
i

Quality Assessment for Text Simplification (QATS)

Workshop Programme

Saturday, May 28, 2016

09:00 – 09:20 Introduction by Sanja Štajner

09:20 – 10:00 Invited Talk by Advaith Siddharthan

Session: General Track

10:00 – 10:30 Gustavo H. Paetzold and Lucia Specia

PLUMBErr: An Automatic Error Identification Framework for Lexical

Simplification

10:30 – 11:00 Coffee break

11:00 – 11:30 Sandeep Mathias and Pushpak Bhattacharyya

How Hard Can it Be? The E-Score - A Scoring Metric to Assess the

Complexity of Text

11:30 – 12:00 Sanja Štajner, Maja Popović and Hanna Béchara
 Quality Estimation for Text Simplification

12:00 – 12:15 Shared Task: Introduction by Maja Popović

Session: Shared Task 1

12:15 - 12:45 Maja Popović and Sanja Štajner
Machine Translation Evaluation Metrics for Quality Assessment of

Automatically Simplified Sentences

12:45 - 13:15 Sandeep Mathias and Pushpak Bhattacharyya
 Using Machine Translation Evaluation Techniques to Evaluate Text

Simplification Systems

13:15 - 14:30 Lunch break

ii

Session: Shared Task 2

14:30 – 15:00 Gustavo H. Paetzold and Lucia Specia
 SimpleNets: Evaluating Simplifiers with Resource-Light Neural Networks

15:00 – 15:30 Sergiu Nisioi and Fabrice Nauze
 An Ensemble Method for Quality Assessment of Text Simplification

15:30 – 16:00 Elnaz Davoodi and Leila Kosseim
 CLaC @ QATS: Quality Assessment for Text Simplification

16:00 – 16:30 Coffee break

16:30 – 17:30 Round Table

17:30 – 17:45 Closing

iii

Editors

Sanja Štajner University of Mannheim, Germany
Maja Popović Humboldt University of Berlin, Germany
Horacio Saggion Universitat Pompeu Fabra, Spain
Lucia Specia University of Sheffield, UK
Mark Fishel University of Tartu, Estonia

Organizing Committee

Sanja Štajner University of Mannheim, Germany
Maja Popović Humboldt University of Berlin, Germany
Horacio Saggion Universitat Pompeu Fabra, Spain
Lucia Specia University of Sheffield, UK
Mark Fishel University of Tartu, Estonia

Programme Committee

Sandra Aluisio University of São Paolo
Eleftherios Avramidis DFKI Berlin
Susana Bautista Federal University of Rio Grande do Sul
Stefan Bott University of Stuttgart
Richard Evans University of Wolverhampton
Mark Fishel University of Tartu
Sujay Kumar Jahuar Carnegie Mellon University
David Kauchak Pomona College
Elena Lloret Universidad de Alicante
Ruslan Mitkov University of Wolverhampton
Gustavo Paetzold University of Sheffield
Maja Popović Humboldt University of Berlin
Miguel Rios University of Leeds
Horacio Saggion Universitat Pompeu Fabra
Carolina Scarton University of Sheffield
Matthew Shardlow University of Manchester
Advaith Siddharthan University of Aberdeen
Lucia Specia University of Sheffield, UK
Miloš Stanojević University of Amsterdam
Sanja Štajner University of Mannheim
Irina Temnikova Qatar Computing Research Institute
Sowmya Vajjala Iowa State University
Victoria Yaneva University of Wolverhampton

iv

Table of Contents

PLUMBErr: An Automatic Error Identification Framework for Lexical Simplification

Gustavo H. Paetzold and Lucia Specia .. 1

How Hard Can it Be? The E-Score - A Scoring Metric to Assess the Complexity of Text

Sandeep Mathias and Pushpak Bhattacharyya .. 10

Quality Estimation for Text Simplification

Sanja Štajner, Maja Popović and Hanna Béchara ... 15

Shared Task on Quality Assessment for Text Simplification

Sanja Štajner, Maja Popović, Horacio Saggion, Lucia Specia and Mark Fishel 22

Machine Translation Evaluation Metrics for Quality Assessment of Automatically Simplified

Sentences
Maja Popović and Sanja Štajner ..32

Using Machine Translation Evaluation Techniques to Evaluate Text Simplification Systems

Sandeep Mathias and Pushpak Bhattacharyya .. 38

SimpleNets: Evaluating Simplifiers with Resource-Light Neural Networks

Gustavo H. Paetzold and Lucia Specia ... 42

An Ensemble Method for Quality Assessment of Text Simplification

Sergiu Nisioi and Fabrice Nauze .. 47

CLaC @ QATS: Quality Assessment for Text Simplification

Elnaz Davoodi and Leila Kosseim ... 53

v

Author Index

Bhattacharyya, Pushpak . 10,38

Davoodi, Elnaz 53

Fishel, Mark 22

Kosseim, Leila 53

Mathias, Sandeep . 10,38

Nauze, Fabrice 47

Nisioi, Sergiu 47

Paetzold, Gustavo H. 1,42

Popović, Maja . 15, 22, 32

Saggion, Horacio .22

Specia, Lucia .1, 22, 42

Štajner, Sanja. 15, 22, 32

vi

Preface

In recent years, there has been an increasing interest in automatic text simplification (ATS) and text

adaptation to various target populations. However, studies concerning evaluation of ATS systems

are still very scarce and there are no methods proposed for directly comparing performances of

different systems. This workshop addresses this problem and provides an opportunity to establish

some metrics for automatic evaluation of ATS systems.

Given the close relatedness of the problem of automatic evaluation of ATS system to the well-

studied problems of automatic evaluation and quality estimation in machine translation (MT), the

workshop also features a shared task on automatic evaluation (quality assessment) of ATS systems.

We accepted three papers in the general track and five papers describing the systems which

participated in the shared task. The papers describe a variety of interesting approaches to this task.

We wish to thank all people who helped in making this workshop a success. Our special thanks go

to Advaith Siddharthan for accepting to give the invited presentation, to the members of the

program committee who did an excellent job in reviewing the submitted papers and to the LREC

organisers, as well as all authors and participants of the workshop.

Sanja Štajner, Maja Popović, Horacio Saggion, Lucia Specia and Mark Fishel

 May 2016

PLUMBErr: An Automatic Error Identification Framework
for Lexical Simplification

Gustavo H. Paetzold and Lucia Specia
Department of Computer Science, University of Sheffield

Western Bank, Sheffield, UK
ghpaetzold1@sheffield.ac.uk, l.specia@sheffield.ac.uk

Abstract
Lexical Simplification is the task of replacing complex words with simpler alternatives. Using human evaluation to identify errors
made by simplifiers throughout the simplification process can help to highlight their weaknesses, but is a costly process. To address
this problem, we introduce PLUMBErr: an automatic alternative. Using PLUMBErr, we analyze over 40 systems, and find out the
best combination to be the one between the winner of the Complex Word Identification task of SemEval 2016 and a modern simplifier.
Comparing PLUMBErr to human judgments we find that, although reliable, PLUMBErr could benefit from resources annotated in a
different way.

Keywords: Error Analysis, Lexical Simplification, Evaluation

1. Introduction
Lexical Simplification is perhaps the most self-contained
form of Text Simplification among all. It consists in re-
placing complex words in sentences with simpler alterna-
tives. Unlike Syntactic Simplification, it does not involve
performing any deep modifications to the sentence’s syn-
tactic structure. Despite its simplicity, it is still a very chal-
lenging task. In order to be reliable and effective, a lexical
simplifier must be able to:

1. Predict which words challenge a reader.

2. Avoid introducing any grammatical errors to the sen-
tence.

3. Avoid omitting and/or changing any piece of relevant
information in the sentence.

4. Make the sentence as simple as possible.

In previous attempts to meet all of these requirements, var-
ious solutions have been devised for the task, all of which
follow roughly the same pipeline of Figure 1.

Figure 1: Lexical Simplification Pipeline

The first lexical simplifier in literature is quite simple:
given a complex word, it extracts its synonyms from Word-
Net, and then replaces the complex word with the syn-
onym with the highest word frequency in the Brown cor-
pus (Francis and Kucera, 1979). Since then, the strate-
gies used have become much more elaborate. Take, for an

example, the approach of (Kajiwara et al., 2013), which
simplifies sentences in Japanese. They first generate candi-
date replacements for complex words by extracting words
with the same Part-of-Speech tags as them from dictio-
nary definitions, then rank them by using a very sophis-
ticated ensemble of metrics, which include frequency in
corpora, co-occurrence model similarity and semantic dis-
tance. Another modern example is the approach of (Horn
et al., 2014). They learn candidate replacements from word
alignments between complex and simple equivalent sen-
tences, then rank them using a sophisticated supervised
ranking strategy. Other notable examples are the unsuper-
vised solutions introduced by (Glavaš and Štajner, 2015)
and (Paetzold and Specia, 2016d) and the tree transduction
strategy of (Paetzold and Specia, 2013).

In order to assess and compare the performance of such
varied strategies, previous work has resorted to both man-
ual and automatic evaluation methods. The most widely
used, and arguably the most reliable, is human evaluation.
A very similar approach is used in various papers (Biran et
al., 2011; Paetzold and Specia, 2013; Glavaš and Štajner,
2015): a human judge is presented with various simplifi-
cations produced by systems and asked to make judgments
with respect to Grammaticality, Meaning Preservation and
Simplicity. Automatic evaluation approaches are very dif-
ferent. The most widely used method is the one introduced
by (Horn et al., 2014), in which the simplifications pro-
duced by a system for a set of problems are compared to
a gold-standard produced by hundreds of humans through
various metrics.

Neither of these two approaches, however, provide detailed
insight on the strengths and limitations of the simplifiers.
Although human evaluation can highlight the errors a sim-
plifier makes that lead to ungrammatical replacements, for
example, it is often hard for a human to outline the reason
why the simplifier makes such mistakes . (Shardlow, 2014)
introduces a solution to this problem. Their approach uses
human evaluation not to assess the quality of simplifica-
tions, but rather to verify the correctness of each decision

1

made by a simplifier with respect to the usual pipeline.
Although innovative, their error categorization approach is
subject to the same limitations of other human evaluation
strategies: human judgments are costly to acquire. Such
costs make the process of obtaining evaluation results pro-
hibitive.
In this paper we introduce PLUMBErr: an error analysis
framework for Lexical Simplification that introduces an ac-
cessible automatic solution for error categorization. In the
Sections that follow, we discuss the approach of (Shardlow,
2014) in more detail, and present the resources and methods
used in PLUMBerr.

2. Error Analysis in Lexical Simplification
Shardlow (2014) describes a pioneer effort in Lexical Sim-
plification evaluation. Their study introduces an error anal-
ysis methodology that allows to outline in detail the intrica-
cies of a simplifier. Taking the usual Lexical Simplification
pipeline as a basis, they first outline all possible types of
errors that a system can make when simplifying a word in
a sentence:

• Type 1: No error. The system did not make any mis-
takes while simplifying this word.

• Type 2A: The system mistook a complex word for
simple.

• Type 2B: The system mistook a simple word for com-
plex.

• Type 3A: The system did not produce any candidate
substitutions for the word.

• Type 3B: The system did not produce any simpler can-
didate substitutions for the word.

• Type 4: The system replaced the word with a candi-
date that compromises the sentence’s grammaticality
or meaning.

• Type 5: The system replaced the word with a candi-
date that does not simplify the sentence.

Finally, they establish a methodology for error identifica-
tion that uses human assessments to judge the output pro-
duced by the simplifier after each step of the pipeline. Their
methodology, which is illustrated in Figure 2, is very intu-
itive and sensible. But as previously discussed, acquiring
human judgments is often costly, which can consequently
limit the number of systems that could be compared in a
benchmark. In their work (Shardlow, 2014), for exam-
ple, they are only able to assess the performance of one
simplifier. Although they were able to gain interesting in-
sight on error types and their frequencies for their simpli-
fier, they did not cover comparisons among various Com-
plex Word Identification, Substitution Generation, Selec-
tion and Ranking strategies. PLUMBErr offers a solution
to this problem.

3. PLUMBErr: An Automatic Alternative
PLUMBErr is a framework for the automatic identifica-
tion of errors made by pipelined Lexical Simplification sys-
tems. To produce a full report on the types of errors made
by a lexical simplifier, PLUMBerr employs the same over-
all error categorization methodology introduced by (Shard-
low, 2014). However, in order to bypass the need for hu-
man judgments, it resorts to a set of pre-computed gold-
standards and a list of complex words produced by En-
glish speakers (NNSVocab).
To be evaluated by PLUMBErr, the Lexical Simplification
system is first required to solve a series of pre-determined
simplification problems present in the BenchLS dataset
(Paetzold and Specia, 2016b). Through the PLUMBErr
workflow, the judgments and resources produced by the
system after each step of the pipeline are then compared
to the gold-standards present in BenchLS, as well as the set
of complex words present in NNSVocab, which then allow
for errors to be found and categorized.

3.1. BenchLS
BenchLS is a dataset introduced by (Paetzold and Specia,
2016b), which was created with the intent of facilitating
the benchmarking of Lexical Simplification systems. It is
composed of 929 instances. Each instance contains a sen-
tence, a target word, and various gold replacements sug-
gested by English speakers from the U.S. with a variety of
backgrounds. Although these replacements are not guaran-
teed to make the sentence simpler, they do ensure that the
sentences are grammatical and meaning preserving.
The instances of BenchLS are automatically corrected ver-
sions of the instances from two previously created datasets:

• LexMTurk: Composed of 500 instances with sen-
tences extracted from Wikipedia. The target word of
each instance was selected based on word alignments
between the sentence in Wikipedia and its equiva-
lent simplified version in Simple Wikipedia. Candi-
date substitutions were produced by English speak-
ers through Amazon Mechanical Turk1. Each instance
contains 50 candidate substitutions for the target word,
each produced by a different annotator.

• LSeval: Composed of 439 instances with sentences
extracted from the English Internet Corpus of En-
glish2. The target word of each instance was selected
at random. Candidate substitutions were produced by
English speakers through Amazon Mechanical Turk,
and then validated by PhD students.

The automatic correction steps used for BenchLS are two:
spelling and inflection correction. For spelling, Norvig’s
algorithm is used3 to fix any words with typos in them.
For inflection, the Text Adorning module of LEXenstein
(Burns, 2013; Paetzold and Specia, 2015) is used to inflect
any substitution candidates that are verbs, nouns, adjectives
and adverbs to the same tense as the target word.

1https://www.mturk.com
2http://corpus.leeds.ac.uk/internet.html
3http://norvig.com/spell-correct.html

2

Figure 2: Methodology of Shardlow (2014)

3.2. NNSVocab

NNSVocab is a vocabulary of 3,854 words deemed complex
by non-native English speakers. The words in NNSVocab
were extracted from the datasets used in the Complex Word
Identification task of SemEval 2016. They were produced
through a user study with sentences whose words were an-
notated with respect to their complexity (Paetzold and Spe-
cia, 2016a).

In the user study, 400 non-native English speakers were
presented with 80 sentences each, and then asked to judge
the complexity of all content words. Annotators were in-
structed to select all content words that they did not under-
stand individually, even if the context allowed them to com-
prehend them. NNSVocab contains all words which were
deemed complex by at least one annotator in (Paetzold and
Specia, 2016a)’s user study.

Figure 3: The PLUMBErr methodology

3.3. Workflow

The workflow of PLUMBErr, which is illustrated in Fig-
ure 3, combines BenchLS and NNSVocab in a manner that
allows for all error types described in Section 2. to be iden-
tified.
The system being evaluated first takes as input the target
word from a simplification problem in BenchLS. The tar-
get word is then checked for complexity: is it in NNSVo-
cab? i.e. has it been deemed complex by a non-native?
If not, then it does not need to be simplified, otherwise, it
must be. The system then predicts the complexity of the
word, which is again cross-checked in NNSVocab. If there
is a disagreement between the system’s prediction and the
judgment of non-natives, then an error of Type 2 is identi-
fied. Otherwise, the system then goes through the steps of
Substitution Generation and Selection, and hopefully pro-
duces a set of candidate substitutions for the target complex

3

word.
The candidates produced are then checked for errors of
Type 3. If there is at least one candidate available, and it is
not a complex word in NNSVocab, then no errors are iden-
tified and the system moves on to ranking the candidates.
After Substitution Ranking, the best candidate among all
is checked for errors of type 4 and 5: if the best candi-
date is among the replacements suggested by annotators in
BenchLS, and it is not in NNSVocab, then it has success-
fully simplified the sentence.
Finally, PLUMBErr produces a full report of the errors
made in each of the problems present in BenchLS.

4. Experimental Settings
As previously mentioned, the work of (Shardlow, 2014)
features an error analysis of a single simplifier. In addition,
this simplifier does not perform any form of Complex Word
Identification or Substitution Selection. In order to show-
case the potential of PLUMBErr, we have conducted an er-
ror categorization benchmark with several Lexical Simpli-
fication systems.
The systems we chose have in common that they do not
employ any explicit Complex Word Identification steps, i.e.
they simplify all words in a sentence. In order to make our
experiments more meaningful and informative, we paired
these lexical simplifiers with various Complex Word Iden-
tification strategies:

• Simplify Everything (SE): Deems all words to be
complex. This strategy is the most commonly used
in literature.

