = Hindi root + te ho/ t ho/ rahe ho/ 

rah ho 

Sanskrit root + tha = Hindi root + te ho/ t ho/ rahe ho/ 

rah ho  

Sanskrit root + mi = Hindi root + t hoon/ t hoon/ rah 

hoon/ rah hoon 

Sanskrit root + va = Hindi root + te hain/ rare hain 

Sanskrit root + ma = Hindi root + te hain/ rare hain  

2.2 lo lakra (Imperetive) 

Sanskrit root +  tu = Hindi root + e/en 

Sanskrit root + tm = Hindi root + en 

Sanskrit root + antu = Hindi root + en 

Sanskrit root + hi ( : ) = Hindi root + o 

Sanskrit root + tam = Hindi root + o 

Sanskrit root + ta = Hindi root + o 

Sanskrit root + ni = Hindi root + n 

Sanskrit root + va = Hindi root +en 

Sanskrit root + ma = Hindi root + en 

2.3 la lakra (Imperfect tense) 

Sanskrit root + ta = Hindi root +//e 

Sanskrit root + t = Hindi root +//e 

Sanskrit root + an = Hindi root +//e 

Sanskrit root + s () = Hindi root +//e  

Sanskrit root + tam = Hindi root +//e 

Sanskrit root + ta = Hindi root +//e 

Sanskrit root + am = Hindi root +//e 

Sanskrit root + va = Hindi root +//e 

Sanskrit root +ma = Hindi root +//e 

2.4 vidhili lakra (Potential) 

Sanskrit root + it = Hindi root + n + chhiye (or Hindi 

root+e) 

Sanskrit root + it = Hindi root + n + chhiye (or 

Hindi root+e) 

Sanskrit root + iyu = Hindi root + n + chhiye (or Hindi 

root+e) 

Sanskrit root + i = Hindi root + n + chhiye (or Hindi 

root+o) 

Sanskrit root + ita = Hindi root + n + chhiye (or Hindi 

root+o) 

Sanskrit root + ita = Hindi root + n + chhiye (or Hindi 

root+o) 

Sanskrit root + iya = Hindi root + n + chhiye (or 

Hindi root+n) 

Sanskrit root + iva = Hindi root + n + chhiye (or Hindi 

root+en) 

Sanskrit root + ima = Hindi root + n + chhiye (or Hindi 

root+en) 

2.5 li lakra (Perfect tense) 

Sanskrit root + a = Hindi root +  + th 

Sanskrit root + atu = Hindi root + e + the 

Sanskrit root + u = Hindi root + e + the 

Sanskrit root + (i)tha = Hindi root + e + the 

Sanskrit root + athu = Hindi root + e the 

Sanskrit root + a = Hindi root + e +the 

Sanskrit root + a = Hindi root +  th 

Sanskrit root + (i)va = Hindi root + e +the 

Sanskrit root + (i)ma = Hindi root + e + the 

2.6 lu lakra (Future tense) 

Sanskrit root + t = Hindi root + eg /eg/enge 

Sanskrit root + trau = Hindi root + enge/ eng  

Sanskrit root + tra = Hindi root + enge/eng 

Sanskrit root + tsi = Hindi root + oge/og 

Sanskrit root + tstha = Hindi root + oge/og 

Sanskrit root + tstha = Hindi root + oge/og 

Sanskrit root + tsmi = Hindi root + ng/ng 

Sanskrit root + tsva = Hindi root + enge  

Sanskrit root + tsma = Hindi root + enge 

2.7 l lakra (future tense) 

Sanskrit root + yati = Hindi root + eg /eg/enge 

Sanskrit root + yata = Hindi root + enge/ eng  

Sanskrit root + yanti = Hindi root + enge/eng 

Sanskrit root + yasi = Hindi root + oge/og 

Sanskrit root + yatha = Hindi root + oge/og 

Sanskrit root + yatha = Hindi root + oge/og 

Sanskrit root + ymi = Hindi root + ng/ng 

Sanskrit root + yva = Hindi root + enge 

Sanskrit root + yma = Hindi root + enge 

2.8  irli lakra (Benedictive) 

Sanskrit root + yt = Hindi root + e 

Sanskrit root + yst = Hindi root + en 

Sanskrit root + ysu = Hindi root +en 

Sanskrit root + y = Hindi root + o 

Sanskrit root + ysta = Hindi root + o 

Sanskrit root + ysta = Hindi root + o 

Sanskrit root + ysa = Hindi root + n 

Sanskrit root + ysva = Hindi root + en 

Sanskrit root + ysma = Hindi root + en 

2.9 lu lakra (Aorist) 

Sanskrit root + t = Hindi root + //e 

Sanskrit root + t = Hindi root + //e 

Sanskrit root + an = Hindi root + e/n 

Sanskrit root + a = Hindi root + e/ 
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Sanskrit root + ta = Hindi root + e/ 

Sanskrit root + ta = Hindi root + e/ 

Sanskrit root + am = Hindi root + / 

Sanskrit root + va = Hindi root + e/n 

Sanskrit root + ma = Hindi root + e/n 

2.10  l lakra (Conditional) 

Sanskrit root + yat = Hindi root + t/te/t/eg/eg/enge 

Sanskrit root + yatm = Hindi root + te/tn/ 

eg/eng/enge 

Sanskrit root + yan = Hindi root + te/tn/ eng/enge 

Sanskrit root + ya = Hindi root + te/t/oge/og 

Sanskrit root + yata= Hindi root + te/t/oge/og 

Sanskrit root + yata = Hindi root + te/t/oge/og 

Sanskrit root + ya = Hindi root + t/t/ng/ng 

Sanskrit root + yva = Hindi root + te/enge 

Sanskrit root + yma = Hindi root + te/enge  

But when we look at the conditional use of the lakras, 

we see that the lakras are being used to denote the 

meaning of other tense as well. 

  

3. Conditional usage of lakras: 

In this context, the specific words (it may be nipta or 

certain words used to denote the similar meaning of the 

verbs expressed in the Paninian stra) used in a sentence 

decide the meaning of the verb. Sometime the original 

tense (of the verb) is changed.     

3.1 Use of la lakra (Present tense) : The la lakra is 

used to denote present tense. But the following sentences 

show the variation in the meaning denoted by the la 

lakra:     

 

a. sa pahati = vaha pahat hai. 

b. kad gato’si = kaba e?or kaba e ho? 

c. ayam gacchmi = abh  y. 

d. updhyyaced gacchati, vyakaraa 

adhmahe  

e. vasan dadara = rahate hue dekh.  

f. yo anna dadti sa svarga yti = jo anna deg 

vaha svarga jeg. 

g. kaced bhukte tva gcraya = ka abh 

kheg, tuma gya caro. 

h. updhyyaced gacchati, atha tva 

vykaraa adhva.  

i. Or muhrtd upari updhyyaced gacchati, 

atha tva paha = kucha kaa me updhyya 

ege, aba tuma paho. 

j. yajati sma yudhihira = yudhihira yaja 

karate the. 

k. akr kim?= ky tumane krya kara liy? 

l. nanu karomi= hn, kara liy. 

m. pahanti iha pur= pahale yahn paheg.  

n. vasantha pur chtr = pahale yahn chtra 

raheg.  

o. kranti sma pramlyai yashsi = 

pramlya se yasha khardate the. 

p. pham aphstvam? nanu pahmi bho= 

tumane pha pah?, hn, paha liy. 

q. aha nu pahmi = hn, maine pah.  

r. yvat bhukte = jaba taka kheg. 

s. yvat dsyati tvad bhukte = jabataka deg 

tabataka kheg. 

t. kad bhukte = kaba khenge? 

u. ka bhavn bhojayati = pa kise khilenge? 

 

This is happening because of the conditional use of la 

lakra and the context of the sentence such as vartamna 

smpya etc.  Here we can see that the example (a) is a 

simple present tense sentence. Example (b) is a question 

and (c) is a reply to that question. In example (b), asi can 

drop its literal meaning. In example (c), gacchmi is in 

la form but it is used in the sense of past tense. In (d), 

varati (la) is used in the sense of future tense.  The verb 

forms {dadti, bhukte, gacchati (la)} in the examples 

(f) to (h) are used to express future tense.   In (i), yajati is 

being translated as past form in Hindi because of ‘sma’ 

nipta. Example (j) is a question and (k) is the answer 

where both the words have given up their actual meaning. 

Thus na karomi is being translated as hn, kara liy. 

When pur (nipta) is used, the la form is denoting the 

past tense in the examples (l) to (m). In the examples (o) - 

(p), nanu and nu (nipta) are used and therefore la form 

is denoting past tense. When yvat is used as nipta, la 

lakra denotes future tense. In this way, we notice that the 

Sanskrit verb forms may denote other tense in a given 

condition (i.e. depending on the use of nipta with the 

verb).  So the words (niptas) sma, nanu, nu, na, yvat, 

pur, kad, karhi, kam, kataram, katamam, yo-so, cet, 

muhrta yvat etc are changing the meaning of the la 

lakra.  While translating these forms, we cannot ignore 
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the tense denoted by the la-lakra in the given context. 

Similarly we can look into other lakras discussed in the 

lakrrtha section of siddhnta kaumudi and find if those 

lakras are also giving the different meaning depending 

on the conditional usage.  

3.2 li lakra (perfect tense) 

The li lakra is used for perfect tense. With the words ha 

and avad are used in the sentence, the lit lakra takes 

place. But the meaning of perfect is not changed. For 

Example- 

a. iti ha cakra- usane ais nicaya h kiy;  

b. iti ha akarot – usane ais nicaya h kiy  

c. ‘avad akarot’- usane sad ais kiy  

d.  avat cakra’ – usane sad ais kiy.   

3.3 lu lakra (Future tense) 

With kad and anadyatana bhaviya, the lu lakra takes 

place with the root. But the sense of future is intact there 

as well. For Example-  

a. kad bhokt.  

b. vo bhokt.  

3.4 l  lakra (Future tense) 

The stra klavibhge-cnahortr (P-3.3.137) says 

that the ahortra (reference of day and night) will take l 

(for adyatana bhaviya) instead of lu (for adyatana 

bhaviya). Ex- yo’ya vatsara gm tasya yad 

avara-grahyay tatra yukt adhyeymahe- ye jo 

gmi vara hai, usake pahale jo agahana msa k 

prim hai, usame pratay tallna hokara pryaa 

karenge. (adhyeymahe instead of adhyetsmahe). Here 

also the tense is unchanged.  

The sutra anavakptyamarayor-akivtte’pi (P-3.3.145) 

– says that the suffixes li and l occurs in asambhvan 

(incredibility) and amara (intolerance).   

For example-  

a. na sambhvaymi  bhavn hari nindet- main 

nahi samajhat ki pa hari k nind kiy karate 

the/ karate hain / karenge.  

b. na sambhvaymi  bhavn hari nindiyati- 

main nahi samajhat ki pa hari k nind kiy 

karate the/ karate hain / karenge.  

c. na maraye bhavn hari nindiyati- main nahi 

saha sakat ki pa hari k nind kiy karate the/ 

karate hain / karenge.  

d. na maraye bhavn hari nindet-  main nahi 

saha sakat ki pa hari k nind kiy karate the/ 

karate hain / karenge.  

The stra ki-kilstyartheu la (P-3.3.146) says that 

the l is used with the word kikila and asti in the sense 

of asambhvan (incredibility) and amara (intolerance). 

Here asti denotes asti, bhavati and vidyate. This sutra 

blocks the use of li which was assigned by the previous 

stra xample-  

a. na addadhe kikila tva sudrnna 

bhokyase – main visvsa nahi karat kit um 

sudra k anna khte ho.  

b. na maraye kikila tva sudrnna bhokyase 

– main sahana nahi karat kit um sudra k anna 

khte ho.  

c. tvam sdr gamiyasi iti asti/bhavati/vidyate – 

tuma sdr k gamana karate ho, ais hai ky? 

The sutra vibh skke (P-3.2.114) says that in the 

anadyatana bhtakla (Past perfect), if the smti-bodhaka 

pada is used in the sentence with kkya-bhva, 

optionally it takes l. For example- smarasi ka! vane 

vatsymastatra gcrayma. -yda hai ka, vana me 

rahate the aura gya charte the. (vatsyma= rahate the; 

crayiyma = carte the). 

These stra clearly indicates that the l lakra forms - 

nindiyati, bhokyase etc are being translated into the 

forms of present tense in Hindi. 

3.5 lo lakra (Imperative) 

The nipta -sma is also used with lo by the stra - sme lo 

(P-3.2.165) when the word muhurta is there.  Ex- 

muhrtasya pacd  iya pha pahatu sma- muhrta 

bhara ke bda iya pha pahe. In this example, 

pahatu sma is being translated as pahe. The word sma is 

also being used with the la (present) and there the 

meaning of present tense verb is getting changed into the 

past tense. Here machine can get confused between these 

two sma where the first is changing the tense and the 

second is not giving any meaning.     

3.6 la lakra (Imperfect) 

In the lakrrtha section, la has been discussed in the 

context of ha, avad, prane, pur. But nowhere la has 

shown the meaning of other tense. For example-  

a. iti ha cakra- usane ais nicaya h kiy th. 

b. iti ha akarot – usane ais nicaya h kiy th.  

c. avad akarot- usane sad ais kiy th. 

d. avat cakra – usane sad ais kiy th. 

e. agacchat ki (la)- gay ky. 

f. jagma ki? (li)- gay th ky.  
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g. iha pur chtr avasan (la) - yahn pahale 

chtra rahate the. 

 

3.7 li lakra - vidhili and rli (Potential and 

benedictive) 

It is used with the indeclinable – cet, yadi, katha, 

muhrta, api, ut, with yacca and yatra when the sense of 

asambhvan is denoted, and in the sense of kimvtta, 

desire (in the absence of kacid), in the sense of 

smarthya (capability) (without using the word ala in 

the sentence).  

According to the stra li-cordhva-mauhrtike (P-3.3.9), 

li is used with the word denoting the sense of the time 

period of more than muhrta. In the example –  

a. muhrtasya pacd updhyyacet gacchet, 

atha tva adhva-  tho dera me updhyya 

enge, aba tuma paho. 

Here the verb gacchet is translated as enge.  

The stra as-vacane-li (P-3.3.134) says that if the 

word denoting the sense of as is in the sentence, the 

li lakra is used to denote the future tense. For example-  

b. updhyyacet gacchet ase yukto’adhyya 

– yadi updhyya enge to  hai ki hka se 

pahenge.  

Here also the verb gacchet is translated as enge. 

According to the stra kivtte lilitau (P-3.3.144)- 

when the sense of ‘nind’ is denoted by ka, katara and 

katama, the li lakra as well as l lakra is used with 

the root. For example-  

c. ko hari nindet (nindiyati v)- hari k nind 

kaun karat hai?   

The stra jtu-yadorli (P-3.3.147) says that when the 

sense of asambhvan and akam is denoted and the 

words jtu and yad are used in the upapada, the root takes 

li lakra. For example-  

d. na sambhavmi yat nma bhavn veda nindet- 

main socha bh nahn sakat ki pa veda k 

nind karate hain.  

Therefore we see that the li lakra is giving the meaning 

of present and future in Hindi. 

3.8 lu lakra (Aorist) 

According to m lu, lu lakra is used with m (in 

upapada). For example- m bhavn akr- pane nahn 

kiy / pa nahn karenge.  Here lu has been used to 

indicate future as well. 

 

3.9 l lakra (Conditional) 

 li nimitte l-kriytipattau says that the l is used in 

place of li when the action is fruitless. ramaced 

akariyat uttrno abhaviyat (rama karoge to uttra ho 

joge). The stra bhte ca says that the l can be used to 

denote past tense as well. The Same example can be 

translated as ‘rama karate to uttra ho jte’. So we see 

that the l can be translated into past as well as future 

tense. 

4. Conclusion: 

The general rules for mapping the Sanskrit-Hindi verb 

forms can be conflicted because of so many exceptional 

usages of lakras in different conditions. For example- 

when some words (sma, nanu, nu, na, yvat, pur, kad, 

karhi, kam, kataram, katamam, yo-so, cet, muhrta yvat 

etc) are used with la lakra, The translation shows the 

past and future tense as well. This is a dilemma in verb 

mapping. Therefore all the conditions of all the 

lakrrtha usage need to be examined linguistically so 

that mapping rules can be formulated. The study of lakra 

usage can improve the output of rule based SHMT.  
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Abstract

Sanskrit is morphologically very rich language. Major work on grammatical tradition for Sanskrit is done by Pini in his
Adhyyī (AD) which particularly contains about 3,959 rules of Sanskrit morphology, syntax and semantics. Sanskrit
word formation process is taught in all major Indian Universities offering Sanskrit courses at Undergraduate (UG) and
post graduate (PG) level. This paper introduces a web based word formation process tools for students and teachers of
Sanskrit with the aim of teaching and learning Sanskrit morphological inflectional process based on Pini rules and
prakriy granthas of AD. The system is developed by combining rule and example based approaches used by Pini.
There are three components entitled Recognizer, Analyzer and Word Formation Process (WFP) Generator in the system
that generate word formation process for  subanta (nominal), primary verb (tianta) and secondary verb (sandyanta).
Currently this system covers  subanta and  tianta only and it is being used by the Sanskrit students and teachers for
learning and teaching Sanskrit Grammar.

Keywords: Language Resources, Sanskrit morphology, E-Learning tools for Sanskrit, Sanskrit rupa siddhi, Morphology,
Morphological Analyzer, Sanskrit Morphological System, Morphological Analysis Methods, Morphological Recognizer
and Analyser for Sanskrit.

1. Background
There  are  two  types  of  Sanskrit  morphology  Nominal
(subanta) (Chandra, 2006 and Chandra, 2012) and Verbal
(tinanta) (Chandra, 2006; Chandra, 2012; Jha et al, 2009;
Jha et al, 2006 and Agrawal, 2007). Nominal may primary
(kidanta) (Singh, 2008; Shailaja, 2014 and  Murali et al,
2014), secondary (taddhita), compound (samsnta) [11]
and feminine (strpartayaynta) (Bhadra, 2007) it derives
with the addition of  21 morphological  suffixes  in  eight
vibhaktis and  three  numbers  according  to  the  end
character of the base words called  prtipadika (Chandra,
2006; Chandra, 2012; Jha et al, 2009 and Jha et al, 2006).
Therefore  a  single  word  generates  24  forms.  Sanskrit
verbal  system is very complex with verbs inflecting for
different  combinations  of  tense,  aspect,  mood,  number,
and  person.  There  are  approximately  2000  verb  roots
listed in Pini’s dhtupha (DP). There are two broad
ways  of  classifying  Sanskrit  verbal  roots.  First
parasmaipad, tmanepad and  ubhayapad (that derived
in  parasmaipad and  tmanepad both) and second verb
roots are divided into 10 classes (gaas) according to the
structure  of  the  verb  forms.  Exponents  used  in  verb
conjugation  include  prefixes,  suffixes,  infixes,  and
reduplication.  Sanskrit  verbs  are  two  types.  The  forms
which  derived  with  the  addition  of  18  suffixes  (9  for
tmanepad and  9  for  parasmaipad)  in  three  persons,
three numbers and with the addition of multiple prefixes
that  are  called  primary  verb.  There  are  12  secondary
suffixes  that  add  with  specific  verb  roots  and  nominal
bases and create new verb roots and again derive with 18
verbal suffixes. These verbs called secondary verb 

forms.  Each  Sanskrit  verbs  are  derived  into  10  lakrs
(Chandra, 2006; Chandra, 2012; Jha et al, 2009; Jha et al,
2006 and Bhadra et  al,  2009).  Therefore,  a  single verb
root  may  generate  a  lots  of  forms  and  creates  very
complication  to  detection,  analysis  and  word  formation
process.

2. Materials and Methods
Detection and analysis of the Sanskrit morphology is very
essential and challenging task. Rule of Sanskrit grammar
by Pini (Sharma, 2003), Hindi meaning, explanation by
siddhntakaumud (Shastri,  1994)  and  DP  are  used  as
material for this work. Combining rules base and example
based  (hybrid)  methods  are  used  for  detection  and
analysis  of  Sanskrit  morphology.  Computational
Linguistic  (Jurafsky  &  Martin,  2008)  and  Software
engineering  methods  are  also  used  for  computational
analysis. Sample of the rules for recognition is shown in
table  1.  System  generates  complete  word  formation
process  with  the  help  of  Pini’s  rules  based  on  the
detection  and  analysis.  Computational  rules  have  been
developed for detection and analysis and a database is also
created  for  rules,  Hindi  meaning  and  explanation  of
Panini’s AD rules  for  the word formation process.  This
system  accepts  Devanagari  Unicode  texts  through  web
based user interface and generates results in same format
in Hindi language only. Methodology can be understood
with the flowchart shown in Figure: 1.

3. Component of the System
There are three components of the system for recognition,
analysis and Word formation process generation.
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3.1 Recognizer
This component recognize the input words with the help
of Recognition rule and example database. Sample of the
database is shown in the Table 1. 

Sr EndStr
Ln EndChr Example

1 7 ााभभ्यामभ् रामाभभ्यामभ्
2 6 भभ्यामभ् हररभभ्यामभ्
3 6 सभ्मातभ् सरभ्वसभ्मातभ्
4 6 सभ्रमनभ् सरभ्वसभ्रमनभ्
5 5 ाेभभ्यय रामेभभ्यय
6 5 ााणामभ् रामानामभ्
7 5 ाानामभ् रामानामभ्
8 5 ाेषामभ् सरभ्वेषामभ्
9 4 सभ्मम सरभ्वसभ्मम
10 3 ाानभ् रामानभ्
11 3 ाातभ् रामातभ्
12 3 ाादभ् रामातभ्
13 3 सभ्य रामसभ्य
14 3 ययय रामययय
15 3 ाेषष रामेषष
16 3 ाेसष रामेषष
17 3 ाीनभ् हरीनभ्
18 3 ाीनभ् हरीनभ्
19 2 ााय रामाय
20 2 मभ् राममभ्
21 1 ाौ रामौ

Table 0: Sample of rules for recognition

3.2 Analyzer
After Recognition this component analyzes the input 

Figure 1: Methodology

words  with  the  help  of  Analysis  rule  and  example
database. Sample of the database is shown in the Table 2.

3.3 Word Formation Process Generator
This  component  is  the  main  component  of  this  system
which generates the word formation process. WFP is done
with the help of WFP database and Example database.

4. Result and Discussions
System  accepts  Devanagari  Sanskrit  text  in  Unicode
format  as  input  and  does  detection  and  morphological
analysis  of  input  text.  Based on detection and analysis,
system generates complete WFP in tabular format with all
essential  information  (as  shown in  Figure  2).  All  rules
shown for WFP are linked with over mouse function for
meaning of the rule and hyperlinked for the explanation of
the rule.  User can see the meaning of the rules used in
WFP  through  keeping  mouse  over  on  any  rule.
Explanation may be seen after clicking on the particular
rules. A snapshot is shown in Figure 2. Few limitations of
the system are also seen in detection, analysis and word
formation  process.  The  recognizer  is  depend  on  the
dataset  and  rules  for  recognition,  second  component
analyzer  is  depend on the first  component  and analysis
rules  and  third  component  is  depend  on  second
component. 