• Support Vector Machines (SV): Using various fea-
tures, it learns a word complexity model from training
data using Support Vector Machines. As features, it
uses the words’ frequency and movie count in SUB-
TLEX (Brysbaert and New, 2009), length, syllable,
sense and synonym count. Syllables were obtained
with the help of Morph Adorner (Burns, 2013). Sense
and synonym counts were extracted from WordNet
(Fellbaum, 1998). This is the first English language
Complex Word Identification approach in literature
that uses Machine Learning (Shardlow, 2013).

• Threshold-Based (TB): Given a certain complexity
metric, it learns the threshold t through exaustive
search from the training data such as to best sepa-
rate complex from simple words. As metric, it uses
raw word frequencies from Simple Wikipedia. This
strategy achieved the highest F-score in the Complex
Word Identification task of SemEval 2016 (Paetzold
and Specia, 2016a).

• Performance-Oriented Soft Voting (PV): Combines
several Complex Word Identification strategies by
weighting their predictions according to their overall
performance in a validation dataset. We use the same
systems and settings described in (Paetzold and Spe-
cia, 2016c). This approach obtained the highest G-
score (harmonic mean between Accuracy and Recall)
in the Complex Word Identification task of SemEval
2016.

To train the supervised complex word identifiers, we use the
training set provided in the SemEval 2016 task. In the Sec-
tions that follow, we describe each of the lexical simplifier
used in our experiments.

4.1. The Devlin Simplifier
The first lexical simplifier found in literature (Devlin and
Tait, 1998). Its approaches to each step of the pipeline are:

• Substitution Generation: Extracts synonyms from
WordNet.

• Substitution Selection: Does not perform Substitu-
tion Selection.

• Substitution Ranking: Uses the words’ Kucera-
Francis coefficient (Rudell, 1993).

4.2. The Horn Simplifier
One of the most effective supervised lexical simplifiers in
literature (Horn et al., 2014). Its approaches to each step of
the pipeline are:

• Substitution Generation: Extracts complex-to-
simple word correspondences from word alignments
between Wikipedia and Simple Wikipedia.

• Substitution Selection: Does not perform Substitu-
tion Selection.

• Substitution Ranking: Learns a ranking model using
Support Vector Machines (Joachims, 2002) from the
examples in the LexMTurk dataset.

We use the same resources and parameters described in
(Horn et al., 2014).

4.3. The Glavas Simplifier
An entirely unsupervised system that performs similarly
to the Horn simplifier (Glavaš and Štajner, 2015). It ap-
proaches each step of the pipeline as follows:

• Substitution Generation: Extracts the 10 words clos-
est to a given target complex word using a word em-
beddings model.

• Substitution Selection: Does not perform Substitu-
tion Selection.

• Substitution Ranking: Ranks candidates using the
average ranking obtained for various semantic and col-
locational metrics.

We use the same resources and parameters described in
(Glavaš and Štajner, 2015).

4.4. The Unsupervised Paetzold Simplifier
An entirely unsupervised simplification system that focuses
on the needs of non-native English speakers (Paetzold and
Specia, 2016d). Its solutions to each step of the pipeline
are:

• Substitution Generation: Extracts the 10 words clos-
est to a given target complex word using a context-
aware word embeddings model.

4

• Substitution Selection: Learns an unsupervised
Boundary Ranking model from automatically pro-
duced training data, then discards the 25% candidates
with the lowest ranks.

• Substitution Ranking: Ranks the remaining candi-
dates according to their 5-gram language model prob-
ability in the context from which the target complex
word was found, with a two-token window to the left
and right.

We use the same resources and parameters described in
(Paetzold and Specia, 2016d).

4.5. The Supervised Paetzold Simplifier
This approach improves over the Unsupervised Paetzold
Simplifier with supervised learning. Its solutions to Substi-
tution Generation and Substitution Selection are the same
used by the Unsupervised Paetzold Simplifier, but instead
of an unsupervised frequency-based ranker, they use a
supervised Boundary Ranking approach for Substitution
Ranking. Their supervised approach was introduced in
(Paetzold and Specia, 2015), and learns a ranking model
from a binary classification setup inferred from ranking ex-
amples.
For Substitution Generation and Substitution Selection, we
use the same resources and parameters described in (Paet-
zold and Specia, 2016d). For Substitution Ranking, we use
the same features and feature selection strategy described
in (Paetzold and Specia, 2015), but train the model over the
LexMTurk corpus (Horn et al., 2014) as opposed to the one
used in (Paetzold and Specia, 2015), which is the training
set from the English Lexical Simplification task of SemEval
2012 (Specia et al., 2012). We do this to make our results
more comparable, given that LexMTurk is the dataset used
to train the supervised SVM ranker of the Horn Simplifier.
This decision also makes our comparison more reliable: be-
cause LexMTurk was annotated by English speakers from
the U.S. as opposed to non-native English speakers, the su-
pervised rankers used by the Horn and Supervised Paetzold
Simplifiers may not have any explicit domain advantage
over the unsupervised rankers used by the other simplifiers.
All aforementioned simplifiers were implemented with the
help of LEXenstein (Paetzold and Specia, 2015).

5. Cumulative Analysis
In our cumulative analysis, we use the same error propa-
gation technique used by (Shardlow, 2014), in which the
errors made in a given step are carried onto to the next. If a
simplifier makes a mistake in 90% of the instances during
Complex Word Identification, for example, then it will only
have 10% of the instances left during Substitution Genera-
tion. Table 1 shows the count and proportion (in parenthe-
sis) of instances in which each type of error was made for
all combinations of Complex Word Identification methods
and simplifiers. In Table 1, Paetzold-U refers to the Unsu-
pervised Paetzold Simplifier, while Paetzold-S refers to the
Supervised Paetzold Simplifier.
In Complex Word Identification, it becomes clear that Ma-
chine Learning approaches are much more reliable than the
other two alternatives. The Performance-Oriented System

Voting (PV) method makes the fewest Type 2 errors. When
it comes to the rest of the pipeline, however, the Supervised
Paetzold Simplifier (Paetzold-S) is the clear winner. It per-
forms the smallest amount of Type 3 errors during Substi-
tution Generation and Selection, but most importantly, it
offers the smallest total proportion of Type 4 and 5 Sub-
stitution Ranking errors. It is also the most consistent: it
correctly simplifies the largest number of instances across
all Complex Word Identification strategies.
Our results diverge from the findings reported in (Glavaš
and Štajner, 2015), in which no statistically significant dif-
ference was found between the Horn and Glavas Simpli-
fiers. Inspecting their output, we have found that, while the
Substitution Generation strategy used by the Horn Simpli-
fier offers higher precision, the one used by the Glavas Sim-
plifier offers higher recall. We believe that the main limi-
tation of the Horn Simplifier lies in Simple Wikipedia’s re-
duced vocabulary (190,432 distinct words), which is nearly
seven times smaller than the vocabulary from the word em-
beddings model used by the Glavas Simplifier (1,274,545
distinct words). The relatively low Precision achieved by
the Glavas Simplifier’s generator, on the other hand, is due
mostly to the fact that traditional embedding models do not
account for word ambiguity, consequently grouping substi-
tution candidates for all of the words’ meanings together.
The context-aware embeddings model used by the Paetzold
Simplifiers seem to be a good compromise between the
two: it offers the high recall, inherent to employing word
embedding models for Substitution Generation, at the same
time that it increases precision by accounting for the words’
context during generation.
For Substitution Ranking, the domain-agnostic unsuper-
vised ranker from the Glavas Simplifier seems to be more
reliable than the supervised SVM ranker from the Horn
Simplifier. Nevertheless, its performance is either equal or
inferior to the unsupervised rankers used by the Devlin and
Unsupervised Paetzold Simplifiers, which are much sim-
pler in nature. Perhaps most revealing finding is the con-
trast between the Supervised (Paetzold-S) and Unsuper-
vised (Paetzold-U) Paetzold simplifiers. The Substitution
Ranking strategy employed by Paetzold-U has shown to be
considerably less reliable than the more sophisticated su-
pervised Boundary Ranker of Paetzold-S. Effective super-
vised rankers can offer superior flexibility and reliability by
not only automatically learning how to combine multiple
features, but also by being adaptable to different domains
through the use of datasets annotated by different target au-
diences. These results are in accordance with the findings
of (Horn et al., 2014), who also reveal the potential of su-
pervised ranking strategies.
In practice, the combination between Performance-
Oriented System Voting (PV) and the Supervised Paetzold
Simplifier (Paetzold-S) yields the highest proportion of cor-
rectly simplified problems, which is in line with the previ-
ously mentioned observations.

6. Non-Cumulative Analysis
Our second experiment features a non-cumulative analy-
sis of simplifiers. Unlike in our cumulative analysis, this
experiment pairs the Lexical Simplification systems being

5

System 2A 2B 3A 3B 4 5 No Error
SE Devlin 0 (0%) 689 (74%) 86 (36%) 34 (14%) 60 (50%) 17 (14%) 43 (36%)
SE Horn 0 (0%) 689 (74%) 76 (32%) 43 (18%) 74 (61%) 15 (12%) 32 (26%)
SE Glavas 0 (0%) 689 (74%) 70 (29%) 23 (10%) 81 (55%) 20 (14%) 46 (31%)
SE Paetzold-U 0 (0%) 689 (74%) 59 (25%) 21 (9%) 82 (51%) 28 (18%) 50 (31%)
SE Paetzold-S 0 (0%) 689 (74%) 59 (25%) 21 (9%) 68 (42%) 28 (18%) 64 (40%)
SV Devlin 79 (9%) 268 (29%) 140 (58%) 25 (10%) 36 (48%) 9 (12%) 30 (40%)
SV Horn 79 (9%) 268 (29%) 115 (48%) 30 (12%) 56 (59%) 13 (14%) 26 (27%)
SV Glavas 79 (9%) 268 (29%) 122 (51%) 17 (7%) 47 (47%) 17 (17%) 37 (37%)
SV Paetzold-U 79 (9%) 268 (29%) 120 (50%) 11 (5%) 48 (44%) 22 (20%) 39 (36%)
SV Paetzold-S 79 (9%) 268 (29%) 120 (50%) 11 (5%) 41 (38%) 15 (14%) 53 (49%)
TB Devlin 13 (1%) 663 (71%) 95 (40%) 30 (12%) 57 (50%) 16 (14%) 42 (37%)
TB Horn 13 (1%) 663 (71%) 89 (37%) 42 (18%) 65 (60%) 12 (11%) 32 (29%)
TB Glavas 13 (1%) 663 (71%) 79 (33%) 20 (8%) 75 (53%) 20 (14%) 46 (33%)
TB Paetzold-U 13 (1%) 663 (71%) 69 (29%) 16 (7%) 78 (50%) 27 (17%) 50 (32%)
TB Paetzold-S 13 (1%) 663 (71%) 69 (29%) 16 (7%) 64 (41%) 27 (17%) 64 (41%)
PV Devlin 84 (9%) 232 (25%) 146 (61%) 22 (9%) 35 (49%) 8 (11%) 29 (40%)
PV Horn 84 (9%) 232 (25%) 123 (51%) 30 (12%) 50 (57%) 13 (15%) 24 (28%)
PV Glavas 84 (9%) 232 (25%) 127 (53%) 12 (5%) 46 (46%) 17 (17%) 38 (38%)
PV Paetzold-U 84 (9%) 232 (25%) 126 (52%) 9 (4%) 45 (43%) 21 (20%) 39 (37%)
PV Paetzold-S 84 (9%) 232 (25%) 126 (52%) 9 (4%) 39 (37%) 14 (13%) 52 (50%)

Table 1: Cumulative analysis results. Each column features the count and proportion (in parenthesis) of instances in which
the simplifier has made a given error.

evaluated with a “perfect” Complex Word Identification
strategy, i.e. an identifier that predicts word complexity
with 100% Accuracy. This analysis allows to better isolate
the pipeline components that compose our simplifiers, and
hence obtain more detailed insight on their performance.
Table 2 illustrates the results for Substitution Generation
and Substitution Selection. Notice that, since the Super-
vised and Unsupervised Paetzold Selectors use the same
solutions to these tasks, we represent both of them under
the “Paetzold” alias. In accordance to our previous exper-
iment, the strategies used by the Paetzold Simplifiers have
managed to make the smallest amount of Type 3 errors, out-
performing all other strategies.

System 3A 3B Total
Devlin 86 (36%) 34 (14%) 120 (50%)
Horn 76 (32%) 43 (18%) 119 (50%)
Glavas 70 (29%) 23 (10%) 93 (39%)
Paetzold 59 (25%) 21 (9%) 80 (33%)

Table 2: Non-cumulative analysis for Type 3 errors. The
third column represents the total count and proportion of
instances in which a given simplifier has performed either
error of Type 3.

The results in Table 3 report on the number of errors of Type
4 and 5, and correct simplifications made by each of the
rankers evaluated. These are very revealing: they clearly
outline the difference between using a supervised and an
unsupervised Substitution Ranking. The rankers of both
Paetzold-S and Paetzold-U have made the exact same num-
ber of Type 5 errors, which happen when the highest rank-
ing candidate does not simplify the sentence. The super-
vised Boundary Ranker of Paetzold-S, on the other hand,
has managed to produce 4% less errors of Type 4, which

happen when the highest ranking candidate compromises
the sentence’s grammaticality or meaning.

System 4 5 No Error
Devlin 156 (65%) 41 (17%) 43 (18%)
Horn 176 (73%) 32 (13%) 32 (13%)
Glavas 164 (68%) 30 (12%) 46 (19%)
Paetzold-U 147 (61%) 39 (16%) 54 (22%)
Paetzold-S 137 (57%) 39 (16%) 64 (27%)

Table 3: Non-cumulative analysis for Type 4 and 5 errors

This phenomenon is in line with the expected limitations of
a simple frequency-based ranker. In a context were the Sub-
stitution Generation solution used produces every single
suitable alternative for a complex word, and the Substitu-
tion Selection strategy employed is capable of perfectly fil-
tering all ungrammatical and meaning compromising can-
didate substitutions, a frequency-based ranker might very
well suffice. As it has been shown in previous experiments
(Carroll et al., 1998; Specia et al., 2012; Rello et al., 2013;
Paetzold and Specia, 2016d), word frequencies are one of
the strongest indicators of simplicity for many target audi-
ences, and can often outperform even sophisticated super-
vised solutions in the task of Substitution Ranking alone. In
a realistic scenario, however, generators and selectors are
not perfect. As demonstrated in the benchmarking of (Paet-
zold and Specia, 2016b). Even the state-of-the-art Sub-
stitution Generation and Selection strategies evaluated in
this contribution offer very unsatisfactory precision, which
means that rankers still have to be wary of spurious candi-
dates. By entirely disregarding the context in which a target
complex word is found, a simple frequency-based ranker is
entirely incapable of dealing with this problem. Rankers
which exploit context-aware features, on the other hand,

6

can more effectively do so.

7. Combinatory Analysis
One of the most outstanding advantages of pipelined ap-
proaches to Lexical Simplification is the flexibility that
comes with their modularity. In order to increase the per-
formance of a simplifier as a whole, one can simply attempt
to improve on the solution being used for each step of the
pipeline individually, which often disregards the need of
rethinking the model in its entirety. Perhaps the biggest ad-
vantage of pipelined simplifiers is the ease with which one
can evaluate the effectiveness of the solutions employed by
them. By simply replacing, say, the Substitution Genera-
tion approach of a consolidated simplifier from literature
with a new solution, one can quickly experiment and ac-
quire valuable insight on how promising the new strategy
is.
In our third experiment, we exploit this advantage to enrich
our findings. Table 4 shows a comprehensive error identifi-
cation benchmark of all possible combinations of Substitu-
tion Generation, Selection and Ranking strategies used by
our simplifiers. To simulate a realistic scenario, this anal-
ysis was conducted in cumulative fashion. The Complex
Word Identification approach used for all 40 system combi-
nations is Performance-Oriented System Voting, for having
performed best in the cumulative analysis of Section 5..
The scores obtained are very thought-provoking. One of
the first things we have noticed is that neither of the win-
ners of our benchmark, be it with respect to the raw count
or proportion of correctly simplified words, are among the
systems evaluated in our previous experiments. This phe-
nomenon reveals just how important it is for one to try mul-
tiple combinations of generators, selectors and rankers be-
fore deciding on the final architecture of a simplifier to be
used in practice.
Another interesting finding refers to the performance of su-
pervised rankers. The reason behind the unimpressive per-
formance of the SVM ranker used by the Horn Simplifier
in our first cumulative analysis becomes clear: the Substitu-
tion Generation solution with which it was paired is the one
to yield the lowest average amount of correctly simplified
words across all system combinations. When paired with
other generators and selectors, the Horn ranker often out-
perform most or all other rankers. Surprisingly, however,
the unsupervised Paetzold-U ranker performs outstandingly
well when paired with any combination of generators and
selectors except for the ones introduced in (Paetzold and
Specia, 2016d), which are ironically the ones it was orig-
inally paired with. These findings highlight, once more,
the effectiveness of supervised rankers, as well as the pro-
ficiency with which word frequencies from the SubIMDB
corpus, which is the one by the Paetzold-U ranker, in cap-
turing simplicity.
Nonetheless, we strongly believe that the most important
finding from our benchmark refers to the role of Substitu-
tion Selection in Lexical Simplification. In the majority of
scenarios, adding the unsupervised Boundary Ranking se-
lector used by the Paetzold Simplifiers increases the num-
ber of correctly simplified words achieved by the genera-
tor/ranker pair. More interesting yet is how their selector

affects the simplification process. It can be noticed that, in
almost all cases, incorporating the Paetzold selector leads
the simplifier to make a higher number of Type 3 errors,
but a lower number of errors of Type 4 and 5. By discard-
ing candidates which it is not confident about, the selector
lowers the Recall of the generator, at the same time that it
increases its Precision. The higher Precision allows for the
ranker to consequently make less mistakes, often leading
to an increase in the number of correctly simplified words.
Generators with inherently high precision such as the Horn
generator, however, have shown not to benefit from Substi-
tution Selection.

8. Manual vs. Automatic
Although the results in our previous experiment look very
much revealing, it is crucial that we assess the reliability of
PLUMBErr. To do so, we compare our results with the ones
reported by (Shardlow, 2014), who also analyze the perfor-
mance of the Devlin simplifier when paired with a Simplify
Everything identifier. The proportion of errors reported in
the manual approach of (Shardlow, 2014) and the automatic
approach of PLUMBErr are reported in Figure 4.

Figure 4: Error proportion comparison

While errors of Type 2 and 3 have very similar proportions,
an interesting contrast was found for errors that occur dur-
ing Substitution Ranking: the gold replacements present in
BenchLS are more restrictive than the human judgments
of (Shardlow, 2014). Nonetheless, this phenomena is ex-
pected, given that annotators of BenchLS were able to sug-
gest only a single candidate substitution for each problem.
This annotation approach compels them to suggest what
they believe to be most appropriate replacement for the tar-
get word in question, consequently leading to a lot of re-
peated suggestions, and hence a lower coverage.

9. Conclusions
In this contribution, we have introduced PLUMBErr: an au-
tomatic error identification framework for Lexical Simplifi-
cation. PLUMBErr uses the same workflow for error identi-
fication proposed by (Shardlow, 2014), but replaces human
judgments with the data from two pre-produced datasets:
BenchLS and NNSVocab.
We have used PLUMBErr to analyze the performance of
numerous combinations of Complex Word Identification
strategies and Lexical Simplification systems in literature.

7

Generator Selector Ranker 3A 3B 4 5 No Error
Devlin None Devlin 146 (61%) 22 (9%) 35 (49%) 8 (11%) 29 (40%)
Devlin None Horn 146 (61%) 22 (9%) 28 (39%) 7 (10%) 37 (51%)
Devlin None Glavas 146 (61%) 22 (9%) 40 (56%) 9 (12%) 23 (32%)
Devlin None Paetzold-U 146 (61%) 22 (9%) 31 (43%) 8 (11%) 33 (46%)
Devlin None Paetzold-S 146 (61%) 22 (9%) 43 (60%) 6 (8%) 23 (32%)
Devlin Paetzold Devlin 154 (64%) 21 (9%) 24 (37%) 8 (12%) 33 (51%)
Devlin Paetzold Horn 154 (64%) 21 (9%) 19 (29%) 7 (11%) 39 (60%)
Devlin Paetzold Glavas 154 (64%) 21 (9%) 37 (57%) 7 (11%) 21 (32%)
Devlin Paetzold Paetzold-U 154 (64%) 21 (9%) 22 (34%) 8 (12%) 35 (54%)
Devlin Paetzold Paetzold-S 154 (64%) 21 (9%) 21 (32%) 7 (11%) 37 (57%)
Horn None Devlin 123 (51%) 30 (12%) 51 (59%) 11 (13%) 25 (29%)
Horn None Horn 123 (51%) 30 (12%) 50 (57%) 13 (15%) 24 (28%)
Horn None Glavas 123 (51%) 30 (12%) 43 (49%) 11 (13%) 33 (38%)
Horn None Paetzold-U 123 (51%) 30 (12%) 37 (43%) 12 (14%) 38 (44%)
Horn None Paetzold-S 123 (51%) 30 (12%) 57 (66%) 8 (9%) 22 (25%)
Horn Paetzold Devlin 145 (60%) 30 (12%) 36 (55%) 10 (15%) 19 (29%)
Horn Paetzold Horn 145 (60%) 30 (12%) 32 (49%) 12 (18%) 21 (32%)
Horn Paetzold Glavas 145 (60%) 30 (12%) 32 (49%) 6 (9%) 27 (42%)
Horn Paetzold Paetzold-U 145 (60%) 30 (12%) 30 (46%) 5 (8%) 30 (46%)
Horn Paetzold Paetzold-S 145 (60%) 30 (12%) 42 (65%) 7 (11%) 16 (25%)
Glavas None Devlin 127 (53%) 12 (5%) 40 (40%) 16 (16%) 45 (45%)
Glavas None Horn 127 (53%) 12 (5%) 33 (33%) 18 (18%) 50 (50%)
Glavas None Glavas 127 (53%) 12 (5%) 46 (46%) 17 (17%) 38 (38%)
Glavas None Paetzold-U 127 (53%) 12 (5%) 49 (49%) 13 (13%) 39 (39%)
Glavas None Paetzold-S 127 (53%) 12 (5%) 56 (55%) 9 (9%) 36 (36%)
Glavas Paetzold Devlin 130 (54%) 14 (6%) 29 (30%) 17 (18%) 50 (52%)
Glavas Paetzold Horn 130 (54%) 14 (6%) 26 (27%) 18 (19%) 52 (54%)
Glavas Paetzold Glavas 130 (54%) 14 (6%) 37 (39%) 17 (18%) 42 (44%)
Glavas Paetzold Paetzold-U 130 (54%) 14 (6%) 24 (25%) 18 (19%) 54 (56%)
Glavas Paetzold Paetzold-S 130 (54%) 14 (6%) 40 (42%) 9 (9%) 47 (49%)
Paetzold None Devlin 115 (48%) 8 (3%) 59 (50%) 18 (15%) 40 (34%)
Paetzold None Horn 115 (48%) 8 (3%) 58 (50%) 15 (13%) 44 (38%)
Paetzold None Glavas 115 (48%) 8 (3%) 56 (48%) 25 (21%) 36 (31%)
Paetzold None Paetzold-U 115 (48%) 8 (3%) 48 (41%) 21 (18%) 48 (41%)
Paetzold None Paetzold-S 115 (48%) 8 (3%) 60 (51%) 16 (14%) 41 (35%)
Paetzold Paetzold Devlin 126 (52%) 9 (4%) 40 (38%) 21 (20%) 44 (42%)
Paetzold Paetzold Horn 126 (52%) 9 (4%) 42 (40%) 18 (17%) 45 (43%)
Paetzold Paetzold Glavas 126 (52%) 9 (4%) 45 (43%) 19 (18%) 41 (39%)
Paetzold Paetzold Paetzold-U 126 (52%) 9 (4%) 45 (43%) 21 (20%) 39 (37%)
Paetzold Paetzold Paetzold-S 126 (52%) 9 (4%) 39 (37%) 14 (13%) 52 (50%)

Table 4: Combinatory analysis results

The results reveal that the approach with the highest G-
score in the Complex Word Identification task of SemEval
2016 is the most reliable alternative among the ones eval-
uated. This observation supports the claim made by (Paet-
zold and Specia, 2016a) that the G-score is a better evalua-
tor of an identifier’s quality in practice than the traditional
F-score. The Supervised Paetzold Simplifier (Paetzold and
Specia, 2016d; Paetzold and Specia, 2015) was the one to
offer the most consistent results in our cumulative and non-
cumulative analyses, but was outperformed by other com-
binations in our cumulative combinatory analysis. We have
also found that including an effective Substitution Selection
solution in the simplification process allows the ranker to
make less mistakes, and hence avoid ungrammatical and/or
incoherent replacements.

Comparing the automatic approach of PLUMBErr with the
manual strategy of (Shardlow, 2014) shows many similari-
ties between them, but suggests that a different annotation
strategy for BenchLS might have increased its coverage,
and consequently its reliability.
PLUMBErr’s analysis algorithms can be found in the LEX-
enstein framework4, while the BenchLS and NNSVocab
datasets are available for downloaded5.
In future work, we aim to launch PLUMBErr 2.0, contain-
ing a more reliably annotated BenchLS, as well as a larger
NNSVocab.

4http://ghpaetzold.github.io/LEXenstein/
5http://ghpaetzold.github.io/data/PLUMBErr.zip

8

References
Biran, O., Brody, S., and Elhadad, N. (2011). Putting it

simply: a context-aware approach to lexical simplifica-
tion. In Proceedings of the 49th ACL, pages 496–501.

Brysbaert, M. and New, B. (2009). Moving beyond kučera
and francis: A critical evaluation of current word fre-
quency norms and the introduction of a new and im-
proved word frequency measure for american english.
Behavior research methods, 41:977–990.

Burns, P. R. (2013). Morphadorner v2: A java library for
the morphological adornment of english language texts.
Northwestern University, Evanston, IL.

Carroll, J., Minnen, G., Canning, Y., Devlin, S., and Tait,
J. (1998). Practical simplification of english newspaper
text to assist aphasic readers. In Proceedings of AAAI-
98 Workshop on Integrating Artificial Intelligence and
Assistive Technology, pages 7–10.

Devlin, S. and Tait, J. (1998). The use of a psycholinguistic
database in the simplification of text for aphasic readers.
Linguistic Databases, pages 161–173.

Fellbaum, C. (1998). WordNet: An Electronic Lexical
Database. Bradford Books.

Francis, W. N. and Kucera, H. (1979). Brown corpus man-
ual. Brown University.

Glavaš, G. and Štajner, S. (2015). Simplifying lexical sim-
plification: Do we need simplified corpora? In Proceed-
ings of the 53rd ACL, page 63.

Horn, C., Manduca, C., and Kauchak, D. (2014). Learning
a Lexical Simplifier Using Wikipedia. In Proceedings of
the 52nd ACL, pages 458–463.

Joachims, T. (2002). Optimizing search engines using
clickthrough data. In Proceedings of the 8th ACM, pages
133–142.

Kajiwara, T., Matsumoto, H., and Yamamoto, K. (2013).
Selecting Proper Lexical Paraphrase for Children. Pro-
ceedings of the 25th Rocling, pages 59–73.

Paetzold, G. H. and Specia, L. (2013). Text simplification
as tree transduction. In Proceedings of the 9th STIL.

Paetzold, G. H. and Specia, L. (2015). Lexenstein: A
framework for lexical simplification. In Proceedings of
The 53rd ACL.

Paetzold, G. H. and Specia, L. (2016a). Semeval 2016 task
11: Complex word identification. In Proceedings of the
10th SemEval.

Paetzold, G. H. and Specia, L. (2016b). Benchmarking
lexical simplification systems. In Proceedings of the
10th LREC.

Paetzold, G. H. and Specia, L. (2016c). Sv000gg at
semeval-2016 task 11: Heavy gauge complex word iden-
tification with system voting. In Proceedings of the 10th
SemEval.

Paetzold, G. H. and Specia, L. (2016d). Unsupervised lex-
ical simplification for non-native speakers. In Proceed-
ings of The 30th AAAI.

Rello, L., Baeza-Yates, R., Dempere-Marco, L., and Sag-
gion, H. (2013). Frequent words improve readabil-
ity and short words improve understandability for peo-
ple with dyslexia. Human-Computer Interaction, pages
203–219.

Rudell, A. P. (1993). Frequency of word usage and per-
ceived word difficulty: Ratings of Kucera and Francis
words. Behavior Research Methods.

Shardlow, M. (2013). A comparison of techniques to auto-
matically identify complex words. In Proceedings of the
51st ACL Student Research Workshop, pages 103–109.

Shardlow, M. (2014). Out in the open: Finding and cate-
gorising errors in the lexical simplification pipeline. In
Proceedings of the 9th LREC.

Specia, L., Jauhar, S. K., and Mihalcea, R. (2012).
Semeval-2012 task 1: English lexical simplification. In
Proceedings of the 1st SemEval, pages 347–355.

9

How Hard Can it Be? The E-Score - A Scoring Metric to Assess the Complexity
of Text

Sandeep Mathias, Pushpak Bhattacharyya
Department of Computer Science and Engineering

IIT Bombay, India
{sam,pb}@cse.iitb.ac.in

Abstract
In this paper, we present an evaluation metric, the E-Score, to calculate the complexity of text, that utilizes structural complexity
of sentences and language modelling of simple and normal English to come up with a score that tells us how simple / complex the
document is. We gather gold standard human data by having human participants take a comprehension test, in which they read articles
from the English and Simple English Wikipedias. We use this data to evaluate our metric against a pair of popular existing metrics - the
Flesch Reading Ease Score, and the Lexile Framework.

Keywords: text complexity, structural complexity, lexical complexity

1. Introduction
Today, there are many readability formulae that are used
for evaluating the readability / complexity of text. Some
of them, like the Flesch Reading Ease (Flesch, 1948) score
(FRES) are based on surface values, like average words per
sentence and average syllables per word. Others, like the
Lexile Framework (Stenner, 1996) make use of the fact that
rarer words are more complex than words that occur more
commonly in a general corpus. The C-Score (Temnikova
and Maneva, 2013) is yet another means of evaluating the
difficulty of a text. However, unlike the Lexile Framework
and Flesch Reading Ease, the C-Score is calculated using
human readers produce the data necessary to calculate it.
Yet, because the data used to calculated C-Score is gotten
manually, it is one of the best metrics for getting gold stan-
dard data about the complexity of text. Because of this,
we use the C-Score as the gold standard for estimating the
complexity of the texts used in our experiment.
The Flesch Reading Ease is one of the earliest readabil-
ity tests. In the Flesch Reading Ease score, higher valued
texts are said to be simpler to read. This readability formula
takes into account only the average number of syllables per
word, and the average number of words in a sentence of the
document.
The Lexile Framework (Stenner, 1996) makes use of the
frequency of words in a training corpus, as well as the num-
ber of words in a sentence. It takes into account the mean of
the log of the frequency of the word in a corpus, as well as
the log of the mean sentence length to calculate the score.
Currently, it is being used in the United States to provide
reading suggestions to schoolchildren, as well as assess
their reading ability as part of the Common Core Standards
for English1. Using the training corpus, each word in a test
passage is assigned a particular score - the log of their fre-
quency in the training corpus. A value, the theoretical logit
for a passage, is calculated using the mean log frequencies
of the words in the passage, as well as the log of the mean

1http://www.corestandards.org/wp-
content/uploads/Appendix-A-New-Research-on-Text-
Complexity.pdf

sentence length.
Despite the fact that Lexile is a data-driven formula, it
still suffers from criticism. Certain books, like The Li-
brary Mouse by Daniel Kirk have an abnormally high Lex-
ile rating2 despite being a children’s book, as compared to
a young adult book, Twilight by Stephanie Meyer3.
More recently, (Schwarm and Ostendorf, 2005) demon-
strated a means of classifying texts based on their complex-
ity into appropriate grade levels. (Schwarm and Ostendorf,
2005) made use of support vector machines and language
models and showed that it performed significantly better
than FRES and Lexile when it came to assigning a grade-
level for a document. While our work also makes use of
language models, it differs from (Schwarm and Ostendorf,
2005) as it gives a raw score to the difficulty of the docu-
ment, rather than the grade-level it is meant for.

2. The E-Score - Our Complexity Metric
To calculate the E-Score, we make use of two types of com-
plexity, namely:

1. Structural complexity; and

2. Lexical complexity

2.1. Structural Complexity
Structural complexity is a measure of how complex the sen-
tence is, based on its parse tree. There are many measures
of defining structural complexity. We define structural com-
plexity as follows for calculating the E-Score. For a given
sentence S, we define the structural complexity Sc, as the
number of factual statements extracted from Michael Heil-
man’s factual statement extractor4 (Heilman and Smith,
2010). A factual statement is a simple sentence that con-
tains a single fact. For example, in the sentence

2https://lexile.com/book/details/9780810993464/
3https://lexile.com/book/details/9780316015844/
4The system can be downloaded from

www.cs.cmu.edu/˜ark/mheilman/qg-2010-workshop

10

“Bernie Sanders, the Senator from Vermont, is
campaigning against Hillary Clinton, the wife of former

President Bill Clinton, to become the President of the
United States.”

gives rise to the following factual statements:

• Bernie Sanders is the Senator from Vermont. (Appos-
itive)

• Hillary Clinton is the wife of former President Bill
Clinton. (Appositive)

• Bernie Sanders is campaigning against Hillary Clinton
to become the President of the United States. (Main
Clause)

The different types of simplified factual statements we ex-
tract from an input sentence are:

1. Main clause sentences

2. Factual statements from relative clauses

3. Factual statements from appositives

4. Factual statements from noun and verb participial
phrases

5. Factual statements from other subordinate clauses

We use this definition of structural complexity because a
sentence that is more complex would have more clauses in
it that can be extracted into simpler factual statements.