Sr adds
tr

CaseNu
m End Ge

n
suf
x

1 3.2/4.2/5.2 अ M भभ्यामभ्
2 3.2/4.2/5.2 इ M भभ्यामभ्

3 5.1 सरभ्वा
रद M ङसभ्

4 7.1 सरभ्वा
रद M रङ

5 4.3/5.3 अ M भभ्यसभ्
6 6.3 अ M आमभ्
7 6.3 अ M आमभ्

8 6.3 सरभ्वा
रद M आमभ्

9 4.1 सरभ्वा
रद M ङे

10 2.3 अ M शसभ्
11 5.1 अ M ङसभ्
12 5.1 अ M ङसभ्
13 6.1 अ M ङरस
14 6.2/7.2 अ M ओसभ्
15 7.3 अ M सषपभ्
16 7.3 अ M सषपभ्
17 रा 2.3 इ M शसभ्
18 रा 2.3 इ M शसभ्
19 1.3 अ M जसभ्
20 2.1 अ M अमभ्

21 1.2/2.2 अ M औ/औ
टभ्

Table 0: Sample of rules for Analysis

It mean if first  component fail or does wrong detection
then  analyzer  may  also  do  the  wrong  analysis  and  if
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analyzer  does  wrong  analysis  then  WFP generator  also
generates  wrong  WFP.  The  system  is  being  used  by
students and improvement is being done as per feedback
from the users.

5. Conclusions
The system detects, analyze and generates WFP based on
Pinian  formulation.  The  system  is  very  useful  for
students and teachers for learning and teaching. Various
language resources  such  as  database  for  AD rules  with
Hindi  meaning  and  Explanation  and  other  relevant
information,  Computation  rules  for  identification  and
analysis, database for Pini’s DP, various small dataset
for Sanskrit grammar are also developed. This system is
the  part  of  E-learning  system  (under  development)  for
Sanskrit. In future our aim to develop multilingual system
for Sanskrit morphology Word Formation Generation. 
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Figure 0: Screen Shot Web based System for Sanskrit Grammar with Result details
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Abstract 

In this paper, the author is discussing on part of speech tagging of Sanskrit and the development of a tagger using Support 

Vector Machine. The Data for the training of machine has been taken from literature and general domain. Data has been 

taken from ‘Panchatantra’ and ‘Sudharama’ Sanskrit newspaper and various blogs. In this process of data tagging the BIS 

tagset for Sanskrit, has been used. The system has adopted the statistical learning approach. In which the system will learn 

from annotated corpus and apply it on unseen text. The tagger has achieved 82% and 80.89% accuracy till now. The paper is 

divided in three parts. In the first part, the part of speech tagging and its importance and development of corpus and tagging 

methods have been explored. In the second part the development of tagger, its training, evaluation and result are discussed. 

In the third part the issues and challenge has been analysed. 

Keywords : POS tagging, Support Vector Machine, Sanskrit 

1. Introduction

Part of speech tagging is assigning tags to the 

words in a corpus according to their linguistics 

categories. POS tagging is a pre-requisite in 

Machine Translation tools, Word Sense 

Disambiguation tools, Speech synthesis and Speech 

generation tools, Information retrieval (IR) tools 

and Spell checkers etc.  

POS tagging is a morpho-syntactic and a lexical 

problem. Words having similar forms but 

belonging to different categories bring in ambiguity 

at various levels. Sanskrit being a morphologically 

rich language packs a lot of information in a single 

word (pada). There is no clear-cut demarcation 

between morphology, syntax and semantics in 

Sanskrit. As a result, there is no clear distinction 

between the word-class categories. Problem of 

identification of nouns, adjectives and adverbs is a 

challenge to even scholars, making ways to 

multiple interpretations.  

 Sanskrit has formality of grammar and less 

diversions, which make it really suitable for 

Natural Language Processing. Being based on a 

well defined grammar, most of the time in the 

processing, rule based techniques is used. It is 

listed as one of the 22 scheduled languages of 

India. The vast knowledge enshrined in Sanskrit 

text makes it very relevant for present world. As 

many Indian languages have their base from 

Sanskrit, So it becomes very important for 

developing NLP tools. For that annotated corpora 

becomes the pre-necessity. Sanskrit has 

orthographic, prosodical, and inflectional 

complexities, which makes it hard to annotate.  

In present work, a POS tagger of Sanskrit has been 

developed using Statistical methods. The algorithm 

used for the preparation of the tagger is Support 

Vector machine. The system has trained using 

around 34k and 76681 tokens from literature 

domain. Then tagger has been tested over a corpus 

of 33k tokens. Maximum accuracy achieved by the 

tagger is 82%. 

2. Previous work

Part of speech tagging in Sanskrit has not a much 

explored field. 

 The first pos tagger developed by R. 

Chandrashekhar, (2007).1 JNUPOS tagger is a rule-

based tagger which follows Paninian grammar 

rules.  

A tagger has been developed as a result of 

Consortium of Sanskrit linguistics. Consortium 

tagger2 is also a rule-based tagger which is based 

on Shastric guidelines. The POS tags are in 

Sanskrit terms used in Shastras, and they are based 

on the ‘category’ of the word.  

Sanskrit Tagger is a stochastic tagger for 

unpreprocessed Sanskrit text developed. The tagger 

tokenises text with a Markov model and performs 

part-of-speech tagging with a Hidden Markov 

model. Parameters for these processes are 

estimated from a manually annotated corpus of 

about 1.500.000 words. The Tagger is used for 

digitization of Sanskrit Texts. For testing the 

accuracy and performance of the tagger, five 

passages namely Lingapurana, Visnusmriti, 

Mulamadhyamakarika, Gitagovinda, Kamasutra 

were examined 

One another Sanskrit Tree-tagger has been 

developed by dept. Computer Science, RSVP, 

Tirupati.3 

1 http://sanskrit.jnu.ac.in/post/post.jsp 
2 http://sanskrit.jnu.ac.in/cpost/post.jsp 
3 Oliver Hellwig “Sanskrit Tagger,a Stochastic and 

Lexical POS Tagger for Sanskrit”. 
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The paper by R Muni Prasanthi .et.al have 

proposed and implemented Tree Tagger for 

Sanskrit Language. ie, annotation of text with part-

of-speech tagging is done using a tool called Tree 

Tagger. POS Tagging is implemented using the 

training and testing phase. Suitable tags are 

assigned for annotated texts in Sanskrit. 

Namrata Tapaswi and Suresh Jain have presented a 

rule-based POS Tagger for Sanskrit Language. 

Rules are stored in database. Sanskrit sentences are 
parsed. So, they have assigned appropriate tag to 

each word using suffix stripping algorithm, 

wherein the longest suffix is searched from suffix 

table and tags are assigned. The results are tested 

for 15 tags and 100 tokens. 90% accuracy using 

Rule-based approach for POST for Sanskrit is 

achieved. 

3. Methodology

This section deals to following points: corpus 

collection, bureau of Indian (BIS) standards tagset, 

size of the corpus for training, testing and 

evaluation. 

3.1. Corpus collection 

In the initial phrase corpus creation was done. First 

34239 token has been taken from literature domain 

for training. 42442 token has been collected from 

different domains from various blogs Then 28747 

Unseen data was taken from Sudharma Newspaper 

and other Sanskrit blogs. 

3.2. Annotation scheme 

For the tagging BIS4 tagset has been used. This is a 

national standard tagset for Indian languages. This 

tagset has been designed by the POS standards 

committee at IIIT, Hyderabad and was finalized on 

June 12, 2010. BIS tagset has 11 categories at the 

top level. The categories at the top level have 

further subtype level 1 and subtype level 2. This is 

a hierarchical tagset and allows annotation of major 

categories along with their types and subtypes. The 

hierarchy of tags is directly related to the 

granularity of linguistic information. In this tagset a 

standard has been followed, which can takes care 

of the linguistic richness of Indian languages. The 

tagset is framed keeping in view both the fineness 

and coarseness and flat hierarchical structures in 

view.  

4 http://www.tdil-

dc.in/tdildcMain/articles/134692Draft%20POS%20Tag%

20standard.pdf 

3.3 SVM5 

Support Vector Machines is machine learning 

approach, basically used for classification and 

regression. SVMs are well known for their good 

generalization performance and also used for 

pattern recognition. It creates a Maximum Marginal 

Hyper-plane, which is created  in input space that 

correctly separate the example data into two 

classes. Hence SVM is a binary classifier. This 

hyper-plane can be used to make the prediction of 

class for unseen data. 

The SVM Tool software package consists of three 

main components, namely the learner 

(SVMTlearn), the tagger (SVMTagger) and the 

evaluator (SVMTeval). Previous to the tagging, 

SVM models (weight vectors and biases) are 

learned from a training corpus using the 

SVMTlearn component. Then, at tagging time, 
using the SVMTagger component, one may choose 

the tagging strategy that is most suitable for the 

purpose of the tagging. Finally, given a correctly 

annotated corpus, and the corresponding SVMTool 

predicted annotation, the SVMTeval component 

displays tagging results 

3.4. Annotation of data 

 The annotation has been done manually by the 

researcher. The format of the tagged data is given 

below : 

लोक N_NN

सभाया N_NN

अवध िः N_NN

पूर्णकल्पिः JJ

। RD_PUNC

3.5. Training 

The tagger has been trained with SVM ( Joachims, 

1999; Giménez & Màrquez, 2006) So far as the 

former is concerned, learning phase contains 

medium verbose (-V 2) and the mode of learning 

and tagging is set to left-right-left (LRL). The rest 

of the features like sliding window, feature set, 

feature filtering, model compression, C parameter 

tuning, Dictionary repairing and so on are set to the 

default mode. Initially 34239 token has been tagged 

manually. Training data was from literature 

domain. In the second phase the data has been 

increased.  76681 token has been used for the 

5 http://www.cs.upc.edu/~nlp/SVMTool/ 
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training of the tool. This data was from various 

sources and domains. 

3.6. Evaluation 

First Phase - 

Test data has been taken from different domains. 

The data was taken from Sudharma e-newspaper. 

There is 28747 token. The gold data file has 5000 

tokens. The accuracy was 82%. 

Training Data 34239 

Testing Data 28747 

Gold Data 5000 

Table.1 Training, Evaluation and gold Data 

Second Phase – 

In the second phase of the evaluation, 33867 token 

has been used. The gold data is 8133 tokens. The 

accuracy achieved in this phase is 80.89%. 

Training Data 76681 

Testing Data 33867 

Gold Data 8133 

Table.2 Training, Evaluation and Gold Data 

4. Architecture of the tagger

In this section the architecture of the tagger has 

been discussed. The tagger takes the Sanskrit text 

as input then does tokenization. The SVM tool 

takes the model input files and gives the POS 

output, Detokentized it and gives the final output.  

Figure.1 Architecture of tagger 

5. Analysis of tagger

The accuracy is measured with matching two files. 

First one is the test file and the second one is gold 

file which is manually tagged. Those token, which 

correctly tagged are similar in both files. Incorrect 

tokens are different in test and gold file. The 

evaluation has been done in two phases. In the first 

phase the test file has 28747 tokens. The manually 
tagged gold file has 5000 tokens. After evaluation 

the accuracy was 82%. Second phase has 33867 

tokens and gold file has 8133 tokens. The accuracy 

of this phase is 80.89 %.So we can see that there is 

a variation in the accuracy in these two phases. The 

reason behind this difference could be the increase 

in the size and variety of the data. 

6. Issues and Challenges

This part of the paper deals with the issues and 

challenges related corpus, annotation and tagger. 

6.1. Corpus related issues 

There is a huge corpus of Sanskrit available. But 

this work is mostly in literature domain. Domain 

harmonization is a difficult task. The normalisation 

of the corpus is also a herculean task. Sanskrit texts 

because of their intense Sandhi and Samasa 

(compounds) formations are very difficult to tag, 

both by human and machine. 

6.2 Tagger related issues 

There are different types of ambiguous sets of 

classes and their accuracy rates. All the ambiguity 

classes are divided into 74 classes and they are 

generated automatically by the SVM tool. The 

average ambiguity of 18.8083 tags per token was 

achieved. The most commonly ambiguous tags are: 

Verb tagging was the area where lot of problem 

occurred. For Infinitive verb in Sanskrit, तुमुन ्
प्रत्ययान्त,् should have been tagged as VINF, but

tagger is tagging it as noun with tag N_NN. Tagger 

is not able to recognize the compound words. 

Sometimes it tags the starting word, sometime the 

last one. Tagger is tagging general Quantifiers as 

Noun. अनीयर ्प्रत्ययान्त verbs have been tagged as

Noun with tag N_NN instead of V_VM_VF. 

Two label sets- This section includes the 

ambiguous words with two conflicting labels. The 

most commonly ambiguous tags are 

Input 

Tokenization 

SVM tool

PoS output 

oOOootagged 

Output

Detokenization 

Final output 

Models 

input file 
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Demonstrative- Personal pronoun, Pronoun-

Quantifier, postposition-adverb. 

Three label sets- This section contains the 

ambiguous words having three labels. The most 

commonly ambiguous tags are Proper noun- 

Postposition-Quantifier and Adjective-personal 

Pronoun-Quantifier 

More than three label sets- 

This section includes the ambiguous words with 

two conflicting labels. The most commonly 

ambiguous tags are the words having more than 

three labels are discussed in this part are 

Conjunction Subordinator, personal noun, personal 

pronoun, unknown and Default particles. 

Classes of 

ambiguity  

Label Sets 

Two label set PSP_RB                                         

 
Three label 

set 

JJ_PR_PRP_QT_QTO                               

DM_DMD_PR_PRP                                 

Table.3 Ambiguity classes   

7. Conclusion and Further work 

This is a work in progress and the accuracy may be 

further increased with the increasing data. Domain 

harmonization can also increase the accuracy of the 

tagger. Corpora used for training the tagger is from 

general domains and literature. So when data from 

different domains will be given to tagger then 

results may vary. The training data is in Unicode. 

Sanskrit data given in any other script will be 

tagged as foreign word (RD_RDF) or unknown 

(RD_UNK). Present tagger applies classifier for 

annotation with an accuracy of 80.89%. Use  of 

tools like sandhi splitter for compound expressions, 

Morph Analyzer for affix analysis, NER for proper 

nouns, Word Sense Disambiguatior can be utilized. 
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Abstract 

Verbal aggression could be defined as any act which seeks to disturb the social and relational equilibrium. In a large number of

cases, verbal aggression could be a precursor to certain kind of criminal activities; in others, as in political speeches, it might be

desirable to take note of specific kinds of aggression. In this paper we discuss the development of a multimodal corpus of Hindi

which could be used for automatically recognising verbal aggression in Hindi. The complete raw corpus currently consists of ap -

proximately 1000 hours of audio-visual debates and discussions carried out in the Indian Parliament (and made available for re-

search) as well as some recordings from different news channels available in public domain over the web. Out of this, approxi -

mately 30 hours have already been transcribed and around 5 hours is annotated using the aggression tagset. In this paper, we also

discuss this tagset which is being used for annotation.

Keywords: Multimodal Corpus, Aggression, Hindi, Aggression Tagset, Verbal Threat 

  

1. Introduction  

Multimodal  corpora  is  probably  the  most

sophisticated  and  intensive  resource  that  could  be

developed for any language. These corpora also pose

several processing challenges which are not easy to

handle. However at the same time they also represent

the  next  step  towards  more  intelligent  machines

which could process  languages  not  only within the

written texts but within real life situations and taking

into  consideration  all  the  richness  of  features  that

these situations provide.

For Indian  languages,  there  has  been  some  major

attempts  to  develop  text  corpora  for  the  major

languages of India, most notably the EMILLE-CIIL

Monolingual and Parallel Corpora and recent effort to

develop parallel corpora within the Indian Languages

Corpora  Initiative (Chaudhary  and Jha 2011) and a

few other individual attempts to develop text corpora.

There  has  also  been  some  attempts   towards  the

development of speech corpora for the major Indian

languages, which include efforts by major insitutions

and  Universities  like  CDAC-Noida,  IIIT-H,  IIT-

Kharagpur,  Punjabi  University  to  develop  speech

corpora, especially for automatic speech recognition

(see  Shrishrimal, Deshmukh and Waghmare 2012 for

a more comprehensive overview). However, barring a

couple of these where naturalistic conversations were

recorded  using mobile  phones,  all  of  these  corpora

are recorded in the studio settings and largely consists

of text-reading sessions or news broadcast  sessions.

Thus  while  these  corpora  have  proved  to  be  quite

successful  for  automatic  speech  recognition  and

speech synthesis, we may not be able to move very

far beyond that, especially when we try to understand

and recognise emotional and behavioural patterns in

the speech.

Notwithstanding these  efforts,  we are  not  aware  of

any attempt to compile a multimodal corpora for any

Indian  language.   In  this  paper,  we  discuss  the

development  of an  annotated  and  transcribed

multimodal corpus of Hindi.

2. Verbal Aggression

Verbal aggression could be understood as any kind of

linguistic  behaviour  which  intends  to  damage  the

social  identity  of  the target  person  and  lower  their

status  and  prestige  (Barron  and  Richardson  1994,

cited in Culpeper 2011). It can be expressed covertly
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(which  is  largely  a  result  of  unratified  verbal

behaviour  in  the  given  context  but  many  not

necessarily  employ  explicit,  conventionalised

linguistic  structures)  as  well  as  overtly  (which  is

largely expressed through conventionalised linguistic

structures  including  prosody  and  syntactic

structures).  We would  like  to  emphasise  here  that

aggression  is  not  an  emotion  (and  so  the  task  of

detecting  aggression  is  not  a  sub-task  of  emotion

detection); rather it is a behaviour which may be the

result of different kinds of emotions experienced by

the speakers as well as it may result in different kinds

of emotions in hearers. It is important to maintain this

distinction as research and advancement in emotion

distinction  may  actually  feed  into  aggression

detection and vice-versa and considering one a part

of the other may hinder exploring this interaction.

In  our  present  research,  we  largely  look  at  overt

aggression in  political  speeches  and debates.  It  has

been observed that covert aggression is relatively less

frequent in these kinds of contexts and because of the

lack  of  obvious  cues,  it  is  more  difficult  to

automatically recognise it. 

Overt  aggression  is,  generally,  accompanied  by  a

number  of  cues  like  increase  in  the  fundamental

frequency  of  the  speech,  the  amplitude,  and  the

relative duration of the voiced part of speech and at

the same time decrease in the importance of unvoiced

part and the spectral tilt. It also leads to the reduction

of voice quality which is caused by a loss of control

over the vocal folds. All these cues could be used for

the  detection  of  aggression  in  speech.  These  cues

could  be  isolated  from  the  speech  using signal

processing  techniques.  It  has  been  reported  by  the

previous  experiments  that  best  cues  for  aggression

include  fundamental  frequency,  the  ratio  of  signal

energy below and above 1000 Hz and the standard

deviation of the energy of the three highest peaks in

the spectrum. Some of  the other acoustic  cues that

could  be  used  for  detection  of  aggression  include

level  cue,  audibility  cue,  spectrum  distortion  cue,

harmonic distortion cue, pitch salience cue and pitch

height cue (van Hengel and Andringa 2007).

Covert aggression, on the other hand, lacks cues in

the speech itself. However, it could be inferred based

on the response of the hearer. It has been argued in

the theoretical aggression literature that silence on the

part  of  the  hearer  in  certain  cirumstances  (for

example,  as  response  to  a  complement)  could  be

indicative of covert aggression.

As we will see in section 4, we have annotated all

kinds  of  aggression  in  the  corpus  and  the  final

training  of  the  recognition  system  will  take  into

account  both the acoustic  features  of  the annotated

speech  as well  as  these  theoretical  insights  into

consideration.

3. Creation of the corpus

The present corpus is being developed with a specific

purpose in mind – automatic detection of aggressive

behaviour in speech using. So most of the design and

compilation decisions is  taken  keeping this  goal  in

mind.

Currently the corpus consists of data from the follow-

ing sources -

1. Political Debates on News Channels –

These are the panel discussions and debates

aired on some of the major news channels.

The debates included in the corpus are taken

from those  available  in the  public  domain

over  the  web.  These  consist  of  around 30

hours  of  total  data.  The  data  was  down-

loaded either from YouTube or the official

websites  of  the  news  channels  using  the

VideoDownloadHelper plugin and saved in

the best available quality in MP4 format.

2. Political Speeches – In addition to the po-

litical  debates,  political  speeches  available

on the web are also included in the corpus.

However, unlike the debates these are mono-

logues  and  are  largely  aggressive.  These

make up  around 15  hours  of  total  data.

These speeches were downloaded using the

same methods  as  above  and  similar  stan-

dards were followed for their storage.

3. Parliamentary debates and speeches –

The debates and speeches in the Parliament

form the core of the corpus. The corpus in-

cludes  all  the  debates,  discussions  and

speeches that took place in Lok Sabha of In-

dian  Parliament  over  a  period  of  5  years
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from  2010  –  2014.  It  makes  up  approxi-

mately 1000 hours of data in Hindi. Most of

these  recordings  were  officially  acquired

from the  Lok  Sabha  Archives,  which  was

provided  as  high-quality  videos  in  DVDs.

However, some of these debates, especially

those from  more  recent  times,  have  been

downloaded from the web using the method-

ology we have discussed above.

The audio-visual data totals slightly over 2 terrabytes

(TB).

In addition to this,  audio of the complete data was

also extracted in .wav format and stored separately as

the speech corpus. It was done for two reasons – it is

comparatively easier to store, maintain, process and

share speech data than multimodal data and more im-

portantly, for the current purposes, we only needed

speech data as we would be training the system based

only on speech (more specifically prosodic) and tex-

tual features. Moreover, it would not be a mammoth

task to  integrate the video with this  annotated  and

transcribed speech data at a later stage if we need to

use the video features as well.

4. Annotation of the Corpus: The

Aggression Tagset

The speech corpus is transcribed at word-level in De-

vanagari.  It  is  also  annotated  using  the  aggression

tagset (see Table 1).

The corpus is transcribed and annotated using Praat1.

The annotation and transcription is then merged and

time-aligned with the video using ELAN2.

The annotation is being done at two tiers – Aggres-

sion and Turn taking – which is motivated by the em-

pirical findings that aggression can be understood and

recognised very significantly by referring to the con-

versation structures, especially turn-taking and pref-

erence organisation in the discourse.  On tier 1,  the

level and kind of aggression was annotated. It is to be

1http://www.fon.hum.uva.nl/praat/ 

2https://tla.mpi.nl/tools/tla-tools/elan/ 

noted that there is  hardly any objective measure of

aggression and the annotation of aggression level was

largely carried out on the basis of annotator's own im-

pression of the speech. 