2.2. Lexical Complexity
Lexical complexity is the complexity of the text based on
its vocabulary. It is based on the complexity of the words
and phrases used in the text. We use a unigram and bigram
language model of a Simple English - English parallel cor-
pus to calculate the lexical complexity of each n-gram. The
complexity of an n-gram is comprised of 2 parts, namely
the corpus complexity and the syllable count.

1. Corpus complexity For each n-gram (g) of the sen-
tence, we calculate its corpus complexity (Biran et al.,
2011), Cc(g), defined as the ratio of the log likelihood
of g in the English corpus to the log likelihood of g in
the Simple English corpus. In other words,

Cc(g) =
LL(g|normal)
LL(g|simple)

Here, we assume that every n-gram in the Simple En-
glish corpus has to occur at least once in the English
corpus. Section 4 contains more details about the cor-
pus used.

2. Syllable count We consider that readers read words
one syllable at a time. The syllable count, s(g), of an
n-gram (g) is defined as the sum of syllables of the
words in that n-gram.

With these two ideas, we go ahead and calculate the lexical
complexity of an n-gram (g) as:

Lc(g) = s(g)× Cc(g)

Hence, for a given sentence S, and an n-gram size, the lex-
ical complexity is given by

Lc(S, n) =
∑
g
s(g)× Cc(g),

where g is an n-gram of size n.
In addition to this, we also attach a weight Wn to the lexical
complexity calculated for a particular n-gram. For a given
n-gram size of n, the weight is 1

n . This is because of the
unigrams in the n-gram are added n-times. For example, if
n is 2, and we have an n-gram sequence “a b c d e f g ...”,
unigrams like b, c, d, e, f, etc. get added twice.
Therefore, we can say that the lexical complexity of a sen-
tence is given by

Lc(S) =
∑
n
Wn

∑
g
s(g)× Cc(g),

2.3. Calculating the E-Score
Both the structural complexity and the lexical complexity
contribute to the overall complexity of the text. Hence, the
formula used to calculate the E-Score is:

E =
∑
sεS

Sc(s)+Lc(s)
|S|

where S is the set of sentences in the text, and Sc and Lc
are the structural and lexical complexities respectively.

3. Data
3.1. The C-Score
The C-Score (Temnikova and Maneva, 2013), unlike the
earlier readability formulae is calculated using manual data.
It is calculated based on participants taking a multiple
choice comprehension test. It takes into account factors
like number of correct answers that the participants got,
the amount of time they took to read the passage, and the
amount of time they took to solve the individual questions.
Due to the vast differences in size of the individual arti-
cles (ranging from 84 words to 939 words), we allowed the
participants to take as much time as they needed to read
the articles (unlike (Temnikova and Maneva, 2013) which
required participants to read them in a limited time), and
normalized the C-Score based on reading time.
Like the Flesch Reading Ease Score, the C-Score is also a
measure of simplicity. The higher the value, the simpler the
text is. The formula for C-Score of a passage is

C − Score = PrTs

Tr

Nq∑
q=1

Qs(q)
tmean(q)

,

where C − Score is the C-Score of the passage, Pr is the
percentage of correct answers, Ts is the size of the text, Tr
is the mean time taken to read the text, Nq is the number
of questions in the text, Qs(q) is the size of question q, and
tmean(q) is the mean time spent in answering question q.
The question size is given by

Qs(q) = Na(q)× (Lq(q) + La(q)),

where Na(q) is the number of options for question q and
Lq and La are the lengths of the question and answers re-
spectively.

11

3.2. Getting the Data
We set up a reading comprehension test in which partici-
pants had to read a set of 8 passages, alternating between
Simple English5 and English6 Wikipedia articles. Since a
few of the articles in the English Wikipedia were too long,
only a small part was provided to the participants for read-
ing. The topics of the passages chosen were generic in na-
ture, such as art, culture, history, film, music, sports, sci-
ence and world7. Table 1 shows the sizes of various pas-
sages.

Passage Simple Normal
Art 320 939
Culture 235 705
History 196 342
Film 275 538
Music 373 284
Sports 174 381
Science 131 253
World 84 223

Table 1: Lengths of various passages

A total of 30 people took part in the experiment. Their
educational qualifications ranged from high school grad-
uates to PhD graduates. 19 of the participants were L2
English learners, while the rest were L1 English learners.
10 of them had won prizes in either the inter-school or
intra-college level in literary activities like creative writing,
quizzing, word games, scrabble, etc.
Each participant read 8 articles, alternating between Simple
English and English Wikipedia articles. After reading each
article, they had to answer 5 multiple choice questions (with
4 options each) on that passage. We measured the time
taken to read the passages, as well as attempt each question
for calculating the C-Score for various passages.
The results of the C-Score test are as shown in Table 2. In
most cases, the normal shows a lower score than the simple
(in Art, the ratio between simple to normal is more than
2). However, in a few cases, the C-Score of the simple
article is lower than that of the normal. Film has the largest
desparity, but so also does World. Film has a very high
normal value and a lower simple value because of the fact
that many respondents claimed to have knowledge of films,
as compared to other fields (the number was nearly as much
as Science). The Sports simple passage had a very long
sentence at the end of it, that while structurally simple, had
over 50 words. The World passage also showed the simple
being harder than the normal. One of the main reasons is
the fact that the size of the World “simple” passage was by
far, the shortest passage.

5http://simple.wikipedia.org
6http://en.wikipedia.org
7The Simple English article for art would be from

http://simple.wikipedia.org/wiki/Art while that for the
English Wikipedia article would be an extract from
http://en.wikipedia.org/wiki/Art

Passage Simple Score Normal Score
Art 45.81 22.68
Culture 43.09 49.11
History 59.13 38.13
Film 52 110.92
Music 55.18 37.07
Sports 38.02 68.26
Science 49.73 46.72
World 47.41 79.95

Table 2: C-Score values of different passages

4. Experimental Setup
In the previous section, we described how to get the data
against which we will be comparing our metric, as well as
the FRES and Lexile scores. We make use of the English
Wikipedia - Simple English Wikipedia (Kauchak, 2013)
parallel corpus for calculating the corpus complexity of the
n-grams. Since the corpus provides a sentence-aligned and
a document-aligned corpus, we make use of the document-
aligned corpus only for calculating the corpus complex-
ity. The Simple English Wikipedia has around 60,000 ar-
ticles, each with a corresponding English Wikipedia entry.
The document-aligned corpus has all these Simple English
Wikipedia articles as well as all their corresponding arti-
cles in the English Wikipedia. For each of the 16 articles
(8 Simple English Wikipedia and 8 English Wikipedia ar-
ticles), for which we calculated the C-Score, we calculate
the E-Score, using:

1. Michael Heilman’s factual statement extractor (Heil-
man and Smith, 2010)

2. The unigram and bigram lexical complexities from the
English Wikipedia - Simple English Wikipedia paral-
lel corpus

3. MorphAdorner8 to count the syllables in each unigram
and bigram

We also calculate the FRES and Lexile scores for each of
the articles.

5. Results and Analysis
Table 3 shows the comparison of our metric, the E-score,
with other metrics, such as Flesch Reading Ease Score and
the Lexile Framework. The values in the table are to show
how much more complex the English Wikipedia article is,
with respect to the Simple English Wikipedia article.
We use the ratios, rather than the individual text values, be-

cause each of the different metrics give different ranges and
directions for their scores. Flesch Readability Ease Score
(Flesch, 1948) has a range between 0 and 120 (although in-
dividual sentences can have a negative value) and has sim-
pler text getting a higher score. Lexile (Stenner, 1996) has a
range between 0 and over 2000 and has more complex texts
getting a higher score, unlike the C-Score. The E-Score has
a range between 0 and about 2, also with more complex

8http://morphadorner.northwestern.edu

12

Passage C-Score Flesch Lexile E-Score
Art 2.02 1.41 1.25 0.91
Culture 0.88 2.96 1.51 0.65
History 1.55 2.23 1.33 1.13
Film 0.47 1.51 0.95 1.04
Music 1.49 1.78 1.35 1.11
Sports 0.56 1.04 0.96 0.90
Science 1.06 1.59 1.56 0.90
World 0.59 1.85 1.76 1.09

Table 3: Comparison of complexity ratios of different pas-
sages with different metrics. Ratios in bold are those closest
to the ratio got from the data we got using the C-Score

texts getting a higher score. Therefore, in order to normal-
ize the values for comparison, we take the ratio of complex-
ity (i.e. how complex the English Wikipedia article is com-
pared to the equivalent Simple English Wikipedia article).
To see how close we are to the gold-standard ratios (ratio
of the article’s Simple English Wikipedia C-Score value to
that of its corresponding English Wikipedia C-Score value)
that we got from our C-Score experiment, we use the fol-
lowing error metrics (lower is better).

1. S0 =

∑n

i=1
xi

n .xi = 0 if the metric is closest to the
gold standard ratio and xi = 1 otherwise. This mea-
sures percentage of the metric’s ratio not agreeing with
that of the gold standard ratio.

2. S1 =

∑n

i=1
|metrici−goldi|

n is the mean absolute error
between the metric’s ratio and the gold standard ratio.

3. S2 =

∑n

i=1
(metrici−goldi)2

n is the mean square error
between the metric’s ratio and the gold standard ratio.

Evaluation Metric S0 S1 S2
Lexile 0.63 0.54 0.38
Flesch 0.88 0.87 1.05
E-Score 0.50 0.47 0.29

Table 4: Results of error analysis. Bold denotes the evalua-
tion metric with the least error

The Flesch Reading Ease Score assumes that the complex-
ity of the text is dependent only on the sentence length and
the number of syllables per word. It considers words like
“automobile” and “procrastinate” to be of same complexity
because both words have 4 syllables. With the use of data
though, it can be shown that “automobile” is far more eas-
ier as compared to “procrastinate” (because “automobile”
is on the Dale Chall Word List9, while “procrastinate” is
not).
The Lexile Score makes use of a corpus, in which it as-
sumes that the frequency of a word determines its simplic-
ity / complexity. More frequent the word is, simpler it is.

9http://www.rfp-templates.com/Research-Articles/Dale-
Chall-3000-Simple-Word-List

While this is probably true in most cases, one of the issues
is that it is corpus dependent. For instance, a medical cor-
pus would have terms like disease names, drugs, etc. being
as common / more common than common everyday phrases
like “traffic light”.
The E-Score outperforms the other two because it takes into
account factors like corpus complexity, and syllable count.
Corpus complexity gives a more precise measure than just
frequency, of how complex an n-gram is, by measuring how
much more probable it is in a parallel simplified corpus.
Our metric’s measure of structural complexity also mea-
sures the fact a complex sentence is shown by having more
information in it, as compared to just the number of words
in it.

6. Conclusions
Using the document aligned English - Simple English
Wikipedia Corpus, we are able to assign weights (i.e. the
corpus complexity) to n-grams that occur in text, unlike
FRES. We also look at quantities like corpus complexity
(Biran et al., 2011) while assigning the complexity of a
word, as well as the number of syllables, unlike Lexile,
which only looks at the frequency of words in a given
corpus. Our language modelling approach, in which we
measure lexical complexity using n-grams, rather than just
words is also an improvement over Lexile and FRES. If we
were to, say, reorder the phrases of the sentence (so that
we still end up with the same structural complexity), FRES
and Lexile would give the same score, but our approach
would give a different score, showing that the reordered
sentence may be harder than the original. For example, the
sentence, “Join the Dark Side, the boy will”10 will give a
different E-Score value, compared to the “The boy will join
the Dark Side”. The FRES and Lexile scores for both sen-
tences though will remain the same. Using structural com-
plexity in our calculation of complexity is also better than
that of the FRES and Lexile scores which take into account
only the the number of words of the sentence and not its
structure.

7. Bibliographical References
Biran, O., Samuel, B., and Elhadad, N. (2011). Putting

it simply: a context-aware approach to lexical simplifi-
cation. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Human
Language Technologies: short papers, volume 2, pages
496–501. Association for Computational Linguistics.

Flesch, R. (1948). A new readability yardstick. Journal of
applied psychology, 32(3):221–233.

Heilman, M. and Smith, N. A. (2010). Extracting simpli-
fied statements for factual question generation. In Pro-
ceedings of QG2010: The Third Workshop on Ques-tion
Generation, page 11.

Kauchak, D. (2013). Improving text simplification lan-
guage modelling using unsimplified text data. In Pro-
ceedings of the 51st Annual Meeting of the Association
for Computational Linguistics, pages 1537–1546. Asso-
ciation for Computational Linguistics.

10Quote from Yodha in Star Wars Episode I: The Phantom
Menace

13

Schwarm, S. E. and Ostendorf, M. (2005). Reading level
assessment using support vector machines and statisti-
cal language models. In Proceedings of the 43rd Annual
Meeting of the Association for Computational Linguis-
tics, pages 523–530. Association for Computational Lin-
guistics.

Stenner, A. J. (1996). Measuring Reading Comprehension
with the Lexile Framework. ERIC.

Temnikova, I. and Maneva, G. (2013). The C-Score–
Proposing a Reading Comprehension Metric as a Com-
mon Evaluation Measure for Text Simplification. In Pro-
ceedings of the Second Wrokshop on Predicting and Im-
proving Text Readability for Target Reader Populations,
pages 20–29.

14

Quality Estimation for Text Simplification

Sanja Štajner1, Maja Popović2, Hanna Béchara3
1Data and Web Science Group, University of Mannheim, Germany

2Humboldt University of Berlin, Germany
3Research Group in Computational Linguistics, University of Wolverhampton, UK
sanja@uni-mannheim.de, maja.popovic@hu-berlin.de, hanna.bechara@wlv.ac.uk

Abstract
The quality of the output generated by automatic Text Simplification (TS) systems is traditionally assessed by human annotators. In
spite of the fact that the automatisation of that process would enable faster and more consistent evaluation, there have been almost
no studies addressing this problem. We propose several decision-making procedures for automatic classification of the simplified
sentences into three classes (bad, OK, good) depending on their grammaticality, meaning preservation, and simplicity. We experiment
with ten different classification algorithms and 12 different feature sets on three TS datasets obtained using different text simplification
strategies, achieving the results significantly above the state of the art. Additionally, we propose to use an unique measure (Total2
or Total3) for classifying the quality of the automatically simplified sentences into two (discard or keep) or three (bad, OK, good) classes.

Keywords: text simplification, automatic evaluation, quality estimation

1. Introduction
Text Simplification (TS) systems aim to transform com-
plex sentences into their simpler variants, thus making them
more understandable for various audiences: foreign lan-
guage learners, children, and people with low literacy lev-
els, cognitive or reading impairments, dyslexia, aphasia,
autism, or congenital deafness. Usefulness of TS systems
is usually assessed by measuring reading speed and com-
prehension by target users (Rello et al., 2013; Fajardo et
al., 2014). However, as access to the target users might be
difficult, it is common to first assess the quality of the gen-
erated sentences in terms of their grammaticality, meaning
preservation and simplicity on the sentence level, by hu-
man annotators (Woodsend and Lapata, 2011; Saggion et
al., 2015).1

Human evaluation of the quality of automatically simpli-
fied sentences has several shortcomings. First, it is costly
and time consuming. Ideally, it requires native speakers
with linguistic knowledge for the evaluation of grammat-
icality and meaning preservation, and native speakers fa-
miliar with the specific needs of each target population for
the evaluation of the simplicity of generated sentences. In
practice, neither of the two conditions is usually satisfied.
That introduces a new problem. The performances of dif-
ferent TS systems cannot be directly compared, as the hu-
man annotators differ from one study to another. So far,
the annotators have been unpaid native speakers (Woodsend
and Lapata, 2011), native speakers from Mechanical Turk
(Siddharthan and Angrosh, 2014), and non-native speakers
with high command of the required language (Glavaš and
Štajner, 2013). Finally, direct comparison of performances
of different TS systems requires direct access to those sys-
tems and repetition of their evaluation, in order to evaluate
them under the same conditions (using the same guidelines
and the same annotation scale) and by the same human an-

1In some studies, e.g. (Woodsend and Lapata, 2011; Glavaš
and Štajner, 2013), simplicity is additionally evaluated on a text
level using readability metrics.

notators.
Automatic evaluation of the quality of automatically sim-
plified sentences would provide a faster and more consis-
tent evaluation, and allow a fairer comparison of different
TS systems. However, there have been almost no studies
addressing this problem.
We experiment with 10 classification algorithms and 12
feature sets – combining the state-of-the-art machine trans-
lation (MT) evaluation metrics and the machine transla-
tion quality estimation features – and investigate which of
them lead to the best performances in several classification
tasks. We approach the problem as a quality estimation
task, comparing the original sentence with its automatically
simplified version, without need for the manual simplifica-
tion ‘gold standard’. The proposed classifiers and feature
sets show good results on three TS datasets, obtained us-
ing different simplification strategies (MT-based TS, event-
based TS, and unsupervised lexical simplification based on
word-embeddings), and they outperform the state of the art
(Štajner et al., 2014). Furthermore, we propose the use
of an unique score for classifying the quality of the auto-
matically simplified sentences into two (discard or keep)
or three (bad, OK, good) classes, taking into account their
grammaticality, meaning preservation, and simplicity, all at
the same time.