On Tier 2, the turns in a conversation are annotated.

These tags are motivated by the concepts regularly

employed in Conversation Analysis (CA) – turn con-

struction unit (TCU), overlap and interruption. These

3 concepts are central to the understanding of the or-

ganisation and structure of turns in a  conversation.

These concepts are employed for annotation here so

that turns may be adequately classified and also cor-

related with different kinds of aggression.

We shall give a brief description of each of the tags

on both the tiers as we understand it and as it  was

given in the form of guidelines to the annotators.

4.1 Overtly Aggressive Threatening (OAG_T)

Any  segment  of  speech  in  which  aggression  is

overtly expressed – either through the use of specific

kind of prosody which 'sounds'  aggressive and /  or

certain lexical / syntactic structures – and which may

lead to some kind of conflict or physical violence is

to  be  annotated  using  this  label.  One  possible  in-

stance  will  be  aggressive  exchange  on  the  road,

which has the possibility of turning ugly.

4.2  Overtly  Aggressive  Non-threatening

(OAG_NT)

Any  segment  of  speech  in  which  aggression is

overtly expressed – either through the use of specific

kind of prosody which 'sounds'  aggressive and /  or

certain  lexical  /  syntactic  structures  – but  which  is

highly unlikely to lead to some kind of  conflict  or

physical violence is to be annotated using this label.

One possible instance will be aggressive discussion

on the  TV channel  or  in  public  forums  where  the

speakers are not likely to engage in physical aggres-

sion.

4.3. Covertly Aggressive Threatening (CAG_T)

Any segment  of  speech in which aggression is  not

overtly expressed but which may still  lead to some

kind of conflict or physical violence is to be anno-

tated  using  this  label.  One  of  the  possible  cases

would  be  eve-teasing  instances  which  may lead  to

more serious offense like physical assault and rape
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Sl. No. Tiers Top Level Sub-category Label Example

1. Aggression

1.1 Overtly Aggressive

1.1.1 Threatening OAG_T Fight on the road

1.1.2. Non-threatening OAG_NT TV  channel

discussion

1.2. Covertly Aggressive

1.2.1. Threatening CAG_T Eve-teasing

1.2.2. Non-threatening CAG_NT Gendered talk

1.3. Non-aggressive NAG Any normal speech

1.4. Irrelevant IR Non-human speech

2. Turn

Taking

2.1. Turn  Construction

Unit

TCU Hello;  Thank  You,

etc.

2.1.1. Terminal TCU_T*

2.2.2. Non-terminal TCU_NT*

2.2. Overlap OVP

2.3. Interruption INT

*Not to be used for present annotation but we might need it at later stage

Table 1: The Aggression Tagset

but the speech does not contain conventionalised ag-

gressive structures.

4.4.  Covertly  Aggressive  Non-threatening

(CAG_NT)

Any segment of speech in which aggression is

neither overtly expressed nor does it have possi-

bility to lead to some kind of conflict or physical

violence is to be annotated using this label. One

of the possible cases would gendered, racial or

casteist  speeches  in  public  forums  which  is

highly unlikely to lead to actual conflict and vio-

lence by the speakers themselves and may not be

spoken using conventionalised aggressive struc-

tures.

4.5. Non-aggressive (NAG)

This label  should be given to all  those human

speech samples which do not exhibit aggression

in any form.
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4.6. Irrelevant

This label should be given to only those samples

which do not contain any kind of human speech

at  all.  Those portions of the speech which are

blank or which contain noise or animal sounds

are to be given this label. However, it should be

kept in mind that slight pauses (of say, upto 5

seconds)  should  not  be  separately  marked  by

this label). It is to be used when it is evident that

there is no pause intended and the recording is

not part of a human speech. Generally noise/mu-

sic/silence at the beginning or towards the end of

a speech file is to be marked by this label such

that the beginning and end of an aggression or

non-aggressive human speech is clearly marked

out.

4.7 Turn Construction Unit (TCU)

It is a largely accepted fact that we don’t always talk

in sentences: a single word, a clause, a phrase, a sen-

tence, or even a gesture can count as a meaningful

and complete contribution. Each of these construct, at

the  end  of  which  (called  transition-relevance  place

(TRP) in the CA literature), there is a possibility of

the completion of turn, is  called Turn Construction

Unit. TRP is where turn-taking can occur without af-

fecting  the  speaker's  turn  and  the  construct  in  be-

tween two TRPs or  in  between the  beginning of  a

turn and a TRP is the TCU. Each turn of a speaker

may contain several  smaller TCUs and at  the same

time the complete turn, if not interrupted, is a com-

plete TCU in itself. For the present purposes, we are

annotating only the complete TCU as a TCU and not

the smaller TCUs within it. Thus effectively we mark

out each turn in the conversation using this tag.

4.8. Overlap

During a conversation when a speaker, other than the

present  speaker,  takes  turn  and  start  speaking  just

when TCU is about to end such that for few millisec-

onds both the speaker are speaking at the same time

then the whole period for which both are speaking is

to be marked as overlap.

4.9 Interruption

Interruption refers to the act of taking turn when one

speaker has not yet finished speaking and there is no

TRP (end of TCU) in next few milliseconds and the

other speaker starts speaking. In order to distinguish

between overlap and interruption the annotators will

have to make a judgement as to whether TRP was

very close when the other speaker took turn or it was

not possible to guess the TRP when interruption oc-

curred.  Generally, in  overlap,  the  first  speaker  fin-

ishes her/his turn with TCU during the period when

both speakers are speaking but in interruption, there

is no proper TRP reached in first speaker's speech as

the second speaker completely takes over the turn.

Using this taget, we have already annotated approxi-

mately 5 hours  of  speech.  Moreover, we have also

transcribed almost 30 hours of speech in the corpus. 

5. Summary and the way ahead

In this paper we have discussed the development of a

multimodal corpus of Hindi in political domain. This

corpus is being developed for use in the development

of  an  automatic  aggression  recognition  system  for

Hindi. Till now we have transcribed around 30 hours

of data and annotated around 5 hours of data using

the aggression tagset.

We are currently experimenting with testing the va-

lidity and robusteness of the tagset using the well-es-

tablished  methods  of  measuring  inter-annotator

agreement. The 5 hours of annotated speech is being

annotated by 5 different annotators. While we are not

able to produce the figures in the paper right now (as

we are still awaiting the annotation by all the annota-

tors), we will be able to discuss these very soon.

Once this is done, we will carry out the transcription

and annotation of approximately 50 hours of speech

and use that to experiment with automatic aggression

recognition. A similar corpus, using similar method-

ology (but with significantly less amount of data) is

also being developed for Indian English and we hope

to experiment with that also in near future.
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Abstract

This paper describes a text input method for touchscreen typing in Indian languages on mobile phones and tablets. Typing in native
script on mobile is quite difficult due to the complicated structure of Indic scripts. Moreover, limited mobile screen space restricts the
number of characters and symbols displayed on the screen. People typing in native script face difficulties in learning various layouts
and in finding required letters among a relatively large set of consonants, vowels and conjunct consonants. SwiftKey app provides a
solution  that  makes  typing  in  native  script  easier  and  enjoyable  by  carefully  packaging  a  text  prediction  system with  dynamic
language-specific layouts. It also supports features such as emoji prediction, gesture typing and themes. SwiftKey supports all 22
official Indian languages. 

Keywords: Indian languages, keyboard, layout, Indian languages text input, emoji prediction, gesture typing, themes

1.  Introduction
India  is  one  of  the  fastest  growing  telecommunication
markets  and  has  a  huge  smartphone  user  base.  Our
research suggests that people prefer to read and write in
their  native script,  however,  native script  keyboards for
mobile  devices  were  not  available  for  a  long  time.
SwiftKey keyboard comes  with support  for  Hinglish as
well  as  all  22  official  Indian  languages:  Assamese,
Bengali,  Bodo,  Dogri,  Gujarati,  Hindi,  Kannada,
Kashmiri,  Konkani,  Maithili,  Malayalam,  Manipuri,
Marathi,  Nepali,  Oriya,  Punjabi,  Sanskrit,  Santhali,
Sindhi,  Tamil,  Telugu  and  Urdu.  SwiftKey’s  artificial
intelligence  language  models  combined  with  smart
keyboard  layouts  tailored  to  meet  individual  language
requirements make typing faster, accurate and enjoyable.
The keyboard comes with a variety of features which are
described below.

1.1.  Context-Based Correction and Next-Word 
Prediction

SwiftKey’s  text  prediction  technology  uses  artificial
intelligence  language  models  to  offer  smart  corrections
and next-word suggestions based on given context.  Our
language  models  have  been  built  for  each  language by
analysing  a  large  amount  of  language data  drawn from
across the Internet. The language models encode the way
words  work  together  in  each  language  based  on
observations  from  the  web  data.  Upon  installing
SwiftKey, the user can download the language models for
up to three languages, which can be used simultaneously –
this works perfectly for India where multilingualism is the
norm. If the languages share the same script, for example
Hindi and Marathi, then the user can type both using the a
single keyboard layout of choice, otherwise layouts can be
changed by sliding the spacebar.
Moreover,  SwiftKey incrementally  learns  from the  user
and  consequently  provides  personalised  predictions  and
corrections over time.  

1.2.  Dynamic keyboard layouts
SwiftKey supports multiple layouts for most of the Indic
languages.  The  InScript  layout,  which  is  a  government
approved standard keyboard layout,  suits  well  the users
who  are  familiar  with  the  native  keyboard  layout  for
computers.  For  naive  users,  our  default  smart  dynamic
layouts  come  in  handy.  Built  with  cutting-edge
technology,  our  default  layouts  contain  consonants
organised  in  an  alphabetic  order  along  with  dynamic
vowel  keys  in  the  top  row,  which  become contextually
relevant depending on the consonant that has been typed
(see  Figure  1).  These  layouts  not  only  render  full
characters  but  also  contain  the  most  frequently  used
conjunct consonants.  The intuitive distribution of  letters
helps  in  learning  the  layout  faster  and  requires  less
switching between primary and secondary layout. We also
support  Tamil99  layout  for  Tamil  language.  Figure  1
shows our Devanagari smart layout.

1.3.  Gesture Typing
With SwiftKey Flow feature, the user can write by gliding
his  finger  on  the  keyboard.  The  user  can  seamlessly
switch between tapping on the keys and flowing without
changing the mode.

1.4.  Themes
SwiftKey keyboard comes in various colours and designs.
The user can choose one theme or a whole theme pack.
With our unique customisation features, the user can give
his  keyboard  a  personal  touch.  We  also  make  special
themes for various occasions and festivals. In 2015 we've
released exciting themes for Diwali and Gandhi Jayanti.
Figure 2 shows the Diwali theme on Gujarati layout.
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Figure 1. Devanagari layout on
SwiftKey keyboard.

Figure 2. Diwali theme with Gujarati
layout on SwiftKey keyboard

 

1.5.  Emoji Prediction
SwiftKey language models also include emoji predictions.
SwiftKey  predicts  emojis  in  the  same  way  it  predicts
words.  And just  like words,  it  also learns which emojis

and how often  the  user  uses  them. Figure  3 shows the
emoji prediction for the word typed, i.e. 'नमसतत' (Namaste).

Figure 3. Emoji prediction on SwiftKey
keyboard

2.  Conclusion
SwiftKey  provides  native  language  keyboards  that  are
easy to learn, even for beginners.  Rather than using the
same standard layout for all languages, we tailor-made the
layout to meet each language need.  Our prediction engine
helps  in  typing  swiftly  and  precisely  with  personalised
style over time.   

3.  Future Work
Based on user feedback, we intend on continuosly refining
our  language  models  and  keyboard  layouts  for  Indian
languages, as well as adding new features to make typing
in Indian languages easier and faster.
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Abstract
We demonstrate a system for the machine translation of code-mixed text in several Indian and European languages. We first perform
word-level language detection and matrix language identification. We then use this information and an existing translator in order to
translate code-mixed tweets into a language of the user’s choice.

Keywords: code-mixing, language detection, machine translation

1. Introduction
Code-mixing is the alteration between two or more lan-
guages at the sentence, phrase, word, or morpheme level. It
is prevalent in multilingual communities around the world
(Gumperz, 1982). Although code-mixing has tradition-
ally been observed in spoken language, informal text-based
interaction on social media has seen the advent of code-
mixed language in text as well (Bali et al., 2014; Das and
Gambäck, 2014; Solorio et al., 2014).
In India, a significant percentage of the population fluently
communicates in more than one language and often mixes
these languages in both speech and text. Bali et al. (2014)
found that 17.2% of the posts on public Facebook pages
from India are code-mixed.
Machine Translation of Social Media text is a difficult prob-
lem (Carrera et al., 2009; Hassan and Menezes, 2013;
Galinskaya et al., 2014), and the fact that many multilin-
gual users use code-mixed language on social media, com-
pounds this problem manifold. Most existing Natural Lan-
guage Processing (NLP) techniques and systems, includ-
ing Machine Translation, are designed for monolingual lan-
guage data and break down in the presence of code-mixed
text. With the pervasiveness of code-mixing in India, it be-
comes necessary to create language systems that can pro-
cess mixed language data.
With this view, we propose a machine translation system for
code-mixed text in several Indian and European languages.

2. System Architecture
Figure 1 describes the architecture of our system. Given a
Twitter handle, several tweets belonging to the correspond-
ing handle are collected. The user chooses one of these
tweets to be translated. The modules involved in transla-
tion in the order of their working are as follows:

1. Language detector: The language detector identifies
the language of each word in a given tweet. We use
a Hidden Markov Model trained on Twitter data from
our set of languages. The word-level language identi-
fication accuracy is around 95%.

2. Matrix language identifier: A matrix language of an
utterance is defined as the language that governs the

grammar of the utterance (Joshi, 1982). This mod-
ule selects the language that the majority of words be-
long to as the matrix language of the tweet. Our initial
observations showed that this simple heuristic works
well in practice.

3. Translate to matrix language: We conducted an
analysis of code-mixed data translations by a state-
of-the-art machine translation system, which showed
that translation quality is improved if the input is first
translated to the matrix language. This module trans-
lates the tweet to the matrix language using the Bing
Translator API.

4. Translate to destination language: Once the tweet is
in its matrix language, it is translated to the destination
language specified by the user by the Bing Translator
API.

3. Conclusion
We present a demo of a system that given a stream of
tweets, can identify code-mixed tweets, identify the lan-
guage of mixing, and translate them into a single language
using Machine Translation. While the current system is
used to translate tweets, the underlying models, techniques
and architecture can be used across any code-mixed text.
Our future work will focus on expanding the set of lan-
guages as well as other scenarios.
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Figure 1: System Architecture
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Abstract 

Automatic machine translation between two languages, poses various challenges. We have presented a detailed description on machine 
translation between Tamil and Hindi, where Tamil belongs to Dravidian language family and Hindi belongs to Indo-Aryan language 
family. These two languages have similarities such as verb final, morphological richness, relatively free-word order and they are 
structurally dissimilar. We have described the methodology and challenges addressed in each module. 
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1. Introduction 

We present a detailed description on a machine translation 

(MT) system, which was developed based on 

analysis-transfer-generation paradigm. MT system with 

Tamil, a Dravidian language as source language and Hindi, 

Indo-Aryan language as target language was built using 

rule-based, machine-learning and hybrid techniques. As 

the source language and target language belongs to two 

different families of languages, various levels of 

challenges due to variations between the languages had to 

be addressed. These languages have various similar and 

dissimilar features. The similar features are that both the 

languages are morphologically rich, relative free word 

order and verb final languages. Structurally, they are very 

different and this difference is more in clausal 

constructions such as relative participle, complement and 

conditional clauses.  

We divide the modules in the MT system into analysis, 

transfer and generation modules. Analysis modules 

include the source language analysis modules, namely, 

morphological analyser, POS tagger, Chunker, pruner, 

clause boundary identification and Named Entity 

recognition module. Transfer modules include transfer 

grammar, where various levels of transfer such as word, 

structure are done on the analysed output as required by 

the target language. In lexical transfer module, the root 

word and suffixes from the source language are 

transferred to the target language. The generation module 

includes the morphological generator, where the target 

language words are generated using the transfer root form 

word and its grammatical information. The web-link of 

the Tamil-Hindi system is available in the following link. 

http://sampark.org.in/sampark/web/index.php/content 

In the further sections of the paper we have described the 

various modules in detail. 

2. Module-wise description 

In this section we have described the modules in details.  

We start with analysis modules, followed by transfer and 

generation modules.  

2.1 Morphological analyser 

Tamil is a morphologically rich and highly inflectional 
language. Morphological analyser analyses the given 
word into root word and its suffixes attached to the word. 
It also labels the morphemes with the required labels. 
Here the morphological analysis is done at two levels.  
Core morphological engine is build using word paradigms 
and finite state automation. Initially the words are given to 
the morphological analyser, the unanalyzed words are fed 
to a word boundary identification engine developed using 
Conditional Random Fields (CRFs). Here the 
agglutinated words will be separated and these words are 
again fed back to the morphological analyser engine.  

2.2 POS Tagger 

Part-of-speech tag is given to each word based on its 

context. We have used a machine learning based approach, 

CRFs techniques to build a POS tagger. We have used 

features derived from suffix information. We post-process 

the output from the machine learning system, with a set of 

heuristic and linguistic rules. 

2.3 Chunker 

The chunker does the task to grouping grammatically 

related words into chunks such as noun phrase chunk, 

which includes intensifier, classifier, adjective and noun 

as the head, verb chunk includes adverb, negation and 

verb as head. Chunker is build using CRFs technique, 

with linguistic features. The output of the chunker is 

improved with a dictionary of named entities.  

2.4 Pruner 

This module does the job of picking the correct 

morphological analysis from the multiple analysis. This is 

rule-based engine; where the correct morphological 

analysis is chosen with the help of the information from 

POS tag. We have set of linguistic rules to choose the 

correct morphological analysis. We also have a default 

rule, which choose the first analysis as the correct analysis 

when the rules fail to disambiguate. 

2.5 Clause boundary Identifier 
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A clause is defined as a word sequence which contains a 

subject and a predicate. This subject can be explicit or 

implied. Automatic clause boundary identifier identifies 

the boundaries of these clauses in a sentence.  We have 

built an automatic clause boundary identification system 

using Conditional Random Fields (CRFs) technique. We 

have used word level and structural level features. In word 

level feature, word, its POS and chunk information are 

considered. Here we have used window of size five. 

Using grammatical rules, the structural features are 

represented. We have considered the following clauses for 

analysis, relative participle clause (RP), conditional 

clause (CON), infinitive clause (INF), non-finite clause 

(NF), complementizer (COM) and main clause (MCL). 

The clause is identified by the type of non-finite verb 

present in the sentence. 

2.6 Named Entity Recognizer 

Named entity recognition (NER) is the task of identifying 

the proper nouns such as name, location, organization etc.  

We have developed the NER module using CRFs 

technique. Features used in our works includes word, 

Part-of-speech (PoS), combination of these features and 

most frequent PoS in preceding position of named entity. 

PoS show whether the entities are proper or common 

nouns or numeric expressions.  

2.7 Transfer Grammar 

Transfer Grammar is the essential component of a Rule 

based Machine Translation system. A transfer grammar 

constitutes lexical and syntactic structural transfer. In 

lexical transfer, the transfer of phrases based on a 

bi-lingual lexicon, maintaining the different grammatical 

features, is done. On the other hand, in syntactic structural 

transfer, the syntactic structure, which varies from source 

to target language, is transferred. We have handled case 

transfer, syntactic structure transfer, copula transfer, 

postposition and oblique transfer.  Under lexical transfer, 

nominal transfer and verb transfer have been presented. 

Nominals in Tamil, an agglutinative language, take 

multiple suffixes which are expressed as case markers or 

postpositions in Hindi. As compared to nominal, the 

transfer of verbal structure is more challenging as it 

involves the transfer of more grammatical information 

apart from lexical transfer and also because of the highly 

inflectional nature of verbal morphology in Tamil as 

compared to Hindi. Together they carry information about 

many grammatical items, i.e., tense, number, gender, 

tense and aspect etc. So the study of nominals and verbs 

has acquired immense importance than the other parts of 

speech by linguists. Since the two languages belong to 

different language families, the transfer of syntactic 

structure from Tamil to Hindi is a complex task.  

2.8 Lexical Transfer Module 

The root words and the other suffixes from source to 

target language are transferred in this module. The 

transfer is done using multiple bilingual sources, namely, 

1, Synset dictionary, which is a sense based dictionary  2, 

Bilingual Tamil-Hindi dictionary, 3, Bilingual named 

entity dictionary. The suffixes such as tense, aspect, 

modal (TAM), and case markers are transferred from the 

source language to target language. 

2.9 Transliteration Engine 

Transliteration engine is built using N-gram statistics. 

Transliteration in Tamil to Hindi MT system is vital as 

Tamil is phonologically conditioned and it requires one to 

many mapping of characters where Named entities are 

transliterated from Tamil to Hindi. Here we have used a 

N-gram based engine, which transliterates the given 

Tamil word to Hindi.  

2.10 Generation Engine 

Sentence and word generation engine is the part of the 

generation module. Here the target words are generated 

using the transferred root words and its grammatical 

information. We have built a word paradigm and a finite 

based approach for this morphological generation engine. 

As the required re-ordering of words, clause and 

structural changes are done in the transfer grammar and 

lexical transfer module; here we need to generate the 

words using the information from the transfer modules. 

There are set of linguistic and heuristic rules to build a 

near-natural sentence. 

3. Evaluation 

Tamil-Hindi translation system was evaluated by a third 

party.  They evaluated the translated output based on the 

comprehensibility and fluency. For tourism domain 

corpus, when an open evaluation (both source text and 

gold standard translation is available) was done the 

performance scores were as follows. Comprehensibility 

66.62% and Fluency 51.19%.  

Comprehensibility and fluency are calculated based on 

subjective score between 0-4 given by the evaluators. 

Comprehensibility = sum_over{i=2,3,4}(Si) /N 

Fluency = sum-over-i(i*Si)/N 

where i  scores given to the sentence; Si  number of 

sentences with i score;  N  total number of sentences 

4. Conclusion 

We have presented a detailed description of Tamil-Hindi 

machine translation system, which is based on analysis- 

transfer – generation paradigm. We have described the 

similarities and the variation between the two languages 

and presented detailed information on the various 

modules, the techniques used and the challenges 

addressed in these modules. 
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Abstract 

In this paper we present Tamil – English Cross Lingual Information Access (CLIA) system. The objective of this system is to 

provide users who are non–English speakers, to access information available on internet in their own native language, Tamil. 

This system enables users to give queries in Tamil and retrieve documents in Tamil as well as in English.  The user given query 
is translated to English for retrieving English documents. Query translation is done using synset dictionaries, bilingual 

dictionaries and transliteration. The content of English documents is translated to Tamil using Template translation. The main 

modules of the system are i) Crawling ii) Input Processing iii) Indexing iv) Query Processing v) Ranking vi) Output Processing. 

We have obtained a MAP score of 0.3980 for the Tamil – English cross lingual search. The results are encouraging and 

comparable with the state of the art. The system is deployed and accessible through web link. 
 

Keywords: Information Retrieval, Cross-lingual Information Access (CLIA), Language Analysis, Indexing and Search, 
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1. System Overview 

In this paper we present Tamil – English Cross 

Lingual Information Access (CLIA) system. The 

objective of this work is to provide users who are 

non–English speakers, to access information 

available on internet in their own native language, 

Tamil. This system enables users to give queries in 

Tamil and retrieve documents in Tamil as well as in 

English. The main purpose of the system is that a 

query entered in one Indian language (IL), (source 

language) is converted to English and Hindi queries, 

which are used for searching and retrieving 

documents in English and Hindi, and the source 

language. The system also generates a snippet of the 

retrieved document in the language of the document 

and also a translated snippet in the language of the 

query.  The diagram in figure 1 depicts the main flow 

of the system from the user perspective. 

Query translation is done using synset dictionaries, 

bilingual dictionaries and transliteration. The synset 

and bilingual dictionary consists of 100K words. The 

content of English documents is translated to Tamil 

using Template translation.  

The main modules of the system are i) Crawling ii) 

Input Processing iii) Indexing iv) Query Processing 

v) Ranking vi) Output Processing. 

  

Crawler module takes a list of seed URLs as input 

and fetches documents from internet. The documents 

fetched are in Tourism domain. This crawler has 

domain focus crawling. This restricts the pages 

fetched to be only in the tourism domain. Input 

processing module, processes the web pages fetched. 

This involves converting pages in different encoding 

schemes to UTF-8 encoding scheme. Here html 

pages are converted to plain text files to enable 

indexing. For the purpose of encoding conversion, 

font transcoders are used for different fonts.  

Indexing of web pages involves identification of 

word boundaries, and converting different word 

forms to its root. Tamil is a classical language which 

is a highly agglutinative language. Since Tamil is a 

morphologically rich language, for the purpose of 

root word identification we use a robust Tamil 

Morphological Analyser (MA). Tamil morphological 

analyzer follows a paradigm based approach, built 

using a Finite State Automata (FSA).The identified 

root words in each page are indexed and an inverted 

term – document frequency table is built. 

The above three modules are not visible to end users; 

hence these are called offline processing modules. 

The user given query has to be proces sed to obtain 

query words root form and has to be translated to 

English for retrieving English documents. The query 

string is also passed through the morphological 

processing and root words are obtained. The named 

entities in the query are identified using a named 

entity recognizer. These named entities are 

transliterated using a transliteration engine. The most 

relevant documents for a given query are obtained 

using the ranking module. The ranking algorithm 

uses page importance scoring algorithm along with 

the popular okapi ranking algorithm. The retrieved 

documents are processed to obtain snippet of the web 

page, summary of the web page and template 

translation of English pages to Tamil. Tourism 

related information in the English pages is extracted 

using the Information extraction (IE) templates. 

Extraction Templates are frames, which specify what 

type of information has to be extracted from the 

documents. After the information is extracted the 

data is populated in the IE templates. 
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Figure 1 System Block diagram – Users perspective 

 

Evaluation 
The search is tested using user generated queries, 

obtained from surveys and query logs. We consider 

100 queries for testing. The metrics used for testing 

are MAP, P@5 and P@10. The crawl consists of 

tourism domain, 100K Tamil and 400K English 

documents. We obtained a MAP score of 0.3980; 

P@5 and P@10 are 0.4640 and 0.3900 respectively. 

Conclusion 
This work is very useful in providing access to 

information for all people, and helps in cros sing the 

language barrier. In a country like ours, there are 

lakhs of people who do not know English and are 

facing difficulties in getting access to information 

through web. In the figure 2, the overall system 

architecture is shown. The system can be accessed 

using the link given below. 

 

http://www.clia.iitb.ac.in:8080/sandhan1.0/Language

Action?method=Get&langKeyBoard=ta 

 

  OR 

http://sandhan.tdil-dc.gov.in/locale.jsp?ta 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2  Overall System Architecture 
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Abstract
South Asia with its rich and diverse linguistic tapestry of hundreds of languages, including many from four major language families,
and a long history of intensive language contact, provides rich empirical data for studies of linguistic genealogy, linguistic typology,
and language contact. South Asia is often referred to as a linguistic area, a region where, due to close contact and widespread
multilingualism, languages have influenced one another to the extent that both related and unrelated languages are more similar on many
linguistic levels than we would expect. However, with some rare exceptions, most studies are largely impressionistic, drawing examples
from a few languages. In this paper we present our ongoing work aiming at turning the linguistic material available in Grierson’s
Linguistic Survey of India (LSI) into a digital language resource, a database suitable for a broad array of linguistic investigations of
the languages of South Asia. In addition to this, we aim to contribute to the methodological development of large-scale comparative
linguistics drawing on digital language resources, by exploring NLP techniques for extracting linguistic information from free-text
language descriptions of the kind found in the LSI.

Keywords: South Asian languages; lexicon; grammar; digital language resource; Korp

1. Background: The LSI as Big Data

South Asia (also “India[n subcontinent]”) with its rich
and diverse linguistic tapestry of hundreds of lan-
guages, including many from four major language families
(Indo-European>Indo-Aryan, Dravidian, Austroasiatic and
Tibeto- Burman; see Figure 1), and a long history of in-
tensive language contact, provides rich empirical data for
studies of linguistic genealogy, linguistic typology, and lan-
guage contact.
South Asia is often referred to as a linguistic area, a region
where, due to close contact and widespread multilingual-
ism, languages have influenced one another to the extent
that both related and unrelated languages are more similar
on many linguistic levels than we would expect. However,
with some rare exceptions (e.g., Masica 1976) most studies
are largely impressionistic, drawing examples from a few
languages (Ebert, 2006).
In this paper we present our ongoing work aiming at turn-
ing the linguistic material available in Grierson’s Linguistic
Survey of India (LSI; Grierson 1903 1927) into a digital
language resource, a database suitable for a broad array of
linguistic investigations of the languages of South Asia.
The LSI still remains the most complete single source
on South Asian languages. Its 19 tomes (9500 pages)
cover 723 linguistic varieties representing major language
families and some unclassified languages, of almost the
whole of nineteenth-century British-controlled India (mod-
ern Pakistan, India, Bangladesh, and parts of Burma). For
each major variety it provides (1) a grammatical sketch (in-
cluding a description of the sound system); (2) a core word
list; and (3) text specimens (including a glossed translation
of the Parable of the Prodigal Son). In this presentation, we
will focus on the grammar sketches and the linguistic in-
formation that can be extracted from them (see section 3
below).

The LSI grammar sketches provide basic grammatical in-
formation about the languages in a fairly standardized for-
mat. The focus is on the sound system and the morphol-
ogy (nominal number and case inflection, verbal tense, as-
pect, and agreement inflection, etc.), but as we will see be-
low in section 3, there is also some syntactic information
to be found in them. Importantly, the linguistic sketches
include information on some of the features that have
been used in defining South Asia as a linguistic area, e.g.
retroflexion, reduplication, compound verbs, word order,
converbs/conjunctive participles, but goes considerably be-
yond these, offering the possibility of a broad comparative
study of South Asian languages.
The language sketches range in length from less than a
page to over eighty pages, and the whole LSI comprises
far too much text for it to be a realistic option to process
it manually. For this reason, we are exploring information
extraction methodologies which could help us turning the
free-text descriptions of the LSI grammar sketches into for-
mally structured tabular data suitable for large-scale auto-
matic processing. At the present time, this is the main NLP
focus of the project. Since the grammatical descriptions are
written in English, this of course means that the informa-
tion extraction application that we are developing will be
for English (see section 3 below).
The language data for the LSI grammar sketches were col-
lected around the turn of the 20th century, hence obviously
reflecting the state of these languages of about a century
ago. However, we know that many grammatical character-
istics of a language are quite resistant to change (Nichols,
2003), much more so than vocabulary. In order to get an
understanding of the usefulness of the LSI for our pur-
poses, we sampled information from a few of the gram-
mar sketches in order to see how well the LSI data reflect
modern language usage. Our results show that while some
of the lexical items are not used today in everyday speech,

87



Figure 1: The four major language families of South Asia (from http://llmap.org)

most other information reflects in many ways the modern
language, and thus cannot be treated as representing an ‘ar-
chaic’ variety of, e.g., Hindi.
The core word lists which accompany the language de-
scriptions are collected in a separate volume (Volume 1,
Part 2: Comparative vocabulary). Each list has a total of
168 entries (concepts). The concepts in the comparative vo-
cabulary cover a broad spectrum consisting of body parts,
domestic animals, personal pronouns, numerals, and astro-
nomical objects. There is some overlap with other concept
lists used in language classification: First, 38 of the con-
cepts are also found in the shorter (100-item) version of
the so-called Swadesh lists, core vocabulary lists originally
devised by the American linguist Morris Swadesh (1955)
specifically for the purpose of inferring genealogical rela-
tionships among languages. Thus, the LSI comparative vo-
cabulary clearly has one part that can be used in investi-
gating genetic connections among the languages, but also
another part – at least half of the entries – which we hy-
pothesize could be used to find areal influences.
Notably, the LSI comparative vocabulary also provides
some phrases and propositions (e.g., ‘good man’ ∼ ‘good
woman’ ∼ ‘good men’ ∼ ‘good women’, and ‘I, thou,
etc. go’ ∼ ‘I, thou, etc. went’), making it useful for com-
parative studies of some grammatical features, in addition
to studies of lexical phenomena. In a preliminary study,
some grammatical features have been semiautomatically
extracted from the comparative vocabulary. Figure 2 shows
the distribution of one such feature – order of numeral and
noun – over the four major language families of South
Asia. In Figure 2, icon colors denote language families –
blue: Indo-Aryan; red: Tibeto-Burman; green: Dravidian;
turquoise: Austroasiatic – and icon shapes indicate the fea-
ture values (triangle: numeral–noun order; inverted trian-

gle: noun–numeral order; square: no data available in the
comparative vocabulary).
We also intend to initiate experiments for utilizing the text
specimens for extracting additional linguistic data from
the LSI, using the English version of the text as pivot,
e.g., inferring basic subject–object marking through cross-
language annotation projection (see, e.g., Xia and Lewis
2007).
The motivation for the work presented here is that exami-
nation of genealogical, typological and areal relationships
among South Asian languages requires a large-scale com-
parative study, encompassing more than one language fam-
ily. Further, such a study cannot be conducted manually,
but needs to draw on extensive digitized language resources
and state-of-the-art computational tools. There have been
some earlier attempts to use LSI in areal studies (e.g.. Hook
1977), but because of the manual nature of these studies,
the information in the LSI was used only to a very limited
extent, and the results presented in a general, non-concrete
manner. Further, no accompanying methodological discus-
sion was offered (e.g., how the data was extracted and ana-
lyzed, and for which languages, etc.).
This is the first large-scale resource on South Asian lan-
guages which will be completely automated, with a solid
‘deep’ structure (with the possibility of doing searches for
grammatical (morphological and syntactic) as well as lex-
ical features, with links to the original LSI pages as well
as rich visualizations. Building a database of this magni-
tude will also contribute at least indirectly to developing
NLP tools for South Asian languages. Studies investigat-
ing a multitude of linguistic questions relating to lexicon,
morphology, syntax, language contact between two specific
languages as well as questions relating to areal linguistics
and language change will benefit from this resource. We are
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Figure 2: Language map for the feature order of numeral and noun (icon colors denote language families, and their shapes
indicate feature values)

already using the resource in our linguistic investigations,
as we are building the database (cf. Borin et al. 2014; Sax-
ena 2016).
Thus, a richly annotated and interlinked digital version of
the LSI will be one of the concrete outcomes of this project.
We are working towards the goal of making it publicly
available through Språkbanken.1

2. Data Preparation
2.1. Preprocessing
As a first step, we are in the process of digitizing all LSI
volumes dealing with the main South Asian language fam-
ilies (16 out of the 19 books). This part of the work is
almost completed. Since OCR software deals poorly with
the complex typography and multitude of languages of the
language examples and language specimens in the LSI,
the digitization is accomplished by an initial scanning and
OCR step, followed by a manual correction step, so-called
double keying. During the latter, we deliberately chose not
to represent the many diacritic characters appearing in the
text in their original shape, but rather replace them with
unique character combinations easily entered using an or-
dinary QWERTY keyboard. However, we want these char-
acters restored back to their original shapes in the text that
we will be working with. Also, there was a lot of meta-
data present on each page, in the form of page headers and
footers, that we wanted to separate from the language de-
scriptions. So a natural first step was to do some cleaning
and pre-processing. Using a set of regular expressions, and
mostly relying on a search and replace strategy, both of

1http://spraakbanken.gu.se/eng/research/
lsi

the above given tasks were completed. Though the process
overall went smoothly, there are still some known issues. A
couple of those issues are listed below:

• Some characters and character combinations were
found to not render correctly in the Korp web inter-
face (described below) used for accessing the grammar
sketches, for example, superscript ē (e.g., Sindhi jãhē

‘by whom’) and ě, which are used in the LSI volumes
for representing reduced vowels. Similarly, some dou-
ble diacritics – e.g. ˜ placed above ā and ē, representing
a combination of vowel length and nasalization – are
not correctly rendered in the browser.

• There were some issues related to the sentence seg-
mentation. The appearance of sentence breaking char-
acters (e.g. “?” and “:”) within sentence boundaries
may cause the sentence segmentation tool to make er-
rors. For example, the text segment Interrogative pro-
nouns are sū, who? chī, what?) will be split into two
sentences while actually it is one sentence. Similarly,
in the text segment The forms are given below:-, the
character sequence “:-” will not allow the sentence
segmentation tool to break the sentence at this point.

We are aware that some of these issues can be fixed by cus-
tomizing the corresponding tools, and we plan to work on
them in the near future.

2.2. Text Processing and Annotation

The amount of text that has been digitized so far is well
in excess of one million words, and in order to be able to
explore this amount of data – which is not feasible to do
manually – from the early stages of this project, we have
strived to use existing language tools to the greatest extent
possible, even if these tools were not designed explicitly
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Figure 3: Korp KWIC view resulting from searching in the LSI for the string "order of words is"

for the kind of large-scale comparative linguistic investiga-
tions that we have in mind, but rather for corpus-linguistic
investigations.
The text data, i.e., grammar sketches excluding tabular data
(e.g., inflection tables) and text specimens, have been im-
ported and made searchable using Korp, a versatile open-
source corpus infrastructure (Borin et al., 2012).2 Currently,
the LSI “corpus” comprises about 1.3 MW. The compar-
ative dictionary and the tabular data from the grammar
sketches still remain to be processed in a similar way.
Korp is a modular system with three main components: a
(server-side) back-end, a (web-interface) front-end, and a
configurable corpus import and export pipeline. The back-
end offers a number of search functions and corpus statis-
tics through a REST web service API. As the main cor-
pus search engine, it uses Corpus Workbench (Evert and
Hardie, 2011). The front-end provides various options to
search at simple, extended, and advanced levels in addition
to providing a comparison facility between different search
results.

2http://spraakbanken.gu.se/swe/forskning/
infrastruktur/korp/distribution

The corpus pipeline is a major component and can be used
to import, annotate, and export the corpus to other for-
mats. For annotations, it relies heavily on external anno-
tation tools such as segmenters, POS taggers, and parsers.
Previously, it has mostly been used for Swedish text, and
comes with very limited support for English in the vanilla
distribution. For our purposes, we have plugged in the En-
glish Stanford Parser (Manning et al., 2014) for lexical and
syntactical annotations, but we are still relying on the de-
fault sentence and paragraph segmentation tools provided
with the Korp distribution as we achieved reasonable per-
formance also for English text. We have added word and
text level annotations to the LSI data. The following is a
list of all those annotations that were added:
Word-level annotations: lemma, part of speech (POS),

named-entity information, normalized word-form, de-
pendency relation.

Text-level annotations: LSI volume/part number, lan-
guage family, language name, ISO 639-3 language
code, longitude, latitude, LSI classification, Ethno-
logue classification, Glottolog classification, page
number, page source URL, paragraph and sentence
level segmentation.
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Figure 4: Korp map view resulting from searching in the LSI for language is Konkani

While most of the annotations are self-explanatory, there
are a few which may need some explanation. The normal-
ized word form is the form produced by removing the di-
acritics and other phonological characters. The purpose is
to make it easy to search the corpus by using the standard
keyboard without requiring the user to enter non-standard
keyboard characters, since the LSI consistently renders lan-
guage names and glosses in a kind of phonetic transcrip-
tion which will most likely be unfamiliar to many users.
Thus, the normalization allows the user to search for, e.g.,
Bihārı̄ using the search string “Bihari”, or “bihari” (with
case-sensitivity disabled).
The text-level annotations above mostly represent the meta-
data which were collected from different sources3 in addi-
tion to the LSI volumes themselves, and are maintained as
part of the corpus. The page source URL, for example, is
a link to the image version of the corresponding LSI vol-
ume’s page available from university of Chicago’s4 LSI
web-repository.
Figure 3 shows a screenshot of the Korp front-end display-
ing results of a simple corpus query in Korp’s KWIC (Key
Word In Context) view. The box to the right of the KWIC
sentences shows annotations and metadata for the selected
word (Word and Text level attributes).
In addition to the above given annotations, we used the
Stanford English Named Entity recognizer together with
GeoNames5 to extract all locations and their coordinates
from within the description of a particular LSI language.
The Korp front-end provides functionality for displaying
locations on a map. All the proper names found in the
query results are looked up in a database of of locations,
which also contains the coordinates. These locations then

3For instance, location data come mainly from the Glottolog:
http://glottolog.org.

4http://dsal.uchicago.edu/books/lsi/
5http://www.geonames.org/

are displayed on a map by the front-end. See Figure 4,
where the map resulting from a search using the expression
language is Konkani is displayed. It is worth men-
tioning that for identifying locations, the Korp front-end re-
lies on POS tag information and a database of locations, a
solution which is not perfect. A better solution is to anno-
tate the corpus for locations and coordinates at word-level
– a task that we plan to complete in the near future.

3. Grammatical Feature Extraction
After having cleaned the LSI data and stored it in a struc-
tured way, a next immediate step is to extract information
about particular grammatical features of LSI languages. To
start with, we have identified a list of features that we think
are interesting and will be useful in making conclusions
regarding genealogical and areal influences at later stages
of the project. For the purpose of extracting values and/or
descriptions of those identified features, we started experi-
menting with a two step procedure as outlined below:
(1) Using the Korp standard search interface, retrieve a

set of potential sentences from the language descrip-
tions by searching for a particular text string (repre-
senting a particular feature) and by limiting the search
to ’within sentence’. The extracted sentences are fur-
ther processed as explained below to extract the feature
values.

(2) A set of patterns was designed to extract as precisely
as possible the feature values. A pattern basically is a
regular expression that is used to match and extract the
corresponding text segment representing the particular
feature values from within the sentences extracted in
step 1.

To take an example, suppose we are interested to extract in-
formation about the normal word order of a particular LSI
language from the language description. With step 1, we
can extract all sentences having the string “order of words
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is” from the description of a language (see Figure 3). Next,
using the following pattern together with Python’s regu-
lar expression’s grouping functionality, one can first split
each sentence into three parts: the part appearing before the
string “order of words is”, the string itself, and the part ap-
pearing after this string.

(.*) (order of words is) (.*)

The resulting parts can be processed further with more
specific patterns to extract the ‘order of words’ of a par-
ticular language. For example, one can imagine that the
third part appearing after the string “order of words is”
is usually the order of words and will fit the pattern
(\w+), (\w+), (\w+) more often than not for the
South Asian languages. Indeed, when we searched through
our LSI corpus for the string ’order of words is’, there
were 40 hits. After splitting the resulting hits into three
parts, when third part was processed with the pattern
(\w+), (\w+), (\w+), 34 out of 40 matched this pat-
tern and we were able to extract information about order of
words of particular languages. In the remaining cases, the
third part consists of informative strings such as “said to
be comparatively free”, “different”, etc. and was processed
with other more specific patterns.
As can be guessed easily, the above given pattern based
strategy will very strictly match particular sentence struc-
tures and/or contents. This probably will not cover all pos-
sible ways the same information could have been encoded
unless one designs patterns rich enough to catch all pos-
sible instances. We are aware that this may not be a com-
plete and/or a perfect solution, but at the current stage of
our experiments we are sticking to this approach, and we
leave to explore the other ways as a future prospect. Here,
we are thinking of approaches inspired by Open Informa-
tion Extraction (e.g., Fader et al. 2011). Our hope is to be
able to develop a comprehensive information-extraction so-
lution for turning sets of descriptive grammars – and not
only those in the LSI, but any digitally available grammars
– into typological databases.

4. Conclusion
Turning the LSI into a structured digital resource will pro-
vide a rich empirical foundation for studies of, e.g., ge-
nealogical, typological and areal relationships in South
Asia, which require a large-scale comparative study, en-
compassing more than one language family. Further, such
a study cannot be conducted manually, but needs to draw
on extensive digitized language resources and state-of-the-
art computational tools. This is the goal and motivations of
our on-going work with the LSI. In addition to this, we aim
to contribute to the methodological development of large-
scale comparative linguistics drawing on digital language
resources.
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Abstract 

The paper presents a CRF based hybridized chunker for Hindi and Indian English. The immediate goal is to chunk text data in the 
ILCI project funded by DeitY, Govt of India. The experiment was conducted on 25k annotated sentences on the data from health and 
tourism domains. 23k sentences were used for training and the rest 2k sentences were used for evaluation. The experiment involved 
the following stages: training the chunker, automatic chunking and validation of chunked output for Hindi and Indian English; and 
finding measures to solve issues detected at different levels of experiment. The chunker for Indian English is developed on ILMT 
chunk tag scheme to meet the necessary mapping requirements of the translation tool for English to Indian languages. The accuracies 
of Hindi and Indian English chunker are 88.84% & 89.04 %, respectively. So far as Hindi chunker is concerned, we have observed 
errors in the chunk categories such as noun (pronominal), verb finite, verb non-finite (conjunct verb), adjectival phrase etc. Errors 
like finite-non-finite, adverb-conjunction, wh-determiner and conjunction chunk etc are discussed in detail for the development of 
English chunker. Implementation of hybrid approach for error resolution has also been attempted. 
 
Keywords: CRF++, SVM tool, Indian chunker, ILCI corpus, Hindi and Indian English.  