2. Related Work
Automatic evaluation and quality estimation have attracted
a lot of attention in machine translation. However, only one
study addressed this issue in text simplification in spite of
the many similarities of those tasks.
Štajner et al. (2014) showed that the three most widely
used MT evaluation metrics – BLEU (Papineni et al., 2002),
METEOR (Denkowski and Lavie, 2011) and TER (Snover
et al., 2006), as well as TINE (Rios et al., 2011) – have
good correlation with human judgements of grammatical-
ity and meaning preservation, and suggested the use of a
unique score for measuring the quality of the automatically

15

simplified sentences (taking into account only their gram-
maticality and meaning preservation). The main limitation
was that the experiments were conducted on a very par-
ticular TS corpus consisting of sentences simplified using
only syntactic simplification and considerable content re-
duction. Therefore, it remained unclear whether the same
approach would work equally well on a more typical TS
dataset consisting of lexically simplified sentences with al-
most no content reduction (the most common case in TS).
In this paper, we experiment with a large number of fea-
tures borrowed from MT evaluation and quality estimation
tasks on three TS datasets obtained using very different
simplification strategies. The main advantage of the fea-
tures we propose is that they can easily be computed for
other languages as well, as they do not require resources
which are not available for languages other than English
(though some of them require a POS tagger or/and lemma-
tiser) in contrast to the TINE metric used in the previous
study (Štajner et al., 2014).

3. Methodology
The datasets, features, and experimental setup are presented
in the next three subsections.

3.1. Datasets
We used three TS datasets obtained by applying different
simplification strategies:

1. EventS dataset, previously used by Štajner et al.
(2014), consists of 272 original sentences and their
syntactically simplified versions (with significant con-
tent reduction) obtained by using the EventSimplify
TS system (Glavaš and Štajner, 2013).2

2. EBritMT dataset consists of 120 original sentences
from the Encyclopedia Britannica (Barzilay and El-
hadad, 2003) and their automatic simplifications ob-
tained by using several MT-based (phrase-based sta-
tistical machine translation) TS systems trained on
Wikipedia TS corpus (Štajner et al., 2015).

3. LSLight dataset consists of 240 original sentences
from English Wikipedia and their automatic simplifi-
cations obtained by using three different lexical sim-
plification systems (Glavaš and Štajner, 2015).

The marks in the EventS dataset were given on a 1–3 scale,
and in the other two datasets on a 1–5 scale (in both cases,
the higher the mark the better). Therefore, we converted
the marks of the EBritMT and LSLight datasets onto a 1–3
scale (1, 2→ 1; 3→ 2; 4, 5→ 3), in order to have the same
scale in all three datasets. As the final score for grammati-
cality (G), meaning preservation (M), and simplicity (S) we
used the arithmetic mean of the marks given by all annota-
tors (rounded to an integer). Following the idea presented
by Štajner et al. (2014) to have a unique score for evalu-
ating the quality of the generated output, we calculated the
Total3 (eq. 1) and Total2 (eq. 2) scores for each sentence
x, but this time also taking into the account the simplicity
score.

2http://takelab.fer.hr/evsimplify

Total3(x) =


3 if G(x) = M(x) = S(x) = 3

1 if M(x) = 1 or S(x) = 1

2 otherwise
(1)

Total2(x) =

{
0 if Total3(x) = 1

1 otherwise
(2)

We opted for Total3 and Total2 scores which take into ac-
count the simplicity score, for two reasons: (1) we wanted
to penalise the automatically simplified sentences which are
not simpler than their originals and the automatically sim-
plified sentences which are exactly the same as their origi-
nals (which is the common case in all, and especially MT-
based, TS systems); and (2) because we noticed that newly
proposed feature sets lead to reasonably good results on the
Simplicity classification task.

3.2. Features
We experimented with a total of 39 features (Table 1), com-
bining 22 MT evaluation features and the 17 baseline MT
quality estimation (QuEst) features (Specia et al., 2009).
All MT evaluation metrics were calculated using original
sentences as references and automatically simplified sen-
tences as their translation hypotheses (our approach does
not require any ‘gold standard’ manually simplified sen-
tences). The first three features (1–3) can be seen as base-
line MT evaluation features, as they were used in the pre-
vious study (Štajner et al., 2014).3 We further included
the separate fine-grained components of the TER metric
(features 4–10) and the following additional MT evaluation
metrics:

• n-gram F1 scores based on words, characters, base
forms, morphemes and POS tags (features 11–15);

• class error rates (features 16–22):

– the five class error rates on the word level
produced by Hjerson error classification
tool (Popović, 2011a) (features 16–20);

– the sum of the five class error rates on the word
level (feature 21);

– the sum of the five class error rates on the block
level (feature 22) where a block is defined as
a group of consecutive words belonging to the
same error class.

Both n-gram F metrics (Popović, 2011b) and sums of class
error rates (Popović, 2012) have shown good correlations
with human rankings of MT outputs in the WMT4 shared
evaluation tasks.
The quality estimation (QE) feature set includes surface
features such as the number of tokens, the average token
length, n-gram frequencies, language model probabilities,
and translations per source word. We used the open-source
feature extractor (Specia et al., 2013) in order to obtain
these features (Table 2).

3We included only the features which showed the highest cor-
relation with the human judgements.

4Worskhop on Statistical Machine Translation
(http://www.statmt.org/wmt15/)

16

Group # Code Description

baseMT
1 S-BLEU Sentence-wise BLEU score (Papineni et al., 2002)
2 METEOR METEOR score (Lavie and Denkowski, 2010)
3 TER Translation Edit Rate (Snover et al., 2006)

TERc

4 Ins # of insertions (TER component)
5 Sub # of substitutions (TER component)
6 Del # of deletions (TER component)
7 Shft # of block shifts (TER component)
8 WdSh # of word shifts (TER component)
9 NumErr # of block errors (TER component)
10 NumWd # of word errors (TER component)

F

11 WordF word 4-gram F1 score
12 ChrF character 6-gram F1 score
13 BaseF lemma 4-gram F1 score
14 MorphF morpheme 4-gram F1 score
15 PosF POS 4-gram F1-score

Err

16 LexErr lexical error rate
17 ExtErr addition error rate
18 MissErr omission error rate
19 RErr reordering error rate
20 InfErr inflection error rate
21 wΣerr sum of word level error rates
22 bΣerr sum of block level error rates

QE 23–39 QuEst 17 baseline Quality Estimation features

Table 1: Features (baseMT – baseline MT evaluation metrics used by Štajner et al. (2014); TERc – components of the TER
metric; F – b-gram F metrics (Popović, 2011b); Err – sums of class error rates (Popović, 2012); QE – 17 quality estimation
baseline features (Specia et al., 2009))

Description
1 Number of tokens in the source sentence
2 Number of tokens in the target sentence
3 Average source token length
4 LM probability of source sentence
5 LM probability of the target sentence
6 Average number of occurrences of the target word within the target sentence
7 Average number of translations per source word in the sentence (as given by IBM 1 table thresholded so that

prob(t|s) > 0.2)
8 Average number of translations per source word in the sentence (as given by IBM 1 table thresholded so that

prob(t|s) > 0.01) weighted by the inverse frequency of each word in the source corpus
9 Percentage of unigrams in quartile 1 of frequency (lower frequency words) in a corpus of the source language

(SMT training corpus)
10 Percentage of unigrams in quartile 4 of frequency (higher frequency words) in a corpus of the source language
11 Percentage of bigrams in quartile 1 of frequency of source words in a corpus of the source language
12 Percentage of bigrams in quartile 4 of frequency of source words in a corpus of the source language
13 Percentage of trigrams in quartile 1 of frequency of source words in a corpus of the source language
14 Percentage of trigrams in quartile 4 of frequency of source words in a corpus of the source language
15 Percentage of unigrams in the source sentence seen in a corpus (SMT training corpus)
16 Number of punctuation marks in source sentence
17 Number of punctuation marks in target sentence

Table 2: The 17 baseline quality estimation (QE) baseline features (Specia et al., 2009)

3.3. Experiments
We performed five sets of experiments. Four of them were
classification experiments into three classes (bad, OK, or
good) according to the G, M, S or Total3 score. The fifth
was the classification experiment into two classes (discard

or keep) according to the Total2 score. Each set of exper-
iments was performed on each of the three datasets sep-
arately, using 10 classification algorithms implemented in
Weka Experimenter (Hall et al., 2009): Logistic (le Cessie
and van Houwelingen, 1992), Simple Logistic (Sumner et

17

Features G M S
EventS EBritMT LSLight EventS EBritMT LSLight EventS EBritMT LSLight

baseMT 0.58 0.67 0.93 0.55 0.62 0.79 0.48 0.52 0.54
TERc 0.60 0.71 0.93 0.58 0.68 *0.81 0.49 0.61 0.60
F 0.61 0.68 *0.94 0.60 0.64 0.79 0.49 0.47 0.61
Err 0.58 0.62 *0.94 0.57 0.67 0.79 0.49 0.52 0.53
QE 0.58 0.60 0.92 0.59 0.57 0.74 *0.55 *0.75 0.60
F+Err 0.62 0.65 *0.94 0.63 0.71 *0.81 0.48 0.54 0.60
F+TERc 0.63 0.72 *0.94 0.61 0.69 *0.81 0.49 0.63 0.69
Err+TERc 0.64 0.69 0.93 0.59 0.70 *0.81 0.51 0.63 0.61
F+Err+TERc *0.65 0.69 *0.94 0.63 0.70 *0.81 0.51 0.62 0.68
F+Err+TERc+baseMT *0.65 0.71 *0.94 0.63 *0.72 *0.81 0.50 0.63 0.68
F+Err+TERc+QE 0.62 0.72 *0.94 0.64 0.69 0.77 0.52 0.74 *0.70
All 0.63 *0.73 *0.94 *0.65 0.70 0.78 0.50 0.74 *0.70
Majority class 0.49 0.51 *0.94 0.24 0.49 0.78 0.45 0.29 0.49
State of the art 0.57 / / 0.56 / / / / /

Table 3: Weighted F-measure (Random Forest for all except the last two rows). The results which are significantly different
(p<0.5, paired t-test) from those achieved by the baseline (baseMT) are presented in bold. The highest F-measure achieved
on each dataset and for each task is presented with an ‘*’. The State of the art row contains the best results obtained by
Štajner et al. (2014).

Features Total3 Total2
EventS EBritMT LSLight EventS EBritMT LSLight

baseMT 0.52 0.54 0.44 0.69 0.65 0.83
TERc 0.56 0.61 0.52 0.73 0.79 0.84
F 0.53 0.61 0.52 0.71 0.64 0.83
Err 0.51 0.54 0.47 0.72 0.67 0.83
QE 0.54 *0.74 0.51 0.71 *0.85 0.80
F+Err 0.57 0.53 0.49 *0.76 0.69 0.83
F+TERc 0.57 0.62 *0.55 0.73 0.76 *0.86
Err+TERc 0.57 0.71 *0.55 0.73 0.79 0.84
F+Err+TERc *0.59 0.57 0.48 0.75 0.76 *0.86
F+Err+TERc+baseMT *0.59 0.61 0.54 0.74 0.76 *0.86
F+Err+TERc+QE *0.59 0.62 0.54 0.74 *0.85 0.84
All *0.59 0.72 *0.55 0.75 *0.85 0.84
Majority class 0.33 0.34 0.36 0.56 0.34 0.82

Table 4: Weighted F-measure (Random Forest for all except the last row). The results which are significantly different
(p<0.5, paired t-test) from those achieved by the baseline (baseMT) are presented in bold. The highest F-measure achieved
on each dataset and for each task is presented with an ‘*’.

al., 2005), SVM with feature normalisation, SVM with
feature standardisation, multinominal perceptron (Weka
implementation), K-nearest neighbours (Aha and Kibler,
1991), JRip – a propositional rule learner (Cohen, 1995),
C4.5 decision tree (Quinlan, 1993), Random Tree (Weka
implementation), and Random Forest (Breiman, 2001). All
experiments were run in 10-fold cross-validation setup with
10 repetitions. The baseline classifier was the ZeroR rule
learner which always chooses the majority class.

4. Results and Discussion
We performed all experiments using all 10 classification al-
gorithms. Random Forest performed equally good, or bet-
ter than, all other algorithms on all feature sets and on all
classification tasks. Therefore, we present only the results
achieved using this algorithm (Tables 3 and 4).

The use of Random Forest algorithm and the newly pro-
posed feature set – the combination of n-gram F1 scores,
class error rates and fine-grained components of the TER
(F+Err+TERc) – led to significantly better classification
performance than the state of the art (Štajner et al., 2014)
for the Grammaticality (G) task. The same algorithm ap-
plied on the feature set combining only n-gram F1 scores
and class error rates (F+Err) significantly outperformed the
state of the art for the Meaning preservation (M) task as
well.5

The combination of n-gram F1 scores and class error rates

5Note that Štajner et al. (2014) did not report on the results of
the Simplicity (S) task, their definition of Total2 and Total3 scores
differed from ours as they did not take into account the simplicity
score, and they performed experiments only on the EventS dataset.

18

(F+Err) appears to be the best choice on the M task not only
for the EventS dataset but also for the EBritMT dataset. The
LSLight dataset has heavily unequal distribution of classes
on the G and M score and thus none of the feature sets can
significantly outperform the majority class baseline.
For the Simplicity (S) task, the QE feature set performed
the best on the EventS and EBritMT datasets, while
the best results on the LSLight dataset were achieved
by using the combination of all newly proposed features
(F+Err+TERc+QE).
On the newly proposed classification tasks, using the
unique quality score (Total3 or Total2), the QE feature set
led to the best results on the EBritMT dataset on both tasks.
On the EventS dataset, the combination of n-gram F1 scores
and class error rates (F+Err) led to the best results for the
classification into two classes (discard or keep), while the
classification into three classes (bad, OK, good) was im-
proved by combining this feature set with the fine-grained
components of TER (F+Err+TERc).

5. Participation in Shared Task
We participated in the shared task on Quality Assessment
for Text Simplification (QATS)6, proposing three classifi-
cation systems which used the above-mentioned features.

5.1. Shared Task Description
The shared task consisted in proposing systems which are
able to correctly classify automatically simplified sentences
into three classes (good, ok, and bad) according to their
grammaticality, meaning preservation, simplicity and over-
all quality.
The training set consisted of 505 sentence pairs with man-
ually assigned (‘gold standard’) scores for all four as-
pects (grammaticality, meaning preservation, simplicity,
and overall quality), while the test set consisted of 126 sen-
tence pairs without ‘gold standard’ labels.
The participating systems were ranked according to their
accuracy, mean absolute error, root mean squared error, and
weighted F-score. Six baseline classifiers were provided:
the majority-class baseline, an SVM classifier trained on
four MT evaluation metrics (BLEU, METEOR, WER, and
TER), as well as the four baselines based on mean value and
standard deviation of each of those MT evaluation metrics
(Štajner et al., 2016).

5.2. Results on the Training Dataset
Using the full set of 39 aforementioned MT evaluation met-
rics and QE features, for each of the four aspects (G, M, S,
and Overall), we trained eight different classifiers imple-
mented in Weka Experimenter (Hall et al., 2009):

1. Logistic – Logistic Regression (le Cessie and van
Houwelingen, 1992)

2. NB – Naı̈ve Bayes (John and Langley, 1995)

3. SVM-n – Support Vector Machines with feature nor-
malisation

6http://qats2016.github.io/shared.html

4. SVM-s –Support Vector Machines with feature stan-
dardisation

5. IBk – K-nearest neighbours (Aha and Kibler, 1991)

6. JRip – a propositional rule learner (Cohen, 1995)

7. J48 – C4.5 decision tree (Quinlan, 1993)

8. RandF – Random Forest (Breiman, 2001)

All experiments were run in a 10-fold cross-validation
setup with 10 repetitions, using the provided training
dataset of 505 sentence pairs.7 The results are presented
in Table 5. The Random Forest classification algorithm
achieved the best weighted F-score for three tasks (G, M,
and S), while the logistic regression obtained the best result
on the fourth task (Overall). All eight classifiers outper-
formed the majority-class baseline. The two best systems
for each aspect were submitted to the shared task.

Classifier Aspect
G M S Overall

Logistic 0.716 0.691 0.608 0.594*
Naı̈ve Bayes 0.671 0.633 0.565 0.534
SVM-n 0.656 0.671 0.597 0.582
SVM-s 0.706 0.677 0.584 0.549
IBk 0.747 0.644 0.613 0.588
JRip 0.708 0.639 0.603 0.515
J48 0.745 0.675 0.585 0.529
RandF 0.754* 0.708* 0.614* 0.589
Majority class 0.652 0.363 0.428 0.240

Table 5: Results of the classification experiments. The two
best results (weighted F-measure) for each aspect (G, M, S,
and Overall) are presented in bold, and the best of the two
is marked with an ‘*’.