1. Overview 

1.1 Introduction 

The Indian Language Corpora Initiative (ILCI) (Jha, 

2010) is a DeiTy-sponsored ambitious project initiated 

by TDIL program which aims at collecting parallel 

translated annotated sentences in 22 scheduled 

languages of the Indian Constitution including 

English. The project has already completed parallel 

and monolingual corpora collection, parallel 

translation and POS annotation while chunk 

annotation is under process. The POS annotation has 

been conducted by adhering to the BIS standard 

annotation tagset while chunking is done using ILMT 

IIIT-Hyderabad guideline. On one hand, the POS 

tagged data used for automatic chunking annotation 

has been acquired from the state-of-the-art statistical 

tagger for Hindi. On the other hand, the English 

automatic chunker has been developed in the ILCI 

project
1
 using the output of the Stanford open source 

POS Tagger and validated by human annotators.  

In this paper we report chunkers for Hindi and 

Indian English developed under the ILCI Project to 

reduce the human burden of annotating large corpora. 

First, we have developed SVM and CRF POS taggers 

for Indo-Aryan languages such as Hindi, Odia, 

Bhojpuri and English on approximately 90k tokens
2
 

(Ojha et. al., 2015). Second, we have developed 

CRF++ chunkers of approximately 25k sentences each 

for Hindi and Indian English using already 

automatically annotated corpora (SVM tagger for 

Hindi annotation and Stanford tagger for Indian 

English). Third, after observing the error patterns for 

                                                           
1
 http://sanskrit.jnu.ac.in/projects/ilci.jsp?proj=ilci 

2
 In this paper, tokens are marked on the word level. symbol, 

punctuation etc. are counted as separate token.  

both the languages we have formulated heuristic rules. 

Finally, we have applied the formulated rules to 

investigate whether there is any effect on the accuracy 

rate by converting the statistical chunkers into hybrid 

ones. 

 

1.2 Features of Indian English 

The variety of English spoken in Indian subcontinent 

is generally regarded as Indian English. There are 

differences in Indian and standardised form of English 

at all linguistic levels from sounds to morphology, 

supra-segmental and syntactic structures which 

involve semantic variations as well. This variety of 

English is of great concern here because translation of 

all the parallel corpus data is done by Indian 

translators and the chunker evolved in this endeavour 

also considers English as an Indian Language. Here, 

the syntactic differences might affect the accuracy of 

the chunker. The ‘Language in India’
3
 website 

provides examples of influence of reduplication, range 

marker, emphatics, semantic understanding and 

grammar of first or second language on English. 

For example: 

 Grammatically: 

(1) Indian English speakers often prefer to speak ‘I am 

doing it often’ over ‘I do it often’ 

(2) And ‘she was having many sarees’ over ‘she had 

many sarees’ 

 Semantic understanding 

(3) Mostly the Hindi construction of writing the test as 

dena (to give) and auditing the test lena (to take) 

often confuse the speaker with the meaning of 

English taking a test and giving a test. 

                                                           
3
http://www.languageinindia.com/junjul2002/baldridg

eindianenglish.html 
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More on this will be discussed in section 6 on 

chunker evaluation. 

Although some chunkers are already available for 

English but it will be difficult to map them with 

annotated Indian language data. This raises the need of 

ILMT based chunker for Indian English.  

 

2. Literature Review 

As discussed in Bharathi and Mannem (2007), a rule-

based chunker was developed by Asif et. al. (2007), 

although no details of the applied linguistic rules are 

provided. It provides a fair amount of accuracy for 

languages like Hindi (71.65) and Bengali (80.63%) 

but failed for Telugu. Satish and Kishore (2007) 

utilized Decision Forests for chunk annotation with 

POS features and a window size of two. The chunker 

provides accuracy of 74.74%, 69.92% and 70.99% for 

Telugu, Hindi and Bengali respectively. Pattabhi et al. 

(2007) used the HMM algorithm during POS 

annotation and TBL for chunk annotation. The 

chunker provides approximately 63% on an average 

for the above three languages. Sandipan (2007) used 

the Maximum Entropy Model for chunking with 

features of POS and chunk tags given due 

consideration. The average accuracy for these 

languages is 74%. Ravi et al. (2007) proposed learning 

chunk pattern templates based on the 4 parameters of 

lexical features. They have achieved 68.60% accuracy. 

Rao and Yarowsky (2007) used Naïve Bayes Classifier 

by exploiting the lexical features which achieves 

approximate 66% accuracy. Avinesh and Karthik 

(2007) applied HMMs for identifying chunk boundary 

and CRFs for labelling chunk. The chunkers got 

80.95% on an average for all three languages. 

Himanshu (2007) used CRFs for training the chunkers 

and applied the POS and chunk tags with a word 

window of 2 as features. He has also acquired 

considerable accuracy of 78%. 

Banerjee et. al. (2014) has dealt with the issues 

encountered during mapping of the verb groups 

between Hindi and English. They have found that 

Hindi constructions like double causative, serial verbs, 

conjunct verbs, adverbial/adjectival phrases are 

difficult to map with their English counterparts. 

Uniyal (2014) has evaluated and discussed the issues 

of various phrasal categories in the Shallow Parser 

Tool for Hindi developed by the ILMT Consortia 

group and also provided solutions to resolve the 

pronominals under NP. 

Hence, we have chosen to develop a new Hindi 

chunker based on Hybrid approach and also tried to 

fix its previous problems through the heuristics 

linguistics rule. 

As mentioned earlier in this paper, some chunkers are 

available for English like Stanford chunker, CRF 

based chunker etc. but no chunker is available for 

Indian English.  

3. Experimental Setup 

3.1 Data Collection 

The experiment is conducted over Hindi and Indian 

English data comprising training set of 25k POS 

annotated sentences from each language, representing 

health and tourism domains of the ILCI Corpus. The 

training set for both the languages was 23K sentences 

and testing was done on remaining 2k sentences. 

Hindi data is annotated on Bureau of Indian Standards 

(BIS
4
) annotation scheme and English data is 

annotated on Penn Tree Bank
5
 tag scheme. BIS 

scheme is a common standard of annotation for Indian 

languages. After POS tagged data was prepared, we 

manually chunked data for both languages.   

 
3.2 Chunking Guidelines 

The tagset used for ILCI chunk annotation for both the 

languages has been developed by Bharati et. al. (2006) 

under the Indian Languages Machine Translation 

(ILMT) consortium project sponsored by the 

Technology Development in Indian Languages (TDIL) 

program of Department of Electronics and Information 

Technology (DeitY). There are eleven chunk tags 

defined by the IIIT-H proposed guideline. 

 

Sl. 

No 

Chunk Type Tag 

1 Noun Phrase NP 

2.1 Finite Verb Phrase VGF 

2.2 Non-finite Phrase VGNF 

2.3 Infinitival Phrase VGINF 

2.4 Gerundival Phrase  VGNN 

3 Adjectival Phrase JJP 

4 Adverbial Phrase RBP 

5 Negative Phrase NEGP 

6 Conjunct Phrase CCP 

7 Fragments Phrase FRAGP 

8 Miscellaneous BLK 

ILMT Chunk Tagset 

The tool for shallow parser (word grouping) is based 

on ILMT guidelines for both Indian English and Hindi 

but does not apply BIS tag scheme because it consists 

fine-grained tags for POS annotation and here the aim 

is to keep the tags simple. The IIIT-H guideline being 

exhaustive for Indian languages helps machine 

understand the construction more precisely. The verbal 

phrase has been sub-categorized into four levels: 

finite, infinite, non-finite and gerundive. Apart from 

verb, all other phrasal categories (nominal, adjectival, 

adverbial, negation, conjunction, fragment and 

miscellaneous etc) have a single tag label for each.  

                                                           
4 http://www.tdil-

dc.in/tdildcMain/articles/134692Draft%20POS%20Tag%20s

tandard.pdf 
5https://www.ling.upenn.edu/courses/Fall_2003/ling001/pen

n_treebank_pos.html 
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Although the guideline itself was developed to 

overcome the shortcomings of annotation, there are 

several gaps which results into the low accuracy of 

tool . Some major patterns of errors (like noun and 

verb chunks) are enlisted and discussed in the 

following sections.  

 

3.3 ILCI Online Chunking Interface 

Chunking interface has been designed and developed 

at JNU, New Delhi. The tool is available online and 

currently available only for ILCI members
6
.  

 

Fig 1: ILCI Online Chunking Interface 

This interface is designed to serve user with the 

flexibility to move across parallel and monolingual 

data interfaces and selecting the file and sentences of 

his/her preference. The tool has a display window and 

tagging options similar to the POS annotation tool for 

tagging. The list of all possible chunk tags are inbuilt, 

visible through drop-down windows, and  chunking 

tool also has a selection icon for marking boundary of 

each phrase which ILCIANN
7
could not. While 

chunking, an annotator can press on the start button 

for the word from which a new phrase begins and 

mark end button at the last word of the phrase. The 

chunked output, after saving the aforementioned 

process, appears to be bracketed for each phrase in a 

string along with the POS tag labels.  

For example-  

 यू\ँRP_RPD तो\RP_RPD हर\QT_QTF तीथथ\N_NN बड़ा\JJ 

और\CC_CCD अहम\JJ  ह\ैV_VM  (Before chunked Output) 

                                                           
6
 http://sanskrit.jnu.ac.in/ilciann/index.jsp 

7
 ILCIANN stands ILCI Annotation and Translation tool.   

 [[यू\ँRP_RPD तो\RP_RPD ]]_NP [[हर\QT_QTF तीथथ\N_NN]]_NP 

[[बड़ा\JJ और\CC_CCD अहम\JJ]]_JJP [[है\V_VM]]_VGF (After 

chunked output) 

ITRANS8: yUM to hara tIrtha baDA aura aham hai 

 

3.4 Feature Selection and Implementing of 

Heuristic Rules in Hybrid Chunker 

After doing chunking annotation, we have used 

CRF++ (it is an open source tool and implemented on 

Conditional Random Fields (CRFs)
9
 for 

segmenting/labelling sequential data.) tool for 

developing the Hindi and Indian English chunker. It 

has two modules crf_learn and crf_test. Before 

training set-up, all data has to be prepared in the Inside 

Outside and Beginning format (IOB). For selecting the 

best features, we set up two experiments. First, was 

conducted on a simple model without applying 

annotation any features and second was conducted on 

context window -2, 2 on unigram parameters.  

Thereafter, we examined these chunkers and proposed 

some linguistics rules to resolve major issues like 

JJP,CCP, NP, and Verb finite.  

 

JJ+CCD+JJ  JJP 

PRP+NN   NP 

PRP+JJ+NN  NP 

PRP+PRP+NN  NP 

In Hindi we also applied rule for resolving possessive 

pronouns as adapted from Uniyal (2014). The work 

deals with evaluation of Hindi shallow parser 

developed by ILMT Consortia Group. The rules for 

conjunct verb phrase (showing errors in identification 

earlier) have been implemented for the state-of-the-art 

ILCI Hindi chunker. Some heuristic rules are 

exemplified below.  

 

4. Linguistic Analysis 
4.1 Issues with manual chunking 

 Inter-annotator disagreement  

This is a prevailing issue of machine learning where 

each annotator marks ambiguous tokens differently 

and a consensus is required. Use of emphatic markers 

in Hindi raises a similar question, whether to place it 

with the subject or with the predicate. For example: 
Hindi:  मुझे   ही  जाना         ह ै।        

ITRANS:  mujhe  hI  jAnA  hai            

       Free translation:   Only I have to go                                          

The emphatic particle hI can be part of ether the noun 

chunk as [mujhe hI] or the verb chunk as [hI jAnA]. 

This may vary along as per the meaning of the 

sentence. In this case, the particle was decided to be 

                                                           
8
 ITRANS is the ASCII standard of transliteration of Indian 

languages. 
9
  https://taku910.github.io/crfpp/ 
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kept along with the noun chunk.  

 
 Impact of Indian English 

The grammar as well as the construction of Indian 

English is different from Standard English. This 

difference in feature of Indian English might not be 

handled by Stanford chunker for English, which 

demands for a specific chunker for Indian English. 

For example: 

(1) ‘It happened once with me’ (IE
10

) and ‘once it 

happened to me’ (E
11

). 

(2) ‘I am doing it often’ (IE) and ‘I do it often’ 

(E)  

In the above examples the insertion of with and am is 

due to the influence of Hindi grammar over English. 

(3) ‘Come come! Sit down!’ 

This is a clear case of reduplication. The emphasis in 

Hindi makes use of reduplicated compounds. 

(4) ‘Two three language’ (IE) over ‘two to three 

languages’ (E) 

The omission of to marker in the above example due 

to generalization. 

All the above examples of IE (Indian English) might 

affect the chunker’s performance trained for standard 

English.  

 Infinitival chunks:  

The chunker in English splits the infinitival 

constructions into chunking ‘to-INF’ as a qualifier for 

both the co-ordinated verbs as exemplified below.   

[[Try\VBP]]_VGF [[to\TO sleep\VB]]_VGINF 

[[and\CC]]_CCP [[wake\VB up\RP]]_VGF [[on\IN 

time\NN]]_NP [[for\IN a\DT good\JJ sleep\NN]]_NP 

[[.\.]]_BLK       (IECO) 

In the above chunked example, first chunk with sleep 

head verb is correctly marked as infinitive but the 

chunk for second head verb wake up has been 

annotated as finite verb whereas both the constructions 

are infinitival. Therefore, the structure of such 

examples become challenging to annotate the second 

verb head wake up as an infinitive too. 

 An exceptional case 

In English, verb phrases like ‘take place’ need a 

special mention. In case of take place, although take 

carries the POS tag of a verb and place is tagged as a 

noun but at the phrase level, the place despite being a 

noun, functions as part of the verb phrase. Therefore, 

it is suggested to keep place under the verb phrase 

category. 

[[has\VBZ taken\VBN]]_VGF [[place\NN]]_NP        

(IECO
12

) 

[[has\VBZ taken\VBN place\NN]]_VGF                 (AO)       

 

                                                           
10

 IE= Indian English  
11 E= English (standard) 
12IECO=Indian English Chunker Output, AO=Actual Output 

 
4.2 Comparative Error Analysis of Chunkers 
 
4.2.1 NP related issues 

 CCP vs. NP 

In English, the co-ordinator phrase because of is used 

as a preposition in the following instance, which 

according to the guideline, must be annotated inside 

the following NP chunk. The chunker breaks the 

preposition and noun phrase into two, generating the 

following output:  

 [[There\EX]]_NP [[is\VBZ]]_VGF [[more\JJR 

sweating\NN]]_NP [[because\IN of\IN]]_CCP 

[[more\JJR tiredness\NN]]_NP [[.\.]]_BLK        (IECO)      

Whereas, the correct annotation demands because of 

to be both functionally and structurally a part of the 

following nominal phrase:  

 [[There\EX]]_NP [[is\VBZ]]_VGF [[more\JJR 

sweating\NN]]_NP [[because\IN of\IN more\JJR 

tiredness\NN]]_NP [[.\.]]_BLK   (AO) 

 NP vs. NP  

In the below example, the word like is a preposition 

and has to be included within the following NP.  If it is 

functioning as a verb then it can make a separate verb 

phrase. 

[[You\PRP]]_NP [[choose\VBP]]_VGF [[such\PDT 

a\DT time\NN]]_NP [[for\IN the\DT 

journey\NN]]_NP [[when\WRB]]_CCP 

[[you\PRP]]_NP [[get\VBP]]_VGF [[to\TO 

face\VB]]_VGINF [[less\JJR heat\NN]]_NP [[like\IN 

-\:]]_NP [[the\DT time\NN]]_NP [[of\IN 

morning\NN or\CC evening\NN]]_NP [[.\.]]_BLK 

 

 NP+BLK 

In case of ‘commas separating multiple entities’ (for 

example three noun phrases), each noun phrase must 

be tagged as an independent chunk as per the rule, but 

the chunker is found tagging them  as a single noun 

phrase. 

[[of\IN garlic\JJ ,\, radish\JJ ,\, ginger\NN]]_NP     

(IEACO) 

[[of\IN garlic\JJ]]_NP [[,\,]]_BLK [[radish\JJ]]_NP 

[[,\,]]_BLK [[ginger\NN]]_NP      (AO) 

 

4.2.3 CCP related issues 

 CCP vs.NP 

The Conjunctions are used to separate two head 

categories; moreover, the presence of two head words 

in a phrase is restricted at the chunk level. Therefore, 

in the following case, the chunker annotates 

NP+CCP+NP as a single noun phrase which is not a 

correct chunk. 

 [[in\IN the\DT morning\NN and\CC evening\NN]]_NP                                          

                                                                            (IEACO13) 

As per the guideline, this should be broken into two 

                                                           
13 IEACO=Indian English automatic chunker output 
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NP and a CCP as given below: 

 [[in\IN the \DT morning \NN]]_NP [[and\CC]]\CCP 

[[evening\NN]]_NP                                                         (AO) 

 Error with CCP  

The chuking guideline states CCP (conjuncts)to be 

marked as a separate chunk. But, in some cases this 

rule cannot be followed when the semantic value of 

the phrase over rules the syntactic composition. For 

example: 

(a)  [[दक्षिण\JJ]]_JJP [[और\C_CCD]]_CCP      

[[पूर्वी\JJ]]_JJP [[अफ़्रीका\N_NNP]]_NNP                  (HACO14) 

[[दक्षिण\JJ]]_JJP [[और\C_CCD]]_CCP 

[पूर्वी\JJ]]_JJP[[अफ़्रीका\N_NNP]]_NNP                      (AO) 

ITRANS: DakShiN aura pUrvI afrIkA 

Free translation: South and East Africa 

In the above example DakShiN and pUrvI are 

modifiers of the noun Africa. Therefore, it is justified 

to keep the conjunction as a separate chunk.                                             

(b) [[यू\ँRP_RPD तो\RP_RPD हर\QT_QTF तीथथ\N_NN]]_NP  

[[बड़ा\JJ]]_JJP [[और\CC_CCD]]_CCP [[अहम\JJ]]_JJP 

[[ह\ैV_VM]]_VGF      (HACO) 

 [[यू\ँRP_RPD तो\RP_RPD]]_NP [[हर\QT_QTF तीथथ\N_NN]]_NP 

[[बड़ा\JJ और\CC_CCD अहम\JJ]]_JJP [[ह\ैV_VM]]_VGF  (AO) 

ITRANS: yUM to hara tIrtha baDA aura aham hai 

Free translation: Although all the pilgrimages are 

major and important. 

But, in this example, baDA aura aham act as a 

multiword expression for the noun tIrtha, and not as 

separate modifiers holding different semantic values. 

4.2.2 VP related issues 

 

 VGNF vs. VGF: 

In the below-stated instance, the verb ‘feel’ is of non-

finite nature but is incorrectly chunked as finite 

(VGF). The verb does not inflect for tense stating the 

non-finiteness feature and hence should bear the 

VGNF chunk tag. 

 [[Therefore\RB]]_RBP [[the\DT work\NN]]_NP 

[[making\VBG]]_VGNF [[us\PRP]]_NP 

[[feel\VB]]_VGF [[more\JJR heat\NN]]_NP [[like\IN 

-\: gardening\VBG ,\,]]_NP [[ironing\VBG 

etc\NN]]_NP [[should\MD be\VB done\VBN]]_VGF 

[[early\RB]]_RBP [[in\IN the\DT morning\NN]]_NP 

[[.\.]]_BLK                                                     (IEACO) 

 

                                                           
14 HACO= Hindi automatic chunker output 

5. Architecture of Hybrid Chunker  

The chunker (fig.2) presented is based on hybrid 

approach. It is a combination of statistical (CRF++) 

and implementation of heuristic rules. It functions in 

the following way.  

First, the user provides raw input (Hindi or Indian 

English) to the GUI interface. Second, the input text is 

tokenized and tagged by automatic POS taggers. For 

annotation purposes, we have developed SVM-based 

Hindi POS tagger and applied Stanford tagger (for 

Indian English). Third, the POS tagged output moves 

into CRF++ chunker. Fourth, the chunked output is 

mapped with the database having exceptional cases 

with manual marking of errors. In other words, the 

database consists of observed errors of the chunker 

with their corresponding corrected output and rules for 

implementation for each of the language. Then, if the 

chunked output is not correctly mapped with the 

database, applies the codes for rules implementation or 

else it directly goes to the Hybrid chunker. Finally, the 

data is de-tokenized by the detokenizer as an output.    

Fig 2: Architecture of Hybrid Chunker 

6. Evaluation of Chunkers 

The over-all accuracy of the Hindi chunker is 88.84 % 

and for Indian English it is 89.04%.  

Table 1. Overall accuracies of Hybrid Chunkers (%) 

As the paper focuses on the evaluation of chunkers for 

Hindi and Indian English specifically, it is important 

to mention that the listed accuracies apply only for the 

Language Accuracy Precision Recal

l 

FB1 

Hindi 88.84 88.89 82.76 85.41 

Indian 

English 

89.04 84.95 85.16 85.05 
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data of Indian English and the same tool may give 

different results if trained for Standard English or any 

other variety of Hindi like Dakhhini or the one spoken 

in Maharashtra. 

The chunker for Indian English has been tested on 

data sets of 36,766 tokens with 13412 chunks. The 

rate of error was found to be the highest in adverbial 

phrase with the acquired accuracy of 20%, such issues 

are also found in the output of chunked data. The 

chunker was found performing with better accuracy on 

infinitive verb, finite verb, noun phrases, non-finite 

verb and CCP with 90, 84, 82, 77 and 75% 

respectively. No issues were reported for 

miscellaneous tokens.  

      Fig 3: Accuracy per Chunk Tags of Indian English (%) 

 
The Hindi chunker was tested on a total no. of 37,854 
tokens with 14,234 chunks. As per the evaluation 
report Hindi tagger performed well for verb infinitive, 
non finite verbs and nouns with 90.3, 84.2 and 82.6 % 
accuracy. It has given moderate accuracies of 75 and 
74.4 % for coordinators and non finite verbs, 
respectively. The chunker for Indian English has 
reported no issues with miscellaneous tags. And 
adjectival and adverbial chunks marked the lowest 
level of accuracies with 54.5 and 20% only. The count 
for gerunds and fragments was found zero, perhaps 
due to its unavailability in the test set. 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Fig 4: Accuracy per Chunk Tags of Hindi (%) 

 
 

7. Conclusion 

This paper explained the development of Hybrid 

chunker for Hindi and Indian English. Further, it 

discussed the need for developing the Indian English 

chunker. In addition, the paper, explores the issues 

with the disagreement of annotators during manual 

annotation, the annotation of Indian English data and 

chunker related annotation are discussed. A 

comparative analysis of issues in Hindi and Indian 

English and their comparative evaluation report are 

also presented where the Hindi chunker is found to 

have an overall accuracy of 88.84% and for Indian 

English it is 89.04 %.  

Both chunkers report the noun and verb classes to 

have the highest rate of accuracy and adverbial and 

adjectival phrases with the highest rate of errors. 
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Abstract 

In this qualitative evaluation of a state-of-the-art SMT system, we study the performance on Hindi-English code-mixed tweets. Our 
study indicates that (a) language identification and transliteration can go a long way in improving the performance, (b) translation to 
the matrix language gives better results, and (c) quality of translation heavily depends on the number of switch-points and the nature of 
the embedded linguistic unit(s). 
Keywords: SMT, Code-Mixing, matrix language, embedded language 

 

1. Introduction 

Code-Mixing (CM) is the mixing of two or more 
languages in a single utterance (Gumperz 1982). CM can 
occur in both speech and writing, usually in informal 
contexts, and at different linguistic levels. CM is 
remarkably frequent in social media text produced by 
multi-linguals where it may be employed for a number of 
linguistic and paralinguistic reasons (See, e.g., Bali et al., 
2014; Barman et al 2014; Das and Gambäck, 2014; Dey 
and Fung 2014; Solorio et al., 2014; Zhang et al., 2014). 

 
It is expected that machine translation of CM text 

will be a non-trivial problem. However, while there are 
studies on how well the MT systems perform on social 
media data in presence of various kinds of noise and 
informal structure (Carrera et al, 2009; Hassan and 
Menezes, 2013; Galinskaya et al, 2014; Bertoldi et al, 
2010), we do not know of any study on the performance of 
the current MT systems on CM text. On the other hand, as 
Carrera et al. (2009) argue, translating social media text is 
extremely important because the speed and amount at 
which such content is generated, it is impossible to 
employ even semi-automatic techniques to translate a 
small fraction of such data, let alone manual translation. 
Therefore, user-generated content often goes 
untranslated, which decreases its value in globalized, 
multicultural communities. “It means that very large bulk 
of information which is being continuously generated is 
also being continuously lost behind language barriers” 
(Carrera et al., 2009). Given that as much as 17% of 
Facebook posts from India can be code-mixed (Bali et al., 
2014) and similar trends can be expected of other 
bilingual and multilingual communities, MT systems 
must handle CM if they were to be applicable on natural 
user-generated content.   
 

In this paper, we present a qualitative evaluation of a 
state-of-the-art in-house online statistical MT system on 
translation of Hindi(Hi)-English(En) CM text. The 
primary questions that we intend to answer through this 
study are: 
(a) Does the performance of an MT system degrade, and if 
so by how much, when the input is code-mixed? Thus, we 
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compare the translations of the CM tweets vis-à-vis the 
translations of their manually created pure monolingual 
counterparts; 
(b) How does transliteration affect the quality of 
translation? Since Hi-En CM text in social media (and 
even monolingual Hi text) are more often written in Latin 
script as loose and non-standard phonetic transliterations 
(Bali et al., 2014), we study the performance of the MT 
system when the input is in Latin script vs. when it is in 
Devanagari or mixed script. 
(c) How do the various structural aspects of CM (such as 
the number of code-switching points, and the type of 
syntactic unit being code-mixed: lexical item or phrases, 
nouns or verbs, etc.) affect the performance? Whether it is 
significantly easier to translate into the matrix language 
(defined in Sec 2) than the embedded language? 

 
Our findings reveal several challenges as well as 

some potential solutions to this problem. As far as we 
know, this is the first study of MT for CM text.   
  

2. Method 

In order to conduct our MT evaluation study, we collected 

59 Hi-En CM tweets and passed them through an in-house 

state-of-the-art online MT system after a series of 

transformations. The experimental setup and data creation 

process is described in this section. 

2.1 Extraction of CM Tweets 

As Hi-En code-mixing is a very common phenomenon in 

India, we handpicked a few India specific hashtags (e.g., 

#shamitabh, #delhidecides, #mahashivratri) and pulled 

out the corresponding tweets using the Twitter API. Since 

the Twitter API for language detection does not recognize 

CM tweets or transliterated Hindi tweets, we used a 

state-of-the-art Hi-En language detection system (Gella et 

al. 2013) to automatically identify the CM tweets, and 

then handpicked 59 tweets that have only intra-sentential 

code-mixing. Thus, for these tweets, it is possible to 

uniquely identify the matrix language, which is defined as 

the language that governs the grammatical relations 

between the constituents of the utterance. Any other 
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language words that are nested into the matrix constitute 

the embedded language(s) (Myers-Scotton, 1993). As 

noted in a previous study (Bali et al. 2014), we observe 

that most of the CM tweets are actually in the Latin script, 

and English embedding in Hindi matrix is far more 

common than Hindi embedding in English matrix. In our 

dataset, we had 52 tweets with Hindi matrix, and 

remaining 7 with English matrix, and all were in Latin 

script.  

2.2 Transformations and Experiments 

The tweets were appropriately normalized by adding 
punctuations, expanding the abbreviations, correcting the 
spellings of the English words, and removing hashtags, 
mentions and URLs. Let us refer to such tweets as CML 
(CM tweet in Latin script). We manually created a 
Devanagari transliteration of the whole tweet, CMD, and a 
mixed script version, where the Hindi words were in 
Devanagari and the English words in Latin script, CMM. 
We also manually translated the tweets into complete 
English(in Latin) and Hindi(in Devanagari), which we 
shall refer to as EnL and HiD. 
 

Original 

Tweet 

i know kuch galat dikhaya gya h usme fir 

hindus, but kych sach bhi hai. 

CML i know kuch galat dikhaya gaya hai usme 

for hindus, but kuch sach bhi hai. 

CMD आई नो कुछ गलत दिखाया गया ह ैउसमें फॉर दहन्िसु ्बट 

कुछ सच भी ह.ै 
CMM i know कुछ गलत दिखाया गया ह ैउसमें for hindus 

but कुछ सच भी ह.ै 
EnL I know that something wrong has been 

shown in it for Hindus, but there is some 

truth also. 
HiD मझु ेपता ह ैकी कुछ गलत दिखाया गया ह ैउसमें दहन्िओु ं

के दलए लेदकन कुछ सच भी ह.ै  

CMLHi 

(CMLμ) 
मैं जानता ह ूँ दक कुछ galat dikhaya गया हाई usme 

दहिंओु ंके दलए ह,ै लेदकन कुछ सच भी तो ह।ै 

CMDEn 

(CMDε) 

There was no something wrong has been 

shown for some true hindus butt too. 
CMMHi 

(CMMμ) 
मैं कुछ गलत दिखाया गया ह ैउसमें दहिंओु ंपर कुछ सच 

भी ह ैके दलए पता ह।ै 

CMMEn 

(CMMε) 

I know something is wrong is shown for 

hindus but also some truth. 

EnLHi 

(εμ) 
मझु ेपता ह ैदक कुछ गलत में यह दहिंओु ंके दलए दिखाया 

गया ह,ै लेदकन वहाूँ कुछ सच्चाई भी ह।ै 

HiDEn 

(με) 

I know something is wrong is shown for 

Hindus but also some truth. 

Table 1: The set of transformations shown on an 
example tweet (μ = Hi). 

 
Then we generated the following translations through 

the MT system:  
 CMLHi: CML was translated to Hi assuming that 

the original text was in En.  
 CMDEn: CMD was translated to En, assuming that 

the original text was in Hi. 
 

 CMMHi, CMMEn: CMM was translated to both 
En and Hi by selecting the source language as Hi and 
En respectively.  

 EnLHi, HiDEn: The manually translated EnL 
(HiD) was translated to Hi(En) by the MT system. 

 
Note that the MT system does not recognize an input 

in Latin(Devanagari) script as Hi(En) text. Therefore, 
CMLEn or CMDHi could not be obtained. 
Depending on the matrix(μ) and the embedded(ε) 
languages of the original tweet, we can also classify these 
transformations as follows: 
 CMLμ, CMDμ, CMMμ 
 CMLε, CMD ε, CMMε 
με and εμ: Suppose the matrix of the original tweet is 
Hi. Then the corresponding EnLHi will be considered 
as εμ and HiDEn will be considered as με. 
 
 

Type μ = Hi μ = En Overall 

CMLμ 2.904 na 2.904 

CMDμ  Na 0.848 0.848 

CMMμ 4.087 3.786 4.051 

CMLε Na 3.071 3.071 

CMDε 1.587 na 1.587 

CMMε 2.308 2.786 2.364 
μ ε 2.423 3.143 2.508 
εμ 2.981 3.214 3.008 

Table 2: Aggregate of the judgments 

 
Figure 1: Plot of performance vs. number of 

code-switching points. 
 
 
This way of classification, as we shall see in Sec 3, 

helps in interpreting the results better. Table 1 shows the 
example tweet with all its transformations and 
corresponding translations. The manual transliteration 
and translations were done by a fluent En-Hi bilingual 
who is well familiar with the social media jargons and 
usage. The Hi-En MT engine used in this study is a 
statistical system available online (removed for 
anonymity) and is one of the best systems available for 
free use.  
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2.3 Human Judgments 

All the translations obtained from the MT system were 
independently judged by two annotators. Both of them 
were fluent Hi-En bilinguals familiar with language usage 
in social media. They were shown the original CML tweet, 
and one of the 6 machine generated translations at a time. 
The judges were asked to rate the translation on a scale of 
0(complete non-sense) to 5(perfect translation). The 
ratings of 1, 2, 3 and 4 were defined respectively as “most 
of the meaning is lost”, “most of the meaning is conveyed 
though sentence is not fluent, or most of the meaning is 
lost but the sentence is fluent”, “complete meaning is 
conveyed, but the sentence is not fluent”, “complete 
meaning is conveyed, and the sentence is almost fluent 
with a few errors”. 

 
The final scores for the translations were obtained by 

averaging the ratings from the two annotators whenever 
the difference between the ratings was 1 or less. 
Whenever the difference was 2 or more (in around 10% of 
the cases), a third annotator was asked to provide a rating, 
and the final score was the average between the rating of 
the third annotator and the one which is closer to the third 
annotator. The dataset used for this study is available as 
supplementary material and will be shared publicly. 

3. Results and Observations 

Table 2 summarizes the average values of the judgment 
scores obtained across the tweets classified by matrix. We 
observe that the most acceptable translations are 
generated for CMMμ, i.e., from the mixed script tweet 
to the matrix of the language. This is not surprising 
because on an average μ=Hi tweets have 12.27 words, of 
which 3.06 words are of En; and similarly, μ=En tweets 
have 7.7 words on an average with 1.86 Hi words. Thus, 
by directly copying the matrix words to the output the MT 
system can get more than 75% of the words correctly 
translated. Furthermore, the word-order of the output 
translation, by definition, primarily depends on the matrix 
language. 

 
Now compare this to CMLμ and CMDμ. Ideally, 

these numbers should have been as high as CMMμ, but 
due to the difference in the input and output scripts, the 
numbers are significantly lower. (Here we use the term 
“significantly” lower or higher, to imply that the 
corresponding values are statistically significantly 
different according to a paired t-test, with p < 0.001). 
Thus, language detection, normalization and appropriate 
script conversion (i.e., transliteration) can heavily 
improve the performance of MT for social media. The 
importance of spelling normalization has also been 
recognized by (Hassan and Menezes, 2013) in the context 
of monolingual translations. The abysmal performance of 
translating the tweets in pure Devanagari(CMDμ & 
CMDε) is due to the fact that the MT system’s 
transliteration of Devanagari to Latin does not consider 
that the Devanagari words might actually be transliterated 
English ones. E.g., elections  इलेक्शसं  ilekshans is a 
valid phonetic transliteration, but does not serve the 
purpose. On the other hand, the Latin to Devanagari 
transliteration does seem to consider the possibility of 
words being in Hindi, which makes CMLμ for Hi 
matrix performance reasonably good. 

 
Let us now compare the performances of CMMμ 

and CMMε. The former significantly outperforms the 
latter for both the matrices. This is because the latter 
involves translation often including significant word 
re-ordering. Also note that there is a strong asymmetry in 
the performance of the two directions of translations. En 
to Hi values (row 1, 3, 8 in col 1, and 4, 6 and 7 in col 2) 
are consistently higher than the corresponding Hi to En 
values (except for εμ, where the latter is slightly higher 
than the former).  

 
One would expect the performance of the MT 

system on the monolingual inputs (μ ε, εμ) to be 
higher than that on the CM inputs. We do see that these 
values are significantly better than that for CMMε, and 
for reasons stated above, these values cannot be expected 
to be better than that of CMMμ. However, we cannot 
strictly conclude for the given set of values that CM 
necessarily hurts the quality of translation of an MT 
system. This could be due to (a) skewed nature or very 
small size of the dataset used in this study, or (b) the poor 
quality of the Hi to En translation which makes the 
baseline itself quite low and therefore, the effect of CM is 
not clearly evident. In fact, CM might help as there are at 
least a few words that do not need to be translated. 

3.1 Structural Factors 

In order to understand the factors that might influence the 
difficulty of translation of a CM text, we studied the 
number of code-switching points and the nature of the 
embedded linguistic units. A code-switching point is 
defined as a word in the text for which the language of the 
next word is different from its own. Thus, the example in 
Table 1 has three code-switching points: know, उसमें and 
but. In our dataset there are 9, 22, 12 and 16 tweets with 
respectively 1, 2, 3 and >=4 code-switching points. Fig 1 
shows the plot of number of switch-points vs. the 
performance for the different translation cases (CMDμ 
and CMLε have been skipped because they are 
applicable only to μ =En cases, which when further 
classified by number of switch points, have only 1 to 3 
examples in each class). It is quite evident from Fig 1 that 
as the number of switch points increases, the translation 
accuracy goes down for all the cases. There are a few 
anomalies due to the small size of the dataset. 

 
We also classified the embedding in CM tweets into 

single lexical words (further categorized into Nouns, 
Verbs and Other POS categories), and phrases. We 
observed that of the 33 embedding in the utterances 
judged high on translation accuracy (scores of 3.5 and 
above for CMMμ), 27 were single lexical words 
(Nouns=19, Verbs=5, Others=3) and 6 phrases. Similarly, 
in the 36 embedding with the lowest scores (2.5 and 
below) 21 were single lexical words (Nouns=14, Verbs=2, 
Others=5) and 15 phrases. Even though, the low scoring 
translations have a larger number of embedded phrases, 
there seems to be no strong correlation between the 
translation quality and type of embedding. On the other 
hand, as mentioned above, the number of switch points is 
inversely correlated with the translation performance. 
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We also conducted a very small experiment with 10 
Spanish-English CM tweets taken from the EMNLP 
shared task on code-switching (Solorio et al., 2014). Both 
the languages use Latin script and the baseline 
performance of the MT system for this language pair in 
either direction is significantly higher than Hi-En. While 
the overall accuracies were better owing to the higher 
quality of the baseline MT system, we do observe a 
significant inverse correlation between the number of 
switch points and the performance.  

  

4. Discussion and Conclusion 

The above findings indicate that translation of CM text 
cannot be simplistically labeled as an easy or difficult 
problem. It depends on three main factors: (a) Direction of 
translation: translating into matrix is far easier than 
translating into some other language (including 
embedded), (b) structure of the CM text and in particular, 
the number of code-switching points, and (c) the 
performance of transliteration and normalization 
techniques, especially when the languages use different 
scripts and the data is noisy.  
 

In the specific case of Hi-En CM, language 
detection, transliteration and normalization seems to help 
a lot. These are challenging problems that need deeper 
research. Identification of the matrix language seems 
another interesting and useful research problem. A 
technique worth trying could be to automatically convert 
CML to CMM and then CMMμ. If all these steps are 
accomplished with high accuracy, the monolingual 
sentence at the end of this process can be effectively 
processed. We plan to explore these ideas in future.  

This study has been done on a limited dataset. We plan to 

expand this dataset and also study a few more language 

pairs for CM.  
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Abstract  

In current times, the trend of mixing two or more languages together (code-mixing) in communication on social media is very popular. 

Such code-mixed chat data is enormously generated and is usually noisy, sparse and exhibits high dispersion of useful topics which 

people discuss. In such a scenario, it is very challenging to automatically extract relevant thematic information which contributes to 

useful knowledge. In order to discover latent themes from multilingual data, a standard topic model called Probabilistic Latent 

Semantic Analysis (PLSA) is used in existing literature. However, it addresses the inter-sentence multilingualism. In this paper, we 

propose a novel method which is basically based on co-occurrences of words within a code-mixed message. Thus built co-occurrence 

matrix for chat is exposed to PLSA which is used to discover thematic knowledge from it. In such code-mixed chat text, inter-sentence, 

intra-sentence and intra-word level code mixing may randomly occur. We have proved with extensive experiments that it is possible to 

use this strategy to discover latent themes from semantic topic clusters. We tested our system using FIRE 2014 dataset. 

 
Keywords:  Thematic Knowledge, Code-mixed data, Topic model, PLSA 
 

 

1. Introduction 

In recent years, communication over social networking 

has become very popular. Therefore, most of the research 

on social media text has concentrated on English chat data 

or on multilingual data at inter-sentence level where each 

message is monolingual. However, majority of chat 

communication now occurs in random mix of languages 

(Jamatia et al., 2015).  (Chandra, 2014) presented a study 

to identify the language mixing pattern in Bolywood 

movies songs. From 3784 Hindi songs of 1008 movies he 

found that 1,38,146 unique words were extracted  out of 

which 2383 were unique English words. His analysis 

claimed that the mixing of English in songs is popularly 

increasing with time.   Code mixing occurs when a person 

changes language (alternates or switches code) below 

clause level, internally inside a sentence or an utterance 

(Jamatia et al., 2015).  In particular, India is a multilingual 

country having great influence of code-mixing in 

communication. (Das and Gamback, 2014) reported 

code-switching in Facebook chat messages mixed in 

English-Bengali or English-Hindi, and stated that 

inter-sentential switching account for 60.23% and 54.71% 

respectively. Also, intra-sentential switching account for 

32.20% and 37.33% respectively. Thus, code-mixing 

while chatting has become prevalent in the current times.  

However, such large volumes of short and long chat 

messages contain lot of noise and have the main themes of 

discussion dispersed. We believe that the thematic 

knowledge from such data could point to relevant topics 

of interest to the chat system administrator or user.  

Unfortunately, it is not an easy task as the messages often 

could be code-mixed in multiple languages at different 

levels of code complexity. In this work we try to address 

these challenges based on the hypothesis which states that 

the words co-occurring in the similar context tend to be 

semantically similar.  

 
(Chandra and Kundu, 2013) proposed a hybrid approach 
combining rule based and statistical based method for 
language identification in code-mixed text. By automatic 
detection of English words in Benglish and Hinglish text, 
he pointed out challenges in computational analysis of 
code-mixed sentences like difficulty in machine 
translation, Cross-Lingual Information Retrieval (CLIR), 
POS tagging and ambiguities in mixed words. Due to the 
difficulties and lack of available language identification 
systems, we propose to drop the structure of messages by 
breaking them into bag of words and representing them in 
a co-occurrence matrix, thereby skipping the need of 
language identification.  We present a novel approach 
based on Probabilistic Latent Semantic Analysis (PLSA) 
which is capable of extracting latent thematic knowledge 
from code-mixed chat messages. 
 
The remainder of this paper is organized as follows: 
section 2 presents related work, section 3 describes the 
proposed model for thematic knowledge discovery using 
PLSA, section 4 gives experimental evaluation and 
section 5 states conclusion and future work. 
 

2. Related Work 

Topic models are powerful tools to identify latent text 

patterns in standard text domains like web page citation 

network; but social media text differs completely (Hong 

and Davison, 2010). Content analysis in social media like 

Twitter, poses unique challenges as posts are short and in 

any language unlike the standard written English on 

which many supervised models in machine learning and 

NLP are trained and evaluated (Ramage et al., 2010).  

Topic mixture for both messages and authors in the twitter 

corpus was inferred by (Hong and Davison, 2010). They 

used topic modeling for predicting popular twitter 

messages and classifying twitter users and corresponding 

messages into topical categories.   
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(Huang et al., 2013) proposes multi-task multi-label 

(MTML) classification model that combines sentiment 

and topic classification of tweets. They stated that as 

tweets are short, noisy and written in informal language 

they make classic methods of natural language processing 

not well applicable. Also, topics of tweets may not be 

perfectly exclusive and content of a tweet may cover 

multiple topics. They mapped each tweet separately as a 

feature vector. They applied Maximum Entropy (ME) to 

obtain probabilistic classification of both sentiments and 

topics concurrently.  

(Mcauliffe and Blei, 2008) proposed supervised topic 

models which functions primarily on prior knowledge and 

assumes the prior knowledge to be correct. (Ramage et 

al., 2010) proposed Labeled LDA which employs 

supervision on LDA that performs content analysis and   

classification of twitter feeds to characterize users by the 

topics they most commonly use. We cannot use 

supervised techniques as they need to prior classify 

messages into predefined classes. This requires good prior 

knowledge about the data which is not feasible in our case 

as code-mixed chat data is generated randomly in any 

language.  An unsupervised topic model is our preference 

as they do not need prior knowledge about data to infer 

latent themes from the text collection. Topic models such 

as PLSA (Hofmann, 1999) have been successfully applied 

to many applications such as sentiment analysis as they do 

not use any prior knowledge or external resources (Titov 

and McDonald, 2008).    

 (Balahur and Turchi, 2013), presented a method to 

perform sentiment analysis on multilingual tweets. They 

claimed that it is challenging to process tweet data as it is 

multilingual and contains slang, emoticons, repetition, 

misspellings etc.  To address this, they built a system 

processing tweets in English taking into account 

specificity of expression and then using a standard  

machine translation system translated the data from 

English to four languages- Italy, Spanish, French and 

German. Their work essentially needed a language 

identifier that separated the data from different languages. 

Further they manually corrected the test data and created 

gold standard for each of the target languages.  

In a multilingual country like India, we have around 22 

official languages across 29 states and millions of people 

communicating over social networks for routine tasks. 

Thus, our work is motivated by the ever increasing 

occurrence of complex code-mixing resulting in large 

volumes of chat text having useful knowledge highly 

dispersed in large noise. Hence, our proposed approach, 

attempts to verify the claim that probabilistic topics can 

be used for thematic knowledge discovery for the chat 

user or administrator.  

 

3. Thematic Knowledge Discovery using 
PLSA   

A topic model takes as input a set of documents, and 

generates clusters of words called „topics‟. These topics 

help to extract themes underlying a dataset. A popular 

topic model by (Hofmann, 1999) called Probabilistic 

Latent Semantic Analysis (PLSA) is an unsupervised 

model. This model takes as input the value „k‟ as the 

number of topics. PLSA takes as an input a dataset and 

models two kinds of distributions: i) a document-topic 

distribution that determines the distribution of topics 

within a document, and ii) a word-topic distribution that 

determines the distribution of words across the topics. 

The two distributions are estimated using an Expectation- 

Maximization approach.  The output of PLSA is the 

estimation of top „n‟ relevant words for each topic. 