Additionally, we used the CfsSubsetEval feature selection
algorithm (Hall and Smith, 1998) implemented in Weka
toolkit to select only the subset of the best features for
each aspect and submit the third system for the shared task
(RandF classification algorithm which uses only that sub-
set of features). The CfsSubsetEval algorithm returned the
following sets of features as the best subsets8:

• For grammaticality (20 features): all baseMT features
(BLEU, METEOR, TER), all F features (WordF, ChrF,
BaseF, MorphF, PosF), two Err features (bΣerr and
RErr), seven baseline QE features (# 1, 2, 4, 8, 10,
12, 14), and three TERc features (Del, NumErr, and
NumWd);

• For meaning preservation (23 features): all baseMT
features (BLEU, METEOR, TER), all F features
(WordF, ChrF, BaseF, MorphF, PosF), three Err fea-
tures (wΣerr, bΣerr, and RErr), eight baseline QE fea-
tures (# 1, 2, 4, 5, 7, 8, 12, 15), and three TERc fea-
tures (Del, WdSh, and NumWd);

7http://qats2016.github.io/shared.html
8For the full description of features see Section 3.2. and Ta-

bles 1 and 2.

19

System Grammaticality Meaning Simplicity Overall
accuracy weighted-F accuracy weighted-F accuracy weighted-F accuracy weighted-F

Run 1 (IBk/Logistic) 70.63 0.716 69.05 0.681 50.00 0.511 47.62 0.475
Run 2 (RandF) 75.40 0.718 65.87 0.644 52.38 0.530 44.44 0.445
Run 3 (RandF-best) 75.40 0.700 61.90 0.597 57.14 0.564 48.41 0.486
Majority class 76.19 0.659 57.94 0.425 55.56 0.397 43.65 0.265

Table 6: Results on the shared task (performances better than those of the baseline are presented in bold and the best
achieved results are marked with an ‘*’). The first run (Run 1) contains the results of the Logistic classification algorithm
for Grammaticality and Simplicity, and the results of the IBk classification algorithm for Meaning preservation and Overall
score.

• For simplicity (15 features): two F features (ChrF and
MorphF), 12 QE features (# 1–6, 8, 9, 13, 14, 16, 17),
and one TERc feature (NumWd);

• For overall quality (19 features): two baseMT features
(BLEU and TER), one F feature (PosF), one Err fea-
ture (RErr), 12 QE features (# 1–8, 11, 13, 16, 17), and
three TERc features (Shft, NumErr, and NumWd).

5.3. Results on the Test Dataset
The achieved accuracy and weighted F-measure of our
three systems submitted to the shared task dataset are pre-
sented in Table 6 together with the results obtained by the
majority-class baseline. As can be noted, all our classifiers
achieved a higher weighted F-score than the majority-class
baseline for all four tasks. On the Meaning preservation and
Overall tasks, our classifiers also obtained higher accuracy
than the majority-class baseline.
Compared to all other participating systems in the shared
task (Štajner et al., 2016), our systems achieved the best
weighted F-score results for all four tasks, and the best ac-
curacy on three out of four tasks (all except Overall):

• On the Grammaticality task, our three systems were
the three best ranked systems, and the only systems
which obtained higher weighted F-score than all six
official baselines.

• On the Meaning preservation task, our Logistic clas-
sifier was the only classifier that achieved higher ac-
curacy than the majority-class baseline, and the best
ranked classifier according to the weighted F-score.

• On the Simplicity task, our Random Forest classifier
trained on the subset of initial features (the best subset
of features returned by the CfsSubsetEval feature se-
lection algorithm) was the only classifier that achieved
higher accuracy than the majority-class baseline.

• On the Overall quality task, our Random forest classi-
fier trained on the best subset of initial features was
ranked first according to the weighted F-score, and
third according to the accuracy score. In both cases,
it outperformed all six official baselines.

6. Conclusions
We presented several decision-making procedures for auto-
matic evaluation of TS systems, proposing the use of 22
fine-grained MT evaluation metrics and 17 baseline MT

quality estimation features, which could also be easily cal-
culated for languages other than English.
Our approach reported promising results on three different
TS datasets, showing the potential of our approach being
used for automatic evaluation of various TS systems. The
experiments also indicated that, depending on the type of
the dataset that needs to be evaluated (whether it was ob-
tained by MT-based TS, event-based TS, or unsupervised
lexical simplification), different feature sets lead to the best
results.
On the Shared Task on Quality Assessment for Text Sim-
plification (QATS), our classification systems which use the
newly proposed 39 features were ranked best among all par-
ticipating systems.

Acknowledgements
Hanna Béchara is supported by the People Programme
(Marie Curie Actions) of the European Union’s Framework
Programme (FP7/2007-2013) under REA grant agreement
317471.

7. References
Aha, D. and Kibler, D. (1991). Instance-based learning al-

gorithms. Machine Learning, 6:37–66.
Barzilay, R. and Elhadad, N. (2003). Sentence alignment

for monolingual comparable corpora. In Proceedings of
the Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 25–32, Stroudsburg,
PA, USA. Association for Computational Linguistics.

Breiman, L. (2001). Random Forests. Machine Learning,
45(1):5–32.

Cohen, W. W. (1995). Fast Effective Rule Induction. In
Proceedings of the Twelfth International Conference on
Machine Learning, pages 115–123.

Denkowski, M. and Lavie, A. (2011). Meteor 1.3: Auto-
matic Metric for Reliable Optimization and Evaluation
of Machine Translation Systems. In Proceedings of the
EMNLP Workshop on Statistical Machine Translation,
pages 85–91.

Fajardo, I., Vila, V., Ferrer, A., Tavares, G., Gómez, M.,
and Hernández, A. (2014). Easy-to-read texts for stu-
dents with intellectual disability: Linguistic factors af-
fecting comprehension. Journal of Applied Research in
Intellectual Disabilities (JARID), 27(3):212–225.

Glavaš, G. and Štajner, S. (2013). Event-Centered Simpli-
cation of News Stories. In Proceedings of the Student

20

Workshop held in conjunction with RANLP 2013, Hissar,
Bulgaria, pages 71–78.

Glavaš, G. and Štajner, S. (2015). Simplifying Lexical
Simplification: Do We Need Simplified Corpora? In
Proceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 63–68. ACL.

Hall, M. A. and Smith, L. A. (1998). Practical feature
subset selection for machine learning. In Proceedings
of the 21st Australasian Computer Science Conference
(ACSC), pages 181–191. Berlin: Springer.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reute-
mann, P., and Witten, I. H. (2009). The WEKA data
mining software: an update. SIGKDD Explor. Newsl.,
11:10–18.

John, G. H. and Langley, P. (1995). Estimating Continuous
Distributions in Bayesian Classifiers. In Proceedings of
the Eleventh Conference on Uncertainty in Artificial In-
telligence, pages 338–345.

Lavie, A. and Denkowski, M. (2010). The METEOR Met-
ric for Automatic Evaluation of Machine Translation.
Machine Translation.

le Cessie, S. and van Houwelingen, J. (1992). Ridge
Estimators in Logistic Regression. Applied Statistics,
41(1):191–201.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002).
BLEU: a Method for Automatic Evaluation of Machine
Translation. In Proceedings of the 40th Annual Meeting
of the Association for Computational Linguistics (ACL-
02), Philadelphia, PA.

Popović, M. (2011a). Hjerson: An Open Source Tool for
Automatic Error Classification of Machine Translation
Output. The Prague Bulletin of Mathematical Linguis-
tics, 96:59–68.

Popović, M. (2011b). Morphemes and POS tags for
n-gram based evaluation metrics. In Proceedings of
the Sixth Workshop on Statistical Machine Translation
(WMT 2011), pages 104–107, Edinburgh, Scotland, July.

Popović, M. (2012). Class error rates for evaluation of ma-
chine translation output. In Proceedings of the Seventh
Workshop on Statistical Machine Translation, pages 71–
75, Montréal, Canada.

Quinlan, R. (1993). C4.5: Programs for Machine Learn-
ing. Morgan Kaufmann Publishers, San Mateo, CA.

Rello, L., Baeza-Yates, R., Dempere-Marco, L., and Sag-
gion, H. (2013). Frequent words improve readability
and short words improve understandability for people
with dyslexia. In Proceedings of the INTERACT 2013:
14th IFIP TC13 Conference on Human-Computer Inter-
action. Cape Town, South Africa, 2013.

Rios, M., Aziz, W., and Specia, L. (2011). TINE: A met-
ric to assess MT adequacy. In Proceedings of the Sixth
Workshop on Statistical Machine Translation (WMT-
2011), Edinburgh, UK, pages 116–122.

Saggion, H., Štajner, S., Bott, S., Mille, S., Rello, L., and
Drndarevic, B. (2015). Making It Simplext: Implemen-
tation and Evaluation of a Text Simplification System for

Spanish. ACM Transactions on Accessible Computing,
6(4):14:1–14:36.

Siddharthan, A. and Angrosh, M. A. (2014). Hybrid text
simplification using synchronous dependency grammars
with hand-written and automatically harvested rules. In
Proceedings of the 14th Conference of the European
Chapter of the Association for Computational Linguis-
tics (EACL), pages 722–731.

Snover, M., Dorr, B., Schwartz, R., Micciulla, L., and
Makhoul, J. (2006). A Study of Translation Error Rate
with Targeted Human Annotation. In Proceedings of the
7th Conference of the Association for Machine Transla-
tion in the Americas (AMTA-06), Boston, MA.

Specia, L., Turchi, M., Cancedda, N., Dymetman, M., and
Cristianini, N. (2009). Estimating the Sentence-Level
Quality of Machine Translation Systems. In Proceedings
of the 13th Annual Meeting of the European Association
for Machine Translation (EAMT-2009), pages 28–35.

Specia, L., Shah, K., Guilherme, J., de Souza, C., and
Cohn, T. (2013). QuEst - A translation quality estima-
tion framework. In Proceedings of the Association for
Computational Linguistics (ACL), Demonstrations.

Sumner, M., Frank, E., and Hall, M. (2005). Speeding
up Logistic Model Tree Induction. In The 9th Euro-
pean Conference on Principles and Practice of Knowl-
edge Discovery in Databases, pages 675–683.

Štajner, S., Mitkov, R., and Saggion, H. (2014). One Step
Closer to Automatic Evaluation of Text Simplification
Systems. In Proceedings of the 3rd Workshop on Pre-
dicting and Improving Text Readability for Target Reader
Populations (PITR) at EACL.

Štajner, S., Bechara, H., and Saggion, H. (2015). A Deeper
Exploration of the Standard PB-SMT Approach to Text
Simplification and its Evaluation. In Proceedings of the
53rd Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 2: Short
Papers), pages 823–828. ACL.

Štajner, S., Popović, M., Saggion, H., Specia, L., and
Fishel, M. (2016). Shared Task on Quality Assessment
for Text Classification. In Proceedings of the LREC
Workshop on Quality Assessment for Text Simplification
(QATS).

Woodsend, K. and Lapata, M. (2011). Learning to Sim-
plify Sentences with Quasi-Synchronous Grammar and
Integer Programming. In Proceedings of the 2011 Con-
ference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 409–420.

21

Shared Task on Quality Assessment for Text Simplification

Sanja Štajner1, Maja Popović2, Horacio Saggion3, Lucia Specia4, Mark Fishel5
1University of Mannheim, Germany, 2Humboldt University of Berlin, Germany

3Universitat Pompeu Fabra, Spain, 4University of Sheffield, UK, 5University of Tartu, Estonia
1sanja@informatik.uni-mannheim.de, 2maja.popovic@hu-berlin.de
3horacio.saggion@upf.edu, 4l.specia@sheffield.ac.uk, 5fishel@ut.ee

Abstract
This paper presents the results of the shared task of the Workshop on Quality Assessment for Text Simplification (QATS), which
consisted in automatically assigning one of the three labels (good, ok, and bad) for each of the four aspects of automatically simplified
English sentences, i.e. their grammaticality, meaning preservation, simplicity, and overall quality. We asked participants to submit a
maximum of three systems (raw metrics and/or classifiers) for each aspect. We received a total of 10 raw metrics and 16 classifiers for
each of the four aspects. In addition to that, we computed correlations for four standard MT metrics (BLEU, METEOR, TER and WER) as
baselines. The collected scores were evaluated by Pearson correlation (how well each score metric correlates with the manually assigned
values) and the classifiers were evaluated in terms of their accuracy, mean average error, root squared mean error and weighted F-scores.

Keywords: automatic text simplification, quality assessment, automatic evaluation

1. Introduction
In recent years, there has been an increasing interest in au-
tomatic text simplification (ATS) and text adaptation to var-
ious target populations (e.g. non-native speakers, children,
people with low literacy or cognitive disabilities). Various
ATS systems have been proposed for many languages, e.g.
English (Angrosh et al., 2014; Glavaš and Štajner, 2015),
Portuguese (Specia, 2010), Spanish (Saggion et al., 2015;
Štajner et al., 2015b), French (Brouwers et al., 2014), Ital-
ian (Barlacchi and Tonelli, 2013), and Basque (Aranzabe et
al., 2012).
ATS systems have usually been evaluated for the quality
of the generated output by one (or a combination) of the
following:

• Readability metrics (on a text level), e.g. (Zhu et
al., 2010; Woodsend and Lapata, 2011; Glavaš and
Štajner, 2013; Saggion et al., 2015)

• Human assessment of grammaticality (G), meaning
preservation (M), and simplicity (S) on sentence level,
e.g. (Woodsend and Lapata, 2011; Glavaš and Štajner,
2013; Saggion et al., 2015)

• Machine translation (MT) evaluation metrics, such as
BLEU (Papineni et al., 2002), NIST (Doddington,
2002), or TER (Snover et al., 2006) in case of MT-
based ATS systems (Specia, 2010; Zhu et al., 2010;
Woodsend and Lapata, 2011; Coster and Kauchak,
2011a; Štajner et al., 2015b).

Readability metrics are not sufficient on their own as they
do not take into account the grammaticality and meaning
of the sentence. Instead, they rely on the shallow fea-
tures, such as average sentence length (in words) and av-
erage word length (in syllables or characters). Therefore,
an ATS system which produces very short ungrammatical
and meaningless sentences could be rated very highly by
most readability metrics.

The MT evaluation metrics also have several significant
drawbacks when used on their own. First, they require
‘gold standard’ simplifications which are not always avail-
able (and when they are, there is usually only one ‘gold
standard’ provided for each sentence). Second, they pe-
nalise word reordering and sentence shortening, which are
common operations in TS. Third, it seems that they are not
a good measure of systems performance as they heavily de-
pend on the type of manual simplification performed on the
‘gold standard’ test set (Štajner et al., 2015a).

The most reliable type of ATS evaluation is, thus, the hu-
man assessment of the generated output in three aspects:
grammaticality, meaning preservation and simplicity. In
this case, the evaluators – usually native speakers (for eval-
uating grammaticality and meaning preservation) or target
users (for evaluating simplicity) – are presented with a sen-
tence (original or simplified) and asked to assess its gram-
maticality and simplicity on a 1–3 or 1–5 scale (this varies
from study to study, but the most common is to use 1-5
scale), where 1 denotes the worst (i.e. completely ungram-
matical or very complex) and 3 or 5 denotes the best (i.e.
completely grammatical or very simple). In order to as-
sess the meaning preservation, the annotators are presented
with a pair of sentences (original and simplified) and asked
to rate (on a 1–3 or 1–5 scale) how similar is the meaning of
the sentences, where 1 denotes very different (or opposite)
meaning and 5 denotes that both sentences have the same
meaning.

As any other human evaluation, this is a costly and time-
consuming task. Additionally, it is difficult to directly com-
pare the quality of different ATS systems if they were as-
sessed by different annotators. Therefore, automatic meth-
ods are needed in order to provide a faster and more con-
sistent evaluation.

Štajner et al. (2014) investigated the possibility of replac-
ing the human assessment of grammaticality and mean-
ing preservation with a combination of cosine similarity
and several MT evaluation metrics: BLEU (Papineni et

22

al., 2002), METEOR (Denkowski and Lavie, 2011), and
TINE (Rios et al., 2011), showing promising results on one
of the datasets we used in this shared task (EventS).
Inspired by that study and the close relationship between
the problem of automatic evaluation of ATS systems and
well-studied problems of automatic evaluation and quality
estimation in machine translation (MT), this shared task fo-
cused on automatic evaluation (quality assessment) of ATS
systems. The goal of the shared task was to bring together
researchers working on ATS and those working on auto-
matic evaluation and quality estimation of machine trans-
lation output, who could try to adapt their metrics to this
closely related task. It provided an opportunity to make
important first steps in establishing metrics for automatic
evaluation of ATS systems which enable direct comparison
of the quality of the generated outputs, as well as less time
consuming assessment of each ATS system.