Understanding of social media text especially when 

mixing of multiple languages occurs at sentence level or 

even word level in dynamically growing noisy messages 

is a very complex task.  In our proposed approach, we 

model co-occurrences of words in a message, as a unit and 

then we use probabilistic topic model PLSA (Hofmann, 

1999) to obtain useful thematic representation of our data.  

Our proposed method is designed taking into account 
code-mixed English-Hindi chat data. The plate notation for 
our proposed PLSA based model is shown in Figure 1. We 
have presented our complete method in Algorithm 1. 

  

Each code-mix chat message m and collection of 

messages M in the figure 1 is represented as an entity as 

expressed in equation 1. 

   

  M = {m1, m2, m3,…., mn} where m ⋲ M  -------------(1) 

 

We represent collection of such message entities as 

bag-of-words over the wide chat vocabulary V shown in 

figure 1, and expressed in equation 2. Topic models 

commonly represent data as bag-of –words (BOW), 

which means that the ordering of words is not considered. 

This characteristic is suitable in our context as we are 

dealing with code-mixed data, so by BOW technique, 

structure is dropped and hence each word is treated 

independently. As a result, there is no need to consider the 

language in which the word is written. Therefore, our 

proposed method handles random code-mixing as we do 

not perform language identification at all. The emphasis is 

only to find if the word is belonging to a certain topic with 

high probability. Eventually, the words which do not 

contribute to a topic will be treated as insignificant words 

which do not essentially represent useful information. 

 

m = x1, x2, x3,……, x|m|    --------------------------------(2) 

where xi ⋲ V = { w1, w2, …., wm} is a word. 

 

The key step in our method is to determine context and for 

that we believe in “higher-order co-occurrence”, i.e., how 

often words co-occur in same contexts (Heinrich, 2009). 

The word by message matrix is constructed by computing 

the frequency of each word in the respective message 
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using updateCoOccurenceMatrix( 𝑚𝑖, 𝑤𝑖 ) in the 

Algorithm 1. As the vocabulary of code-mixed chat data 

across languages generate hundreds or thousands of 

distinct words, the co-occurrence matrix becomes large. 

We eliminate the least significant noise words by using a 

stop word list.  

 

In order to extract latent thematic information we employ 

PLSA topic language model which takes as a parameter 

number of topics k giving Z set as in equation 3. 

 

Z = {z1, z2, z3,…zk} where z⋲Z is a topic.  -------------(3) 

   

Now, following the probabilistic topic based language 

model, we assume the following: 

i) Every code-mixed message mn is selected 

with probability P(m) 

ii) Every topic zi is chosen from a mixture of 

latent topics in that message mn with 

probability P(zk | mn) and  z1+ z2 + z3+….+ zn 

=  1 

iii) Every word wi in the message mn is chosen 

from multinomial topic distribution with 

probability P(w | zi). 

Since every topic is distribution over words and every 

message is distribution over topics, words and messages 

are conditionally independent. The same is specified 

giving joint probability in the equation 4. 

P(w,d) = ∑ P(z)P(m|z)P(w|z)
𝑧 ⋲𝑍

  -------------(4) 

Therefore, objective function of PLSI is expressed in the 

equation 5 as, 

 

L = ∏ ∏  𝑤∈𝑊𝑚∈𝑀 𝑃(𝑤|𝑚)𝑛(𝑚,𝑤)    ---------------(5) 

 

Since this gives non-convex optimization problem log is 

done as shown in equation 6. 

 

 =  log L             ---------------(6) 

  = ∑  𝑚 ⋲𝑀  ∑ 𝑛(𝑚, 𝑤) 
𝑤 ⋲𝑊

log ∑  𝑧 ⋲𝑍 𝑃(𝑤|𝑧) . P(z|m) 

Since we want to select a distribution that gives a word 

higher probability P(w|z), Expectation Maximization (EM)  

algorithm is used by performing the following steps: 

1. Initialize P(w|z), P(m|z) and P(z) with random 

values using rnd_init() function in Algorithm 1. 

2. Iteratively update them using E-step and M-step 

given in equation 7 to 10. 

3. Stop when the likelihood  given in equation 6 

does not change. 

 

In E-step we guess the latent values z. It does the job of 

augmenting the messages and words with z information as 

expressed in equation 7. 

 

P
(n)

 (z|w,m) = 
P(z) 𝑃(𝑛)(m|z) P(w|z)

∑ 𝑃(𝑧′) 𝑃(𝑚|𝑧′)
𝑧′

  -------------(7) 

 

M-Step step takes advantage of inferred z values and 

groups words that are in the same distribution as 

expressed in equation 8, 9 and 10. 

 

P
(n+1)

 (w|z) = 
∑ 𝑛(𝑚,𝑤) 𝑚 𝑃(𝑛)(z|m,w)

∑ 𝑛(𝑚,𝑤′) 𝑃(𝑛)(z|m,w′) 
𝑚,𝑤′

    ------------(8) 

 

P
(n+1)

 (m|z) = 
∑ 𝑛(𝑚,𝑤) 𝑤 𝑃(𝑛)(z|m,w)

∑ 𝑛(𝑚′,𝑤) 𝑃(𝑛)(z|𝑚′,𝑤) 
𝑚′,𝑤

   ------------(9) 

P(z) =     
∑ 𝑛(𝑚,𝑤) 𝑚,𝑤 𝑃(𝑛)(z|m,w)

𝑄
         ------------(10) 

where Q = ∑ 𝑛(𝑚, 𝑤) 𝑚,𝑤  

 

EM iteratively improves our initial estimate of parameters 

by using E-step and then M-step. E-step is to compute the 

lower bound (latent variable value) and M-step is to 

maximize the lower bound.  Since our data is dynamically 

growing and very noisy our immediate objective is to 

extract relevant themes which could express meaningful 

context.   

 
 
 
 
 

 

 

 

Figure 1: PLSA Plate Notation for Code-mix Messaging 

System 

  
 
Algorithm 1 Constructing Topic-based Aspect Clusters 
 
Input : Code-mixed chat message collection M, k, n 

Output : Top k Thematic clusters 

 

1. for each message 𝑚𝑖  ⋲ M do 

2.   for each word position 𝑤𝑖 ⋲ 𝑚𝑖   

3.        𝑀𝑉 updCoOccurenceMatrix(𝑚𝑖 , 𝑤𝑖   ); 
4.   endfor 

5. endfor 

6. for each topic 𝑧𝑖  ⋲ Z do 

7.   for each `message 𝑚𝑖⋲ M do 

8.     for each word position 𝑤𝑖⋲ 𝑚𝑖 do 

9.     P(𝑧𝑖 | 𝑤𝑖, 𝑚𝑖) =0; 

10.     P(𝑤𝑖 | 𝑧𝑖), P(𝑚𝑖 | 𝑧𝑖), P(𝑧𝑖)  rnd_init(); 

11.    endfor 

12.   endfor 

13.   endfor 

14. repeat 

15.   update P(z|w,m);   //Apply E-step using 𝑀𝑉 

16.   update  P(w|z), P(m|z), P(z);  

//Apply M-step using 𝑀𝑉 

17.   update ; 

18. until nochange( ); 

w m 

V 
 M 

 

z 
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19. for each topic zi ⋲ Z do 

20.   for each message 𝑚𝑖⋲ M do 

21.     for each word position wi ⋲ 𝑚𝑖 do 

22.     𝑠𝑐𝑜𝑟𝑒𝑤𝑖
  P(𝑤𝑖 | 𝑧𝑖);  

23.    𝑤𝑖 𝑤𝑖 + 𝑠𝑐𝑜𝑟𝑒𝑤𝑖
   

//Augment each 𝑤𝑖  with its 

score 

24.    endfor 

25.      endfor 

26.   endfor 

27. repeat 

28.   for each topic zi ⋲ Z do 

29.       𝑇𝑐   sort( 𝑤𝑖);      

30.    endfor 

31. until (k , n)  //Sort  k  clusters with top n words  

32. return    𝑇𝑐   

 

 

4. Experimental Evaluation 

 

4.1 Dataset 

For discovering latent themes, we performed experiments 

on FIRE 2014(Forum for IR Evaluation)
1
 shared task on 

transliterated search; which comprises of data from 

English mixed with six other Indian languages. The 

English-Hindi corpora from FIRE 2014 was introduced 

by (Das and Gamback, 2014), and it consists of 700 

messages with the total of 23,967 words which were taken 

from a Facebook chat group for Indian University 

students. As compared to the other language pairs in the 

corpora, the said English-Hindi corpus had as high as 80% 

of code-mixing percentage due to the frequent short-hand 

language or slang used in the two languages randomly 

during the chat(Das and Gamback, 2014).  For such 

code-mixed text it is highly desirable to have a means of 

automatic discovery of latent thematic knowledge. 

 

4.2 Pre-processing 

We performed tokenization of the input message text and 

then removed the stop words
2
 and punctuations. We plan 

to consider the slang occurring in the chat text in our 

future work as we found it difficult to find a suitable 

normalization method for fixing informal abbreviations in 

chat data in Hindi language. We observed from the 

messages in our experimental corpus that the slang within 

the messages is likely to recur consistently than across the 

messages e.g. the word “great” used as “gr8” consistently 

in the same message.  Since, our proposed method 

considers a message as a document; and words which 

co-occur with similar probabilities belong to the same 

topic and rejects words that have different probabilities 

across topics; we would not expect slang to bias the 

                                                           
1
 http://www.isical.ac.in/~fire/ 

2
https://sites.google.com/site/kevinbouge/stopwords-lists 

results as such but will affect the coherence of topics. 

 

4.3 Code-Mixed Message as a Document 

As stated in (Titov and McDonald, 2008), topic models 

are applied to documents to produce topics from them. 

Since our aim is to discover themes from chat messages, 

we treat each message independently and divide it into 

stream of words. Although, relationship between 

messages is lost, the data in BOW across the vocabulary 

of chat messages contributes to the construction of the 

co-occurrence matrix.  This representation is fair enough 

as it eliminates the need for language identification across 

languages code-mixed in a message.  

 

4.4 Effects of Thematic Knowledge 

 

In order to analyse the performance of our method with 
respect to topic numbers k, we experiment with different 
values and observe the effect of the same.  Each topic was 
displayed as a list of words, sorted in the decreasing order 
of probability of that word belonging to the topic.  We 
tested the performance of the proposed system by 
evaluating the interpretability of topics and analysed if 
they conform to human knowledge. We worked with two 
judges who had experience in chatting on social 
networking sites. Thematic clusters obtained as output by 
the proposed method are rankings based on word 
probability, thus in order to know the number of correct 
topical words, we evaluated these rankings using 
Precision at different levels n, where n is the rank 
position, as used in (Zhao et al., 2010). We performed this 
evaluation in two steps: 

 

i) Topic Annotation and Evaluation 

We followed (Mimno et al., 2011) (Chuang et al., 2013) to 
evaluate quality of each topic as (“good”, “intermediate”, 
or “bad”). The topics were annotated as “good” if they 
contained more than half of its words that could be 
grouped together thematically, otherwise “bad”.  Each 
topic was presented as a list of 20 most probable words in 
descending order of probabilities under that topic. The 
human judges were unaware of the model which 
generated the topics. For each topic, the judges annotated 
the topics independently and then we aggregated their 
results. Table 1 reports the Cohen‟s Kappa score for topic 
annotation, which is above 0.5, indicating good 
agreement. We observed a high score at k=3 due to 
consistently contributing few topics resulting in strong 
agreement. According to the scale the Kappa score 
increases with more number of topics as the topics get 
thematically stronger. 

 

Table 1: Cohen’s Kappa for inter-rater agreement 

Index 1 2 3 4 5 6 7 

k  3 6 9 12 15 18 21 

Precisio
n @k 

0.9
2 

0.55
4 

0.62
7 

0.63
9 

0.6
65 

0.7
22 

0.7
36 
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ii) Topic Size and Evaluation 

We followed the instructions in (Mimno et al., 2011), and 
as a baseline we consider the effect of the topic size for 
evaluating the topic quality.  Again we consider each topic 
to be a cluster of top 20 probability words of the output of 
our proposed method. Topic size refers to the number of 
tokens assigned to each topic. We requested human 
experts to provide annotations in the same scale as 
(“good”, “bad”, “intermediate”) for each word in the topic 
manually. Since judges had already annotated the topics 
earlier, annotating words in a topic was not difficult. We 
evaluated the topic quality by computing the coherence 
score and we assign it rating as suggested in (Chuang et 
al., 2013) as {1, 0.5, 0} for each (“good”, “bad”, 
“intermediate”) response respectively.  We calculate the 
coherence score using the equation 11. 

 

Coherence score = ((#of good topics*1) + (# of 

intermediate topics *0.5))/total # of words  ----------(11) 

 

Table 2 shows few example topics derived with the 

respective coherence score. 

 

Table 2: Example Topics with different coherence score 

(High coherence indicates better thematic knowledge) 

 

0.725 gandhi   years   indian   din    citizenship     

india     father     Italian   education   make  

toilets     family    studied    born   minister   

power   officially   indira   cries ek  

  

   0.665 hai   dont   people   understand   police     

traffic   mentality      things   sold   rapes 

called   toh   laws   realize   Mumbai   india   

dear  made   

 

0.525   toh    love     na    ki   india   coz    ish       

hui karna   kya    english kro    agree   

letter   yr   politicians    rahul    gandhi      

khud     don‟t    agar 

 

We can see from Table 3 that the coherence score 
increases with the increase in the topic size. As the 
number of the words per topic increase the coherence 
score also increases. Our topic coherence score is 
indicative of our observation that for the topics having 
high coherence score have more than half of the words 
that are annotated “good” and such are the words which 
commonly co-occur in co-occurrence matrix.  For 
instance in “good” topics most of the words are either 
“good” or “intermediate” and such words are highly 
co-occuring. 
 
 

Table 3 Association between topic size and coherence 

 

Topic Size Coherence 
Score 

Coherence 
Score 

 
3 

5 0.3 
 

0.266667 
 

10 
 

0.358333 
 

0.325 

15 0.388889 
 

0.363889 
 

20 0.454167 
 

0.4125 
 

6 5 0.288889 
 

0.466667 
 

10 
 

0.338889 
 

0.533333 
 

15 0.388889 
 

0.585185 
 

20 0.411111 
 

0.583333 
 

 
Based on the evaluation results we want to highlight the 
following points: 
1. Coherence score is high when numbers of “good” or 
“intermediate” words are high. Therefore, good words 
contribute to thematic topical words.  
2. “Bad” words are due to noise and repeated 
ungrammatical or slang words which co-occur. 

 

5.  Conclusion 

 
This paper proposed a novel task of discovering thematic 
knowledge from code-mixed chat text by computing 
co-occurrences between the words across the languages 
and utilizing the PLSA topic model for extracting latent 
topics. We conducted experiments on facebook chat data 
from FIRE 2014 and demonstrated that our method is 
applicable for discovering latent themes at different 
granularity levels. In our future work, we want to 
implement our method after applying an optimized 
normalization on the code-mixed data for obtaining more 
precise themes.  
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Abstract 

The authors present the evaluation of the Anuvadaksh English to Odia Machine Translation System which has been developed by the 
Applied Artificial Intelligence Group (AAI-G) of C-DAC, Pune applying the MANTRA Technology from English to eight Indian 
Languages in EILMT (English-Indian Languages Machine Translation) Consortium, under the TDIL (Technology Development for 
Indian Languages), Deity (Dept. of Electronics and Information Technology), Government of India. In this study, a 1k ILCI English 
sentence corpus has been used from the domain of health as input to evaluate the web-based system output in Odia. For evaluating the 
output qualitatively, the Inter-translator Agreement of three human evaluators with scores on the five point scale has been taken into 
consideration. The scores have been calculated by the Fleiss’ Kappa statistics in terms of reliability and adequacy on the basis of which 
linguistic error analysis and suggestions for improvement have been provided. The Kappa scores for reliability and adequacy are 0.30 
and 0.28 respectively which refer to the fact that both are fair. 
 
Keywords: EILMT, English-Odia MT, ILCI, reliability, adequacy, Indian language, qualitative evaluation. 
 

 

1. Introduction 

Evaluation is considered to be one of the vital steps to 

measure the performance of an NLP application (Mitkov, 

2007) or tool in terms of reliability and adequacy, 

comprehensibility and acceptability, and so on. It provides 

a background to the issues as to why an application 

functions inefficiently. It is of two types: manual and 

statistical guided by two approaches i.e. qualitative and 

quantitative research. In the former, judgments of different 

annotators are taken into consideration when measuring the 

output of the NLP tools, whereas the latter is contrary to the 

former with respect to the measuring parameter as it solely 

focuses on the statistics. Therefore, it is inevitable to 

evaluate the performance of the tool for further research 

and development in order to enhance the efficiency by way 

of figuring out various underlying issues. So, we have 

undertaken the evaluation task of the Anuvadaksh English-

Odia MT system in this study.  

1.1 The Anuvadaksh EILMT Consortium Project1 

The Anuvadaksh is one of the ambitious projects in MT 

which allows for translation of the input sentences from 

English to eight Indian languages: Hindi, Urdu, Bengali, 

Marathi, Tamil, Oriya, Gujarati and Bodo. The system has 

been trained with the data in the domains of health, tourism 

and agriculture. The project named EILMT has been 

funded by the DeitY, Government of India under the TDIL 

program. 

The EILMT tool is a hybrid system which has been 

conceptualized and developed by Consortia of 13 

Institutions in India- C-DAC, Pune, C-DAC, Mumbai, 

IIIT-Hyderabad, IISc-Bangalore, IIT-Mumbai, Jadhavpur 

University-Kolkata, Amrita University-Coimbatore, IIIT-

                                                           
1 http://cdac.in/index.aspx?id=mc_mat_anuvadaksha 
1http://eilmt.rb-aai.in/ 

Allahabad, Banasthali Vidyapeeth-Banasthali and Utkal 

University-Bhubaneswar, Dharmasing Desai University-

Nadiad, Notrth Maharastra University-Jalgaon and North 

Eastern Hill University Shillong where Applied AI Group, 

C-DAC, Pune has worked as a consortium leader. This 

system has been developed to facilitate the multi-lingual 

communities of several Indian languages. Initially, it 

focused on the domain-specific corpora of tourism and 

health. In the subsequent phases, it witnessed an extension 

into various other domains as well. The user-interface of 

the Anuvadaksh2 Machine Assisted Translation Tool (see 

Fig 1) looks like the following. 

The EILMT is a collaborative attempt of the consortium 

institutes who have made the integration of four 

fundamental Machine Translation technologies- TAG 

(Tree-Adjoining-Grammar based MT), SMT (Statistical 

based MT) and EBMT (Example-Based MT) and 

AnalGen (Analyze and Generate Rules). The associated 

modules such as Named Entity Recognizer (NER), Word 

Sense Disambiguation (WSD), LRMT (Linguistic 

Resource Management Tool) etc. have been developed by 

the respective consortia members. 

Figure 1: User Interface of the Anuvadaksh MT Platform 

2http://eilmt.rb-aai.in/ 
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1.2 Salient Features of the Anuvadaksh EILMT 

System3 

 Transaction on the TDIL web portal 

 LPMF (Localization Project Management 

Framework) is applying Anuvadaksh MT Assisted 

Tool as a web service. 

 The Anuvadaksh is an integration of four MT 

technologies: EBMT, SMT, TAG and AnalGen.4 

 It has translation options for eight Indian languages. 

 Synonym selection option provides an option to 

select synonym of words in the output. 

 Typing facility in eight target Indian languages 

 Transliteration facility for eight languages 

 Retaining the original format of English text 

 Feedback facility for the users on the translation 

output. 

 W3C compliant System 

 Cross browser compatibility for IE, Mozilla Firefox, 

Google Chrome, Apple Safari and Opera 

1.3 Architecture of the Anuvadaksh EILMT 

System 

 

Figure 2: Architecture of the Anuvadaksh MT 

Pre-processing Module: As in (see Fig 2), it prepares 

English input text into machine readable form with the 

assistance of the text extraction from the uploaded data and 

translation of those data for different formats such as .rtf, 

.html, .txt and .xls etc. After the extraction and formatting 

of the text, it goes to the morphological analyser which 

analyses the prefixes and suffixes of words. The parts of 

speech tagger annotates each token by labelling a symbolic 

                                                           
3 http://www.tdil-dc.in/tdildcMain/IPR/Anuvaadaaksh.pdf 
4 http://www.tdil-

tag. The NER (Named Entity Recognizer) recognizes the 

proper nouns and annotates them in a running text. The task 

of the WSD is to resolve the ambiguity level of the words 

in a given context. The final processes of this module are 

NP chunking and clause identifier. The former groups 

different components of the noun phrase into a single 

phrase boundary while the latter detects the boundary of 

different types of clauses: finite, non-finite, independent, 

subordinate and so on. 

Collation and Ranking Module: It consists of four 

important engines that facilitate the task of MT. The EBMT 

matches different linguistic fragments (words, phrases, 

clauses, sentences etc.) of the input language against 

already existing exemplary fragments. After the 

identification of the appropriate fragments, it reorders them 

in the output language and produces them. The SMT 

performs the task of translation when bilingual text corpora 

are provided in both the SL (Source Language) and TL 

(Target Language). The TAG provides linguistic 

information by analysing the input text in terms of drawing 

trees. The syntactic trees help show the relation of a 

fragment with the others in a sentence. The AnalGen 

analyses the text and generates rules as the platform is 

based on the hybrid approach. 

Post-processing Module: Morph synthesizer helps 

enhance the accuracy rate of the application as it analyses 

the morphemes of a given language. It could be of great 

help to especially the agglutinative languages like Odia 

(Mohapatra and Hembram, 2010). Finally, the English 

input text is converted into the Odia and other Indian 

languages. The process of synonym selection is an optional 

step. 

2. Linguistic Analysis of Errors 

The 1k input English data for the evaluation has been 

selected from the domain of health. The sentences have 

been provided to the web-based user interface of the 

Anuvadaksh MT system and collected in bulk phase by 

phase as Odia output. The errors and other discrepancies in 

the output sentences have been observed on the basis of 

which solutions have been suggested so that the efficiency 

of the tool can be improved. 

The errors have been categorized into two broad classes: 

typological and syntactic (see Table 1 below). On one hand, 

the former has been further sub-categorized into five sub-

categories such as tokenization, morphological, chunking, 

parsing and semantic. On the other, the latter has also been 

further sub-divided into five sub-divisions transitive-

intransitive, finite-nonfinite, word-order, 

negative/interrogative/imperative sentence and agreement. 

They are discussed vividly below. 

The tabulated data (see table 1 above) demonstrates the fact 

that the error rate has been evaluated based on two broad 

upper-level categories of errors: error types and sentence 

types. The former category has further been classified into 

two broader types, viz. typological and grammatical. The 

dc.in/index.php?option=com_vertical&parentid=72&lang=en 

111



typological errors have been categorized into five sub-

classes: tokenization (6), morphological (34.8), chunking 

(10.8), parsing (28.8) and semantics (19.6). The 

grammatical errors have been classified into six sub-classes: 

finite-nonfinite (49.2), transitive-intransitive (8), word 

order (9.6), negative/interrogative/imperative (12.4), 

agreement (10.8) and others (10). 
 

Error 

Types 

 Typological Tokenization 6 

Morphological 34.8 

Chunking 10.8 

Parsing 28.8 

Semantics 19.6 

Grammatical Finite-nonfinite 49.2 

Transitive-

intransitive 

8 

Word order 9.6 

Negative/interrog

ative/imperative 

12.4 

Agreement 10.8 

Others 10 

Sentenc

e Types 

Simple 50.4 

Compound 8.4 

Complex 41.2 

 
Table 1: Error and Sentence Types 

2.1 Typological 

This class of errors mostly pertains to various stages of the 

NLP such as tokenization, morphological analysis, 

chunking, parsing and semantics. They are as follows. 

2.1.1 Tokenization 

Input: All India Doctors’ Association 

Output: sɔbʊ bʰɑrɔt̪ɔ ɖɑkt̪ɔrɔrɔ sɔŋɔʈʰɔnɔ 

Input: All India Doctors Association 

Output: sɔbʊ bʰɑrɔt̪ɔ ɖɑkt̪ɔrɔ sɔŋɔʈʰɔnɔ 

From the above drawn examples, it is quite obvious that 

when there is genitive possessive endings with the plural 

input NPs, the output tokenization is wrongly translated as 

singular NP without possessive token. This sort of issue 

persists with other tokenization errors as well. 

2.1.2 Morphological 

Input: The left over pieces of food is cleaned by it. 

Output: kʰɑd̪jɔrɔ bɑmɔre kʰɔnɖɔ ɔʈe ɔʈe ehɑ d̪ʋɑrɑ 

pɔrɪskɑrɔ 

In the above mentioned instance, the noun phrase in 

English ‘the left over pieces’ has been lexically translated 

into Odia as ‘piece of the left of food’ which is absolutely 

incorrect. Similarly, many of the English or words from 

other languages as English input data has been either 

transliterated into Odia or translated morphologically. 

2.1.3 Chunking 

Input: But most of the people give less than one minute for 

this. 

Output: kɪnt̪ʊ lɒkɔrɔ sɔbʊʈʰɑrʊ ehɑ pɑɪ ̃ ekɔ mɪnɪʈrʊ kɔm 
ɔrpɔɳɔ kɔrɔnt̪ɪ 
The English input chunk ‘most of the people’ has been 
translated as ‘of all of the people’ in Odia output. The 
accurate chunking of the phrase along with other corrected 
phrases need be translated as follows: 

((kɪnt̪ʊ))_CCP ((ɔd̪ʰɪkɑnsɔ)(lɒkɔ))_NP ((ehɑ)(pɑɪ)̃)_NP 

((ekɔ)(mɪnɪʈrʊ))_NP ((kɔm))_JJP ((d̪ɪɔnt̪ɪ))_VGF 

((.))_BLK 

2.1.4 Parsing 

Input: Try your best to quit it. 

Output: ehɑ cʰɑɖɪ d̪ebɑ pɑɪ ̃t̪ʊmɔrɔ bʰɔlɔ cesʈɑ kɔrɔnt̪ʊ 

Input: Clean the mouth after meal. 

Output: kʰɑd̪jɔ pɔre pɔrɪskrʊt̪ɔ mʊkʰɔ 

 Food after cleaned-Adj mouth-NN 

The covert ‘you’, which is the agent of the action, is 

causing the translation wrong in the utterances. The verb 

has three arguments: you, the mouth and meal in the second 

instance. In addition, the verb is having the honorific 

marker for the second person singular without the 

morphological agreement with the subject as exemplified 

in the first example. The second person overt singular 

/t̪ʊme/ ‘you’ is -honorific while the /ɑpɔɳɔ/ ‘you’ is 

+honorific. The verb has to agree with the subject for 

person, number, honorificity and tense in Odia. Therefore, 

in the sentences, the acceptable translation can be 

+honorifics verb /kɔrɔnt̪ʊ/ verb with the counterpart subject 

/ɑpɔɳɔ/ ‘you’. Similarly, if there is a –honorific verb /kɔrɔ/, 

then there need to be a –honorific agreeing subject /t̪ʊme/ 

or /t̪ʊ/ ‘you’. If these sorts of examples are being provided 

to the machine with appropriate parsing rules, then the 

machine can perform more efficiently. 

2.1.5 Semantics 

Input: Paralysis may be controlled by yoga. 

Output: pɔkʰjɑgʰɑt̪ɔ ɟɒgɔ d̪ʋɑrɑ nɪjɔnt̪rɪt̪ɔ hɒɪpɑre 

In the above instantiated example, the output sentence is 

correct considering it from the point of view of grammar. 

On the contrary, it is not semantically correct as the action 

/sɑʂɪt̪ɔ kɔrɪbɑ/ ‘to rule’ can only operate on the beneficiary 

of the action only when it is an animate being. In the 

example, both the agent and the patient are inanimate 

beings and hence the verb is not appropriate. Therefore, the 

proper translated output is /pɔkʰjɑɡʰɑt̪ɔ ɟɒɡɔ d̪ʋɑrɑ 

nɪjɔnt̪rɪt̪ɔ hɒɪpɑre or kɔrɑɟɑɪpɑre/. 
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2.2 Grammatical 

There are several grammatical errors committed by the 

platform. Out of those errors, the highest number of errors 

from different broader categories has been discussed below. 

The errors pertaining to finite-nonfinite and transitive-

intransitive verbs, word order, agreement and types of 

sentences are higher in comparison to the other broad 

categories. 

2.2.1 Finite-nonfinite Verbs 

Input: State the solutions of prevention. 

Output: nɪrɑkɔrɔɳɔrɔ ɔbɔst̪ʰɑ sɔmɑd̪ʰɑnɔ ? 

In most of the cases, the translation output in Odia does not 

have finite and nonfinite verbs or are wrongly translated. In 

this case, the finite verb ‘state’, inflecting for the person, 

number and tense has not at all been translated into Odia. 

Thus, it can be stated that there is the loss of the finite verb 

in the process of translation. 

2.2.2 Transitive-intransitive Verbs 

Input: Your self-confidence also increases with clean teeth. 

Output: t̪ʊmɔrɔ sʋɔbɪsʋɑsɔ mɔd̪ʰjɔ d̪ɑnt̪ɔ sɔhɪt̪ɔ brʊd̪d̪ʰɪ 

kɔrɑe (V-trans, caus) 

The transitive verb is one of the types of verbs which 

mandatorily has to have an object while the intransitive 

verb needs not have an object. In the above instance, the 

English verb ‘increase’ is wrongly translated into Odia as a 

transitive-causative verb /brʊd̪d̪ʰɪ kɔrɑe/ ‘cause to increase’ 

which should be an intransitive verb /brʊd̪d̪ʰɪ hʊe/ 

‘increases’. 

2.2.3 Word Order 

Input: Summer season has started. 

 S  V  O 

Output: ɡrɪsmɔ rʊt̪ʊ ɔcʰɪ prɑrɔmbʰɔ 

 S  V  O 

In the above-mentioned example, the word order has been 

reversed when translated into Odia. For instance, the 

unmarked word order for English is SVO while for Odia, it 

is SOV. Contrastingly, the order has been translated into 

English SVO order. 

2.2.4 Negative Inversion 

Input: See then how a thing is not remembered. 

Output: D̪ekʰɔ pɔre kemɪt̪ɪ ɡɒʈɪe bɔst̪ʊnɑhɪ ̃ (neg.) mɔne 

rɔkʰɔ (V-finite) 

In the English input sentence, the negative is used after the 

auxiliary verb which is wrongly translated as inverted 

before the finite verb in Odia. 

2.2.5 Agreement 

Input: Fresh breath and shining teeth enhance your 

personality. 

Output: (T̪ɑɟɑ sʋɑsɔ ɒ cɔmɔkʊt̪ʰɪbɑ d̪ɑnt̪ɔ) t̪ʊmɔrɔ 

 NP-3.PL.NOM 

bjɔkt̪ɪt̪ʋɔ sɔmrʊd̪d̪ʰɔ kɔrɪbɔ 

  do-3.SG.FUT.IMPFV. 

The subject agrees with the verb in person, number, tense 

and aspect in Odia (Behera, 2015). In this example, the 

noun phrase ‘fresh breath and shining teeth’ is the third 

person, plural number and the verb does not inflect for 

person and rather wrongly inflects for simple future tense 

and not the simple present in Odia. 

3. Evaluation 

Evaluation can be both statistical and human. The former 

is being conducted by different evaluation metrics such as 

WER, PER, BLEU, NIST, METEOR, LEPOR, Moses and 

so on (Koehn, 2009; Ojha, 2014). The latter is being 

conducted by inter-translator agreement by calculating 

through percentage agreement, Cohen’s Kappa, Fleiss’ 

Kappa and so on. In the evaluation section, the rationale for 

selecting the Fleiss’ Kappa has been provided by referring 

to the insufficiencies of the Percentage Agreement and 

Cohen’s Kappa. Evaluation strategy has been to evaluate 

the output data based on the five-point scale ranging from 

1-5 where  

 1 represents strongly agree 

 2 suggests partially agree  

 3 refers to neutral judgment 

 4 indicates partially disagree  

 5 suggests strongly disagree 

3.1 Percentage Agreement 

Percentage of agreement (see Table 2) has been calculated 

based on the decision of each category (1, 2, 3, 4 & 5) of 

two evaluators (A+B, B+C, C+A) and the agreement of 

three evaluators at a time on each of the mutually agreed 

categories (A+B+C). This method has been applied for 

calculating both the scores of reliability and adequacy. 

So far as reliability is concerned, the highest score of the 

agreement is registered in the category (3) of neutral i.e. 

16.6 % whereas the lowest agreement is figured in the fifth 

category i.e. 3.5%. The total agreements for the pairs of 

A+B, B+C and C+A are 49.5, 45.8 and 49.4 percentage 

respectively. The total agreement of all the evaluators for 

all the categories is 26 percentage. In this section, the 

lowest agreement is registered in the category of (5) which 

is 2.8 while the highest one is figured in the fifth category 

i.e. 6.9%. 

As far as adequacy is concerned, the highest score of the 

agreement is figured in the category of (4) i.e. 25.5% while 

the lowest one is in the category of (1) which is 3%.The 

total agreements for the pairs of A+B, B+C and C+A are 

62.7, 45.7 and 38.9 percentage respectively. The total 

agreement of all the evaluators for all the categories is 25.4 

percentage. In this section, the lowest agreement is 

registered in the category of (2) which is 0.7 while the 

highest one is figured in the fifth category i.e. 14.1%. 

 

 reliability percentage 

agreement 

adequacy percentage agreement 

 A+B B+C C+A A+ A+ B+C C+A A+B+
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B+

C 

B C 

1 
5.6 5.1 5.5 4.7 3 2.9 2.4 2.1 

2 
11.6 9.7 12 6.2 2.8 1.7 1.5 0.7 

3 

15.4 11.8 16.6 6.9 

12.

4 6.9 7.3 3.6 

4 

13.4 13.9 11.7 5.4 

25.

5 11.7 11.8 4.9 

5 
3.5 5.3 3.6 2.8 19 22.5 15.9 14.1 

T 

49.5 45.8 49.4 26 

62.

7 45.7 38.9 25.4 

 
Table 2: Percentage Agreement of Reliability and 

Adequacy 

3.2 Cohen’s Kappa 

“Kappa” is used to check the inter-rater reliability between 

or among different raters’ judgments. Kappa is of two types, 

viz. Cohen and Fleiss. In 1960, Jacob Cohen introduced 

Cohen’s Kappa. He developed it to account for the 

possibility raters’ guess on at least some variables due to 

uncertainty. Cohen’s Kappa is represented by the lower 

case Greek letter i.e. “κ”. Cohen’s Kappa is a measure of 

agreement between two raters. The two rates may agree in 

their rating or disagree. The range of Kappa is -1 to +1 

where 0 represents the amount of agreement that can be 

happened from random chance and 1 represents perfect 

agreement between the raters. Negative value of Kappa is 

also possible. The methods of measurement can be applied 

to data that are not normally distributed but is best suited to 

a close-ended ordinal scale as the five-point Likert Scale. 

Jacob Cohen suggested the result of Kappa be interpreted 

as follows:  

 If values ≤ 0 then indicating no agreement 

 If values from 0.01 to 0.20 then none to slight 

 If values from 0.21 to 0.40 then fair 

 If values from 0.41 to 0.60 then moderate 

 If values from 0.61 to 0.80 then substantial 

 If values from 0.81 to 1 then almost perfect agreement 

There are two methods to calculate Cohen’s Kappa but they 

produce different results. They are: 

 Unweighted Kappa (Cohen, 1960) is Cohen’s original 

1960 algorithm. 

 Weighted Kappa (Cohen, 1968) is described by 

Cohen in 1968 and it includes a weighting for each cell 

where weight for the cell i, j (wij =1-│i-j│/ (g-1)), g is the 

number of categories of scores. 

Cohen’s Kappa is defined as:  

κ = (pa - pε ) / (1 - pε) 

Where pa is the proportion of observed agreement and pε is 

the proportion in agreement due to chance.  

Alternatively, 

κ = (na- nε) / (1 - nε) 

Where n is number of subjects, na is the number of 

agreements and nε is the number of agreements due to 

chance. 

The theoretical maximum value of Kappa is 1 only when 

both observers distribute codes the same when sum of row 

and column is identical. 

 
κmax = (pmax- pexp) / (1 - pexp) 
 
 
 
Where pexp = ∑ pi+p+I as usual, pexp   = ∑ pi +p+i 

 

k is the number of codes, pi+ is the row probability, and p+i 

is the column probability. 

3.3 Fleiss’ Kappa 

In 1971, Joseph L. Fleiss introduced the Fleiss’ Kappa 

which is an extension of Cohen’s Kappa to measure the 

agreements between multiple raters but no weight is 

applied. It is applied when there are more than two raters. 

It is a variant of Cohen’s Kappa. It has improvement over 

a simple percentage agreement calculation as it also takes 

into account the amount of agreement that can be happened 

by chance. 

Ordinal data: Ordinal data are data sets where the 

numbers are arranged in the form of an order. An ordinal 

data set is the Likert scale where 1 represents strongly 

agree, 2 for partially agree, 3 for neutral, 4 for partially 

disagree and 5 represents strongly disagree. 

Instrument: Instrument is any measurement method 

where we used Likert Scale value. 

Raters: Raters are trained person who determines what 

score should be given to a subject. 

Subjects: Subjects represent subjects of the measurements. 

They can be represented as a group of people, animals, data 

and so on.  

Scores: Score is also called as measurement that are the 

results produced by judges or raters. 

Concordance: Concordance means how many scores 

generated by different instruments agree.  

Assume, n = number of subjects, 

k = number of rating categories and, 

m = number of judges for each subject. 

Fleiss’ Kappa, (Fleiss, 1971) there are more than two 

judges and every judge needs to rate each subject. The 

important thing is that each subject is evaluated m times. 

For every subject i=1, 2,……,n and rating categories j = 1, 

2….., k , 

Let xij= number of judges that assign category j to subject 

i. 

Therefore, 

 

0 ≤ xij≤ m ∑xij= m∑ ∑xij= mn 

 
The proportion of pairs of judges that agree in their rating 

on subject i is given by  

 

k 

i=1 i=1 

k 

n k k 

j=1 i=1 i=1 
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pi= ∑ C (xij,2) /C(m, 2)= ∑ xij(xij- 1) /m(m - 1) 

  

 

 

= (∑xij
2- ∑ xij) / m(m - 1)= ( ∑ xij

2- m) / m(m - 1) 

  

The mean of the pi is  

 

pa= p= ∑ pi /n = ∑ ( ∑ xij
2- m /m(m - 1))/ n 

 

 

=[∑ ∑ xij
2- mn ]/mn( m-1) 

 

Here we use the following measure for the error term, 

 

pε= ∑ qj
2where qj= ∑ xij/mn 

 

Fleiss’ Kappa4 is defined as 
κ = (pa - pε ) / (1 - pε) 

We can also define Kappa for the jth category  

 

κj = 1 – [ ∑ xij(m - xij) /mn(m - 1)qj(1 - qj) ] 

 

The standard error for κj is given as  

s.e.j  = √2/mn(m-1) 

The standard error for κ is given as 

 

s.e. =s.e.j.[∑  qj (1-qj)]2-∑ qj (1-qj )(1-2qj)] /∑qj(1- qj ) 

 

The test statistics zj = κj/s.e.j and z = κ/s.e. are approximated 

by a standard normal distribution which is used to calculate 

a p-value and confidence interval. Suppose 1-α confidence 

interval for Kappa is approximated by 

κ ± NORMSINV (1 – α/2)* s.e. 

4. Analysis 

Three judges have evaluated 1k5 sentences as to whether 

they strongly agree, partially agree, neutral, partially 

disagree and strongly disagree. The ratings are summarized 

in range A1:F1001. Here, we determine the overall 

agreement between the judges, subtracting out agreement 

                                                           
5http://www.real-statistics.com/reliability/fleiss-kappa/ 

due to chance, using Fleiss’ Kappa and calculating Fleiss’ 

Kappa for each data. 

For example, In Reliability data sheet (see Fig 3), we see 

that one of the judges has rated sentence 1 as strongly agree 

and 2 rated sentence 1 as partially agree and no judge has 

rated sentence 1 with neutral, partially disagree or strongly 

disagree. The following table is given below. The Kappa 

score for reliability is 0.305813 which is fair as per the 

criterion of Cohen. The score for the category of ‘fair’ 

according to Cohen is between the agreement scores of 

0.20-0.40. 

Figure 3: Fleiss’ Kappa Calculation for Reliability 

We have applied the formulas described below to find 

Fleiss’ Kappa in the worksheet. The formulas in the ranges 

I2:I13 and I16:21 are shown below in the text format: 

m =SUM(B2:F2) 

n =COUNT(A2:A1001) 

pa =(SUMSQ(B2:F1001)-I2*I3)/(I2*I3*(I2-1)) 

pe =SUMSQ(B1003:F1003) 

Kappa =(I4-I5)/(1-I5) 

s.e. =B1006*SQRT(SUM(B1004:F1004)^2-
SUMPRODUCT(B1004:F1004,1 
2*B1003:F1003)) /SUM(B1004:F1004) 

z =I6/I7 

p-value =2*(1-NORMSDIST(I8)) 

alpha =0.05 

lower =I6+I7*NORMSINV(I11/2) 

upper =I6-I7*NORMSINV(I11/2) 

q =SUM(B2:B1001)/($I$2*$I$3) 

b =B1003*(1-B1003) 

k k 

 j=1  j=1 

k k k 

 j=1  j=1  j=1 

n k 

k n n 

j=1 

i=1 

i=1 

i=1 

n k 

i=1 

j=1 

k 

k k k 

 j=1 j=1   j=1 

 j=1 

i=1 
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k =1-SUMPRODUCT(B2:B1001,$I$2-
B2:B1001)/($I$2*$I$3*($I$2-1)*B1003*(1-
B1003)) 

s.e. =SQRT(2/(I2*(I2-1)*I3)) 

z =B1005/B1006 

p =2*(1-NORMSDIST(B1007)) 

 
Table 3: Fleiss’ Kappa formula* (labeled b) has the 

formulas qj(1-qj) 

Figure 4: Fleiss’ Kappa Calculation for Adequacy 

 

Similarly, we have created an adequacy worksheet using 

the above formulas. So far as adequacy score for Kappa is 

concerned, it is 0.285287. It suggests that like the reliability 

Kappa score it is also ‘fair’. 

5. Conclusion 

Since the statistical evaluation of the machine translation 

output is not credible, we have evaluated the Anudadaksh 

platform qualitatively. The judgements of the three 

evaluators have been taken into consideration and 

evaluated by the Fleiss’ Kappa because neither the 

percentage agreement nor is Cohen’s Kappa sufficient due 

to more than two judges. The evaluation has been 

conducted on two criteria: reliability and adequacy. It has 

been observed that the Kappa scores for both the criteria 

are fair. This is indicative of the fact that the scores are just 

below the average or moderate. Therefore, the next step is 

to develop a bidirectional MT for Odia-English which will 

be qualitatively more productive than the existing one. 

The broad types of error have been evaluated on the basis 

of error and sentence types. The errors have been divided 

into two first-level categories: typological and 

grammatical. The former class has been further sub-divided 

into five sub-classes whereas the latter has also been further 

sub-classified into five sub-categories. Furthermore, there 

are three sentence types: simple, compound and complex. 

The tabulated data above demonstrates that from the 

typological section, parsing errors are the highest whereas 

from the grammatical section, the percentage of finite-

nonfinite error is the most. Firstly, the performance of the 

platform can be improved if ‘human post-editing data’ 

(Llitjos et al., 2007) as cited in (Koehn, 2014), is 

conducted. Secondly, if the agglutinating feature of Odia 

(Behera, 2015; Ojha et al., 2015; Behera et al., 2015; 

Behera & Jha, 2016) is handled properly by an efficient 

morph analyzer, then the efficiency can be enhanced. 

Thirdly, a voluminous dictionary can be applied for 

improving the efficiency of the machine translation (Ojha 

et al., 2014). Fourthly, A better parser can be applied to 

account for the issues of agreement, finite-nonfinite, 

negative inversion, interrogation and so on. Finally, a large 

number of customized training data can be applied to train 

the machine translation in order to address most of the other 

subordinate issues. An example-based MT could be 

developed to map the Odia sentences based on a number of 

specified exemplary sentences in the TL. Furthermore, a 

phrase-based MT could be statistically built in order for 

mapping different phrases in both SL and TL.  
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Appendix 

Sl. 
Nos. 

ANN 
1 

ANN 
2 

ANN 
3 

ANN 
1 

ANN 
2 

ANN 
3 

1 1 2 2 4 3 3 

2 2 2 3 2 2 3 

3 2 2 3 3 2 3 

4 2 2 3 3 3 3 

5 4 4 4 5 5 5 

6 3 5 4 5 5 4 

7 3 4 3 2 3 3 

8 3 3 4 4 3 4 

9 4 4 5 5 5 4 

10 4 4 4 5 5 5 

11 5 4 5 5 5 5 

12 4 5 4 5 5 4 

13 4 4 5 4 5 4 

14 4 5 5 5 5 4 

15 4 3 4 4 5 5 

16 4 5 5 5 5 4 

17 4 4 4 5 4 5 

18 4 4 5 5 5 5 

19 5 4 5 5 5 5 

20 2 3 4 4 4 5 

21 5 4 4 5 5 4 

22 2 2 3 4 5 5 

23 3 3 3 4 5 4 

24 2 2 3 4 4 4 

25 4 4 3 5 5 5 
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