2. Datasets
The shared task dataset was a combination of the following
three datasets:

• EventS: 272 original sentences from the EMM News-
Brief1 and their syntactically simplified versions (with
significant content reduction) obtained by using the
EventSimplify TS system (Glavaš and Štajner, 2013).2

• EncBrit: 119 original sentences from the Encyclope-
dia Britannica (Barzilay and Elhadad, 2003) and their
automatic simplifications obtained by using ATS sys-
tems based on several phrase-based statistical machine
translation systems (Štajner et al., 2015a) trained on
Wikipedia TS corpus (Coster and Kauchak, 2011b).

• LSLight: 240 original sentences from English
Wikipedia and their automatic simplifications (Glavaš
and Štajner, 2015) obtained by using three different
lexical simplification systems (Biran et al., 2011; Horn
et al., 2014; Glavaš and Štajner, 2015).

The training and test sets used in the shared task contain
sentence pairs (original, simplified) from all three sets pro-
portionally. The statistics is shown in Table 1.

Dataset EventS EncBrit LSLight total

Training 218 95 192 505

Test 54 24 48 126

Table 1: Datasets statistics (number of sentence pairs).

Each simplified sentence in the training dataset contained
human scores (good, ok, bad) for each of the following
three aspects3:

1emm.newsbrief.eu/NewsBrief/clusteredition/en/latest.html
2takelab.fer.hr/data/evsimplify/
3For EventS, we converted the originally assigned human

scores in the following way: 1 → bad, 2 → ok, and 3 → good,
and for EncBrit and LSLight: {1 or 2} → bad, 3 → ok, {4 or 5}
→ good.

• Grammaticality (G),
where: bad = ungrammatical, ok = somewhat ungram-
matical but the mistakes do not impede understanding,
and good = completely grammatically correct;

• Meaning preservation (M),
where: bad = no meaning at all or completely opposite
meaning from the original, ok = somewhat changed
nuance of meaning or missing an unimportant part,
and good = preserved original meaning;

• Simplicity (S),
where: bad = very difficult to understand, ok = some-
what difficult to understand, and good = easy to under-
stand.

For each simplified sentence in the training dataset,
we also provided an overall score, Overall (O), that
represents a combination of the previous three scores
and rewards more meaning preservation and simplic-
ity than grammaticality. It should help decide whether
the automatically simplified sentence is ready to be
presented to a final user (good), needs post-editing
(ok), or should better be discarded and simplified using
some different technique or left in the original form
(bad). The formula used for the overall score is given
in Equation 1:

O(x) =


good if G(x) =M(x) = S(x) = good

bad if M(x) = bad or S(x) = bad

ok otherwise
(1)

The distribution of classes in the training and test sets can
be seen in Table 2. Several examples of the sentence pairs
from the training datasets are presented in Table 3.

3. Automatic Evaluation
The shared task participants were asked to submit their sys-
tems in the form of assigned classes (for the classification
task) and/or raw continuous numerical scores (for the met-
rics task).

3.1. Raw Score Metrics
Raw score metrics were assessed using Pearson’s correla-
tion coefficients:

r =

N∑
i=1

(ai − a)(gi − g)√
N∑
i=1

(ai − a)2
√

N∑
i=1

(gi − g)2
(2)

where ai is the automatically assigned class for the i-th sen-
tence, gsi is the ‘gold standard’ class (i.e. manually as-
signed class) for this sentence, a and g are respective mean
values, and N is the total number of sentences.
The Pearson’s correlation coefficient is used to measure
the strength of a linear association between two variables,
where the value r = 1 means a perfect positive correlation
and the value r = -1 means a perfect negative correlation.

23

Dataset
G M S O

good ok bad good ok bad good ok bad good ok bad

Training 75.6 14.3 10.1 58.2 26.3 15.5 52.7 30.3 17.0 31.3 41.2 27.5
Test 76.2 11.1 12.7 57.9 26.2 15.9 55.6 30.1 14.3 28.6 43.6 27.8
EventS 62.9 21.3 15.8 32.4 41.5 26.1 60.3 28.3 11.4 19.1 49.6 31.3
EncBrit 64.7 18.5 16.8 63.0 24.4 12.6 17.6 36.1 46.3 13.4 36.1 50.5
LSLight 95.8 2.5 1.7 85.0 10.0 5.0 62.9 29.6 7.5 52.5 35.4 12.1

Table 2: Distribution of classes for each aspect (percentages).

Version Sentence
Aspect

Modification
G M S O

Original All three were arrested in the Toome area and have been taken
to the Serious Crime Suite at Antrim police station.

good good good good syntacticSimple All three were arrested in the Toome area. All three have been
taken to the Serious Crime Suite at Antrim police station.

Original For years the former Bosnia Serb army commander Ratko
Mladic had evaded capture and was one of the world’s most
wanted men, but his time on the run finally ended last year
when he was arrested near Belgrade.

good bad ok bad content reduction

Simple For years the former Bosnia Serb army commander Ratko
Mladic had evaded capture.

Original Madrid was occupied by French troops during the Napoleonic
Wars, and Napoleon’s brother Joseph was installed on the
throne. good good good good lexical

Simple Madrid was occupied by French troops during the Napoleonic
Wars, and Napoleon’s brother Joseph was put on the throne.

Original Keeping articles with potential encourages editors, especially
unregistered users, to be bold and improve the article to allow it
to evolve over time. bad bad ok bad dropping

Simple Keeping articles with potential editors, especially unregistered
users, to be bold and improve the article to allow it to evolve
over time.

Table 3: Examples from the training dataset (differences between the original and simplified versions are presented in bold)

We also considered using the Spearman’s correlation coef-
ficient ρ. However, ρ takes into account only ranks, not
absolute values of the scores, thus making no assumptions
about linearity. For the shared task, it is also important to
assess how far the automatic score is from the ‘gold stan-
dard’. Therefore, we decided to calculate only Pearson’s
correlations. These are reported in Section 5.1. In order to
compute the correlations, the manual class labels were con-
verted into three equally distant numerical values (bad →
0, ok→ 50, and good→ 100).

3.2. Classifiers
Classifiers were assessed using the following four criteria:

1. Accuracy – the percentage of sentences for which the
automatically assigned class (a) is the same as the
‘gold standard’ class (g):

acc =
1

N

N∑
n=1

δ(an, gn) (3)

2. Mean absolute error (MAE) – the average of the ab-
solute values of the differences between automatic (a)
and ‘gold standard’ (g) classes:

MAE =
1

N

N∑
n=1

|an − gn| (4)

3. Root mean squared error (RMSE) – the square root
of the average of the squared differences between au-
tomatic (a) and ‘gold standard’ (g) classes .

RMSE =

√√√√ 1

N

N∑
n=1

(an − gn)2 (5)

4. Weighted F-score – the weighted sum of F-scores of
each class where each weight is the relative frequency
of the given class:

24

weightedF =
C∑

c=1

N(gc)

N

2 · Pc ·Rc

Pc +Rc
(6)

where N(gc) is number of occurences of the ‘gold
standard’ class c, C is the total number of classes, Pc

is precision for the class c:

Pc =
N(ac, gc)

N(ac)
(7)

and Rc is recall for the class c:

Rc =
N(ac, gc)

N(gc)
(8)

whereN(ac, gc) is the number of matches (‘gold stan-
dard’ and automatic class are the same), N(ac) is the
total number of automatic c labels, and N(gc) is the
total number of ‘gold standard’ c labels.

The main disadvantage of accuracy is that it does not take
into account the difference between an and gn, it only takes
into account whether they are equal or not. MAE and
RMSE are able to capture the difference. However, all three
methods have problems of overly awarding the most fre-
quent class (if any). Therefore the weighted F-score has
been introduced. All four scores in the form of percentages
(multiplied by 100) are reported in Section 5.2.

4. Participating Systems
We received a total of 10 metrics and 16 classifiers for each
aspect from eight groups that participated in the shared task.
Additionally, we provided several baselines.

4.1. Baselines
The following six classifiers were used as baselines for the
classification task:

1. Majority class, which labels each sentence with the
most frequent class (in the training dataset) for the
given aspect.

2. Four classifiers based on the metrics frequently
used for evaluation of machine translation output –
BLEU (Papineni et al., 2002), METEOR (Denkowski
and Lavie, 2011), TER (Snover et al., 2006) and
WER4 (Levenshtein, 1966). Each of the four metrics
was used to build a classifier based on arithmetic mean
in the following way:

• Arithmetic mean AMc, standard deviation σc,
and confidence interval [AMc − σc, AMc + σc]
were calculated for each class;

• Class boundaries (bh and bl) were set as:
bh = AMc(maxAM) − σc(maxAM)

bl = AMc(minAM) − σc(minAM)

where c(maxAM) is the class with the highest
AM and c(minAM) is the class with the lowest
AM .

4Not so frequently used anymore, but it is the basic edit dis-
tance and TER has been derived from it.

• Classification was performed as follows:

– Scores higher than bh were classified as
c(maxAM)

– Scores lower than bl were classified as
c(minAM)

– The rest was classified as the third class.

It should be noted that c(maxAM) = good and
c(minAM) = bad for Grammaticality, Meaning
preservation and Overall aspects, whereas for Simplic-
ity, c(maxAM) = ok and c(minAM) = good.

3. SVM classifier (with no feature standardisation or nor-
malisation) which uses BLEU, METEOR, TER, and
WER as features.

For the raw score metrics task, we used BLEU, METEOR,
WER, and TER scores as four baselines.
For calculating the MT evaluation metrics, the original sen-
tences were used as reference translations and the simpli-
fied sentences as MT outputs.

4.2. Raw Score Metrics
The following submissions were received for the (raw
score) metrics task:

UoLGP (Rios and Sharoff, 2015)

Three different systems trained with GP (Gaussian
processes) regression5 on three different sets of fea-
tures were submitted:

1. The QuEst baseline features6 (UoLGP-quest)

2. The embedding features based on bilingual em-
beddings7 trained on ‘original’ Wikipedia and
Simple Wikipedia, where each word is presented
as a 100-dimensional vector and the sentence
vector is the sum of the word vectors. The final
vector consists of 200 features, 100 for the orig-
inal sentence and 100 for the simplified sentence
(UoLGP-emb).

3. The combination of the previous two feature sets
(UoLGP-combo).

Simple Wikipedia sentence alignments were used to
train both the QuEst baseline and the bilingual em-
beddings to extract features from the training and test
sets, using original sentences as source sentences and
simplified sentences as target sentences.

OSVCML (Nisioi and Nauze, 2016)

Three different metrics were submitted:

1. Ensemble – A metric constructed using an en-
semble of classifiers trained on features rang-
ing from bag-of-words, POS tags, sentiment in-
formation (from SentiWordNet lexicon), nega-
tion, readability measures, character n-grams and

5https://sheffieldml.github.io/GPy/
6http://www.quest.dcs.shef.ac.uk
7https://github.com/karlmoritz/bicvm

25

BLEU metric between original and simplified sen-
tences. The parameters for the ensemble were
obtained using particle swarm optimisation under
multiple cross-validation scenarios.

2. Treelstm – The metric uses GloVe word vectors8

trained on the Common Crawl corpus and depen-
dency parse trees. The architecture is based on
a 3-layer recurrent neural networks, adapted and
fine-tuned for the current task, inspired by the
work of Tai et al. (2015).

3. Ensemble treelstm – A combination of the previ-
ously described metrics.

SimpleNets (Paetzold, 2016)

Two types of resource-light neural networks:

1. Multi-layer perceptron (MLP), which uses a set
of 14 features based on sentence lengths, vo-
cabulary size and language model probabilities
(SimpleNets-MLP).

2. Recurrent neural network (RNN) using n-gram
model and word embeddings. One version
(SimpleNets-RNN2) employs bigram models,
while the other version (SimpleNets-RNN3) em-
ploys trigram models.

IIT (Mathias and Bhattacharyya, 2016)

METEOR (Denkowski and Lavie, 2014) was submit-
ted as a raw metric score for the meaning preservation
aspect.

4.3. Classifiers
The following submissions were received for the classifica-
tion task:

CLaC (Davoodi and Kosseim, 2016)

Random Forest classifiers trained independently for
each of the three aspects (G, M, S) using different sets
of features for each aspect:

• Perplexities of language model built on Google
Ngram corpus for grammaticality (G);
• Word embeddings and cosine measures for mean-

ing preservation (M);
• A wider range of features including TF-IDF, sen-

tence length, frequency of cue phrases, etc. for
simplicity (S).

The classification system for the overall score (O) was
rule-based, taking into account predicted classes for
meaning preservation and simplicity.

Deep(Indi)Bow (Fishel, 2016)9

DeepIndiBow uses four individual multi-layer percep-
tron (MLP) networks for each of the evaluation aspects
(G, M, S, and O) whereas DeepBow uses a single out-
put layer corresponding to the concatenation of all four
outputs.

8http://nlp.stanford.edu/projects/glove/
9https://github.com/fishel/deepbow

Both variants use the same input, i.e. bag-of-word vec-
tors extracted from original and simplified sentences
where each element corresponds to a certain vocabu-
lary entry and is equal to 1 if the entry is present in the
sentence or 0 otherwise.

IIT (Mathias and Bhattacharyya, 2016)

One bagging classifier (Breiman, 1996) trained in
Weka for each of the three aspects (G, M, and S) using
different sets of features for each aspect:

• Language model with several additional features
for grammaticality (G);

• METEOR (Denkowski and Lavie, 2014) for mean-
ing preservation (M);

• A combination of features measuring lexical and
structural complexity for simplicity (S).

Two systems for predicting the overall score were sub-
mitted based on:

1. Output classes of the classifiers for G, M, and S
only (IIT-Default);

2. A combination of output classes of the three clas-
sifiers (for G, M, and S) and all previously used
features (IIT-Metrics).

SimpleNets (Paetzold, 2016)

The same systems (two types of resource-light neural
networks) as those described in Section 4.2. They par-
ticipated as both, raw score metrics and classifiers.

SMH (Štajner et al., 2016)

Three systems were proposed for each aspect. Ran-
dom Forest (Breiman, 2001) and IBk/K-nearest neigh-
bours (Aha and Kibler, 1991) classifiers for grammat-
icality (G) and simplicity (S), and Random Forest and
Logistic (le Cessie and van Houwelingen, 1992) for
meaning preservation (M) and overall score (O). All
classifiers were trained on a set of 22 MT evalua-
tion metrics and 17 quality estimation (QuEst) base-
line features (Specia et al., 2013). The third classifier
for each aspect was the Random Forest (which gave
best results on the training dataset in a 10-fold cross-
validation setup) applied only on a subset of initial fea-
tures returned by the CfsSubsetEval feature selection
algorithm (Hall and Smith, 1998).

MS (Popović and Štajner, 2016)

Three systems were proposed for each aspect. The
first two, Random Forest (Breiman, 2001) and IBk/K-
nearest neighbours (Aha and Kibler, 1991) use the set
of 13 MT evaluation metrics as features. The 13 fea-
tures were selected among initial 26 MT evaluation
metrics, as those with the highest Pearson correlation
with respect to the overall quality aspect. The two
classification algorithms were chosen among ten dif-
ferent, initially explored algorithms, as best perform-
ing on the training dataset in a 10-fold cross-validation
setup. The third classifier (MS-RandForest-b for G and

26

Grammaticality Meaning Simplicity Overall
0.482 OSVCML1 0.588 IIT-Meteor 0.382 OSVCML1 0.343 OSVCML2
0.384 METEOR 0.585 OSVCML 0.376 OSVCML2 0.334 OSVCML
0.344 BLEU 0.573 OSVCML2 0.339 OSVCML 0.232 SimpleNets-RNN2
0.340 OSVCML 0.533 BLEU 0.320 SimpleNets-MLP 0.230 OSVCML1
0.323 TER 0.527 METEOR 0.307 SimpleNets-RNN3 0.205 UoLGP-emb
0.308 SimpleNets-MLP 0.513 TER 0.240 SimpleNets-RNN2 0.198 SimpleNets-MLP
0.308 WER 0.495 WER 0.123 UoLGP-combo 0.196 METEOR

0.256 UoLGP-emb 0.482 OSVCML1 0.120 UoLGP-emb 0.189 UoLGP-combo
0.256 UoLGP-combo 0.465 SimpleNets-MLP 0.086 UoLGP-quest 0.144 UoLGP-quest
0.208 UoLGP-quest 0.285 UoLGP-quest 0.052 IIT-S 0.130 TER

0.064 SimpleNets-RNN3 0.262 SimpleNets-RNN3 -0.169 METEOR 0.112 SimpleNets-RNN3
0.056 SimpleNets-RNN2 0.262 SimpleNets-RNN2 -0.242 TER 0.111 WER

0.250 UoLGP-combo -0.260 WER 0.107 BLEU

0.188 UoLGP-emb -0.267 BLEU

Table 4: Sorted Pearson’s correlation coefficients for raw score metrics (the baseline systems are underlined).

MS-IBk-b for M, S, and O) was built using the better
performing of the previous two, but this time only on
a subset of those 13 features chosen by the CfsSub-
setEval feature selection algorithm (Hall and Smith,
1998).

UoW (Bechara et al., 2015)

An SVM regression system trained using LibSVM10

with RBF kernel. Different sets of features were used
for each aspect:

• Grammaticality: 17 QuEst baseline features for
MT quality estimation (Specia et al., 2013)

• Meaning preservation: MiniExpert’s Semantic
Textual Similarity features (Bechara et al., 2015)

• Simplicity: the features proposed by Yaneva and
Evans (2015) as a means to estimate text diffi-
culty for readers with autism spectrum disorder.

5. Results
In the following two subsections, we present the results
of all raw score metrics (Section 5.1.) and classifiers (Sec-
tion 5.2.) which participated in the shared task.

5.1. Raw Score Metrics Task
Pearson’s correlation coefficients for the standard MT met-
rics and the submitted raw score metrics are shown in Ta-
ble 4 for all four TS evaluation aspects.
For the grammaticality aspect, only one system (OS-
VCML1) was able to outperform METEOR and BLEU base-
lines, reaching a 0.482 correlation with the human scores
(the baseline METEOR, as the second best, had a 0.384 cor-
relation).
For the meaning preservation, three systems (IIT-Meteor,
OSVCML and OSCCML2) outperformed all four baselines
(BLEU, METEOR, TER, and WER).

10https://www.csie.ntu.edu.tw/˜cjlin/libsvm/

For the simplicity aspect, all participating systems per-
formed better than all baselines, with OSVCML systems
being the best, followed by the three SimpleNets systems.
For the overall aspect, several systems outperformed all
four baselines. Among them, the OSVCML2 and OSVCML
systems were the best, followed by the SimpleNets-RNN2,
OSVCML1, UoLGP-emb, and SimpleNets-MLP.
If taking into account results on all four aspects, the OS-
VCML approach achieved best results on this task.

5.2. Classification Task
On the classification task, for grammaticality, the baseline
majority-class (together with the MT-baseline, DeepIndi-
Bow and DeepBow) achieved the highest accuracy
(76.19%). Given the highly unbalanced distribution of
classes for this aspect in both training and test datasets (Ta-
ble 2), it is not surprising that this was a baseline difficult
to outperform in terms of accuracy. However, the weighted
F-score was the highest for the three SMH systems, which
were the only systems able to outperform the BLEU baseline
in terms of the weighted F-score (0.718, 0.716, and 0.700,
respectively).
On the meaning preservation task, the best accuracy
(69.05%) was achieved by the SMH-Logistic system. This
was the only system able to outperform the accuracy of
the MT-baseline. In terms of the weighted F-score, only
three systems (SMH-Logistic, MS-RandForest, and SMH-
RandForest) achieved better scores than the TER-baseline.
On the simplicity task, the best accuracy (57.14%) was
achieved by the SMH-RandForest-b system, which was the
only system to achieve better accuracy than the majority-
class baseline (55.56%). In terms of weighted F-score,
however, five systems outperformed the highest baseline
(0.483) achieved by the MT-baseline system. The SMH-
RandForest-best obtained the highest weighted F-score
(0.564), followed by the other two SMH systems, and
SimpleNets-RNN3 and SimpleNets-MLP systems.
On the overall prediction task, as many as six systems man-
aged to achieve higher accuracy than the majority-class

27

(a) Grammaticality

Accurracy Mean average error Root mean squared error Weighted F-score
76.19 Majority-class 17.06 SimpleNets-MLP 21.63 Majority-class 71.84 SMH-RandForest
76.19 MT-baseline 17.46 SMH-RandForest 21.63 DeepBow 71.64 SMH-IBk
76.19 DeepIndiBow 18.25 Majority-class 21.63 DeepIndiBow 69.96 SMH-RandForest-b
76.19 DeepBow 18.25 DeepBow 21.63 MT-baseline 69.09 BLEU

75.40 SMH-RandForest-b 18.25 DeepIndiBow 21.82 SimpleNets-RNN2 68.82 SimpleNets-MLP
75.40 SMH-RandForest 18.25 MT-baseline 21.98 SimpleNets-RNN3 68.36 TER

75.40 SimpleNets-RNN2 18.25 SMH-RandForest-b 22.60 SMH-RandForest-b 67.53 MS-RandForest
74.60 SimpleNets-RNN3 18.65 SimpleNets-RNN2 22.89 SMH-RandForest 67.50 IIT-LM
74.60 SimpleNets-MLP 19.05 SimpleNets-RNN3 23.20 SimpleNets-MLP 66.79 WER

72.22 IIT-LM 19.44 SMH-IBk 24.77 MS-RandForest 66.75 MS-RandForest-b
72.22 MS-RandForest 19.84 MS-RandForest 25.10 SMH-IBk 65.89 MT-baseline
70.63 SMH-IBk 21.43 BLEU 25.78 IIT-LM 65.89 DeepIndiBow
69.84 MS-RandForest-b 21.43 TER 25.89 MS-RandForest-b 65.89 DeepBow
69.84 BLEU 21.43 IIT-LM 26.61 BLEU 65.89 Majority-class
68.25 TER 21.83 MS-RandForest-b 27.76 TER 65.72 METEOR

65.87 WER 23.81 WER 30.03 WER 65.50 SimpleNets-RNN2
63.49 METEOR 24.21 METEOR 32.38 MS-IBk 65.11 SimpleNets-RNN3
60.32 MS-IBk 27.38 CLaC-RF-Perp 33.45 METEOR 64.39 CLaC-RF-Perp
58.73 CLaC-RF-Perp 28.17 MS-IBk 34.66 CLaC-RF-Perp 62.00 MS-IBk
41.27 UoW 30.16 UoW 46.03 UoW 46.32 UoW

(b) Meaning preservation

Accurracy Mean average error Root mean squared error Weighted F-score
69.05 SMH-Logistic 20.24 MT-baseline 23.49 SMH-Logistic 68.07 SMH-Logistic
66.67 MT-baseline 20.24 SMH-Logistic 26.06 SMH-RandForest 65.60 MS-RandForest
66.67 TER 20.63 UoW 26.35 UoW 64.40 SMH-RandForest
66.67 MS-RandForest 20.63 MS-RandForest 26.63 MS-RandForest 63.74 TER

65.87 SMH-RandForest 20.63 IIT-Meteor 26.75 IIT-Meteor 63.54 SimpleNets-MLP
65.87 SimpleNets-MLP 20.63 SMH-RandForest 27.59 BLEU 62.82 BLEU

65.08 BLEU 21.03 SimpleNets-MLP 27.94 MT-baseline 62.72 MT-baseline
63.49 IIT-Meteor 21.03 TER 28.10 TER 62.69 IIT-Meteor
63.49 UoW 21.43 BLEU 28.34 SimpleNets-MLP 61.71 MS-IBk-b
62.70 WER 21.43 METEOR 28.43 MS-IBk-best 61.50 MS-IBk
62.70 MS-IBk-b 22.62 WER 29.27 MS-IBk 60.12 METEOR

61.90 SMH-RandForest-b 23.81 SMH-RandForest-b 30.79 SMH-RandForest-b 59.69 SMH-RandForest-b
61.90 METEOR 24.21 MS-IBk-b 30.87 WER 59.06 WER

61.90 MS-IBk 25.00 MS-IBk 31.25 METEOR 58.83 UoW
57.94 Majority-class 27.38 SimpleNets-RNN2 33.19 SimpleNets-RNN2 51.29 SimpleNets-RNN2
57.94 SimpleNets-RNN2 28.17 SimpleNets-RNN3 35.30 Majority-class 51.00 CLaC-RF
53.17 DeepBow 28.97 Majority-class 36.31 CLaC-RF 46.64 SimpleNets-RNN3
51.59 SimpleNets-RNN3 30.56 CLaC-RF 39.88 SimpleNets-RNN3 46.30 DeepBow
49.21 CLaC-RF 32.94 DeepIndiBow 40.62 DeepBow 42.53 DeepIndiBow
47.62 DeepIndiBow 34.52 DeepBow 40.76 DeepIndiBow 42.51 Majority-class

Table 5: Accuracy, mean average error (MAE), root mean squared error (RMSE) and weighted F score of the classifiers on
the task of predicting the grammaticaliy (a) and meaning preservation (b). The baseline systems are underlined.

28

(a) Simplicity

Accurracy Mean average error Root mean squared error Weighted F-score
57.14 SMH-RandForest-b 25.00 SimpleNets-RNN3 31.22 Majority-class 56.42 SMH-RandForest-b
55.56 Majority-class 25.40 SMH-RandForest-b 32.06 SMH-RandForest-b 53.02 SMH-RandForest
53.17 SimpleNets-MLP 26.19 MT-baseline 33.54 DeepIndiBow 51.12 SMH-IBk
52.38 SMH-RandForest 26.98 SimpleNets-MLP 34.60 MS-IBk-best 49.96 SimpleNets-RNN3
52.38 DeepIndiBow 26.98 SimpleNets-RNN2 35.57 SimpleNets-RNN3 49.81 SimpleNets-MLP
52.38 SimpleNets-RNN3 27.78 SMH-RandForest 36.03 SimpleNets-MLP 48.31 MT-baseline
50.79 MT-baseline 28.17 UoW 36.64 MS-RandForest 47.84 MS-IBk-b
50.00 SMH-IBk 28.17 SMH-IBk 36.68 MT-baseline 47.82 MS-RandForest
50.00 SimpleNets-RNN2 29.37 Majority-class 37.01 SimpleNets-RNN2 47.47 SimpleNets-RNN2
49.21 MS-RandForest 31.35 MS-RandForest 38.08 SMH-RandForest 43.46 IIT-S
48.41 MS-IBk-b 31.35 DeepIndiBow 38.85 IIT-S 42.57 DeepIndiBow
47.62 IIT-S 32.94 BLEU 39.51 SMH-IBk 40.92 UoW
44.44 UoW 34.13 IIT-S 43.87 DeepBow 39.68 Majority-class
42.06 DeepBow 34.13 TER 44.19 UoW 38.10 MS-IBk
38.10 WER 34.92 METEOR 44.48 CLaC-RF-0.6 35.58 DeepBow
38.10 TER 34.92 WER 44.48 CLaC-RF-0.7 34.88 CLaC-RF-0.5
38.10 BLEU 35.71 MS-IBk-best 45.32 CLaC-RF-0.5 34.66 CLaC-RF-0.6
38.10 MS-IBk 36.11 DeepBow 45.77 BLEU 34.48 WER

35.71 METEOR 38.89 MS-IBk 46.10 WER 34.30 CLaC-RF-0.7
35.71 CLaC-RF-0.7 40.48 CLaC-RF-0.7 46.12 MS-IBk 33.52 TER

35.71 CLaC-RF-0.6 41.67 CLaC-RF-0.6 46.23 TER 33.34 METEOR

34.92 CLaC-RF-0.5 43.25 CLaC-RF-0.5 47.47 METEOR 33.00 BLEU

(b) Overall

Accurracy Mean average error Root mean squared error Weighted F-score
52.38 SimpleNets-RNN2 25.79 SimpleNets-RNN2 32.46 SimpleNets-RNN2 48.57 SMH-RandForest-b
50.79 UoW 26.59 UoW 33.11 UoW 48.20 UoW
48.41 SMH-RandForest-b 27.78 SimpleNets-RNN3 34.60 SMH-RandForest-b 47.54 SMH-Logistic
47.62 SMH-Logistic 28.17 Majority-class 36.27 SimpleNets-RNN3 46.06 SimpleNets-RNN2
47.62 SimpleNets-RNN3 28.17 SMH-Logistic 37.29 SMH-RandForest 44.50 SMH-RandForest
44.44 SMH-RandForest 28.97 SMH-RandForest-b 40.07 SMH-Logistic 40.94 METEOR

43.65 Majority-class 31.75 SMH-RandForest 40.52 Majority-class 40.75 SimpleNets-RNN3
42.86 METEOR 32.54 SimpleNets-MLP 41.44 MS-RandForest 39.85 MS-RandForest
41.27 DeepBow 33.73 DeepBow 41.79 METEOR 39.80 DeepIndiBow
40.48 DeepIndiBow 34.92 DeepIndiBow 42.16 IIT-Metrics 39.30 IIT-Metrics
39.68 IIT-Metrics 34.92 IIT-Metrics 42.70 DeepBow 38.27 MS-IBk
39.68 MS-RandForest 35.71 MS-RandForest 42.97 DeepIndiBow 38.16 MS-IBk-b
38.10 TER 37.30 METEOR 43.78 MT-baseline 38.03 DeepBow
38.10 MT-baseline 37.70 MS-IBk-b 43.80 MS-IBk 37.49 MT-baseline
38.10 MS-IBk-b 39.29 MS-IBk 44.21 CLaC-0.5 34.08 TER

38.10 MS-IBk 40.87 TER 44.30 MS-IBk-b 34.06 CLaC-0.5
38.10 SimpleNets-MLP 41.27 CLaC-0.5 45.01 BLEU 33.69 SimpleNets-MLP
37.30 BLEU 41.27 CLaC-0.7 45.16 CLaC-0.7 33.04 IIT-Default
35.71 WER 41.27 BLEU 45.67 CLaC-0.6 32.92 BLEU

34.13 CLaC-0.5 41.67 MT-baseline 46.29 TER 32.88 CLaC-0.7
33.33 IIT-Default 42.06 CLaC-0.6 47.83 IIT-Default 32.20 CLaC-0.6
33.33 CLaC-0.7 42.06 WER 47.94 WER 31.28 WER

32.54 CLaC-0.6 42.46 IIT-Default 48.13 SimpleNets-MLP 26.53 Majority-class

Table 6: Sorted accuracy, mean average error (MAE), root mean squared error (RMSE) and weighted F score of the
classifiers on the task of predicting the simplicity (a) and overall quality (b).

29

baseline (43.65%). The best performing system was the
SimpleNets-RNN2, followed by the UoW, three SMH sys-
tems and another SimpleNets system. Five of those six sys-
tems were also able to outperform all baselines (METEOR
being the best among them) in terms of the weighted F-
score. The order of the systems was somewhat changed in
comparison to their order in terms of accuracy. The high-
est weighted F-score (0.486) was achieved by the SMH-
RandForest-b in this case, followed by the UoW, SMH-
Logistic, SimpleNets-RNN2, and SMH-RandForest.
If we take into account the results achieved on all four as-
pects, it seems that the classifiers (Random Forest and Lo-
gistic) trained on the combination of MT evaluation metrics
and MT quality estimation baseline features (the SMH sys-
tems) have the best potential to predict human scores.

6. Summary and outlook
This first shared task on quality assessment for text simpli-
fication had a goal of exploring how much overlap there is
between this task and the closely related tasks of MT evalu-
ation and MT quality estimation. It brought together people
from all three communities.
The results indicated that MT evaluation metrics have a
good potential to be used for replacing human evaluation of
grammaticality and meaning preservation, but they do not
seem suitable for assessing simplicity and overall quality
(which strongly depends on simplicity). Furthermore, the
addition of MT quality estimation features appear to sig-
nificantly improve the performance of the classifiers on the
the Simplicity and Overall prediction tasks.
Now that we have established some baselines on this task,
the next step would be to tailor TS-specific features which
could boost the performance of the classifiers, especially on
the Simplicity and Overall prediction tasks.
Finally, this shared task showed there is a good potential for
collaboration among research communities working on MT
evaluation, MT quality estimation, and text simplification.
We are currently preparing a significantly larger and richer
dataset for English and a smaller dataset for Spanish, hop-
ing to gradually extend the shared task to languages other
than English.

7. References
Aha, D. and Kibler, D. (1991). Instance-based learning al-

gorithms. Machine Learning, 6:37–66.
Angrosh, M., Nomoto, T., and Siddharthan, A. (2014).

Lexico-syntactic text simplification and compression
with typed dependencies. In Proceedings of the 25th
International Conference on Computational Linguistics
(COLING): Technical Papers, pages 1996–2006, Dublin,
Ireland. ACL.

Aranzabe, M. J., Dı́az De Ilarraza, A., and González, I.
(2012). First Approach to Automatic Text Simplification
in Basque. In Proceedings of the first Natural Language
Processing for Improving Textual Accessibility Workshop
(NLP4ITA).

Barlacchi, G. and Tonelli, S. (2013). ERNESTA: A Sen-
tence Simplification Tool for Children’s Stories in Ital-
ian. In Computational Linguistics and Intelligent Text
Processing, LNCS 7817, pages 476–487.

Barzilay, R. and Elhadad, N. (2003). Sentence alignment
for monolingual comparable corpora. In Proceedings of
the Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 25–32, Stroudsburg,
PA, USA. Association for Computational Linguistics.

Bechara, H., Costa, H., Taslimipoor, S., Gupta, R., Orasan,
C., Corpas Pastor, G., and Mitkov, R. (2015). MiniEx-
perts: An SVM approach for Measuring Semantic Tex-
tual Similarity. In Proceedings of the 9th International
Workshop on Semantic Evaluation (SemEval), pages 96–
101.

Biran, O., Brody, S., and Elhadad, N. (2011). Putting it
Simply: a Context-Aware Approach to Lexical Simplifi-
cation. In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Lan-
guage Technologies, pages 496–501, Portland, Oregon,
USA. ACL.

Breiman, L. (1996). Bagging predictors. Machine Learn-
ing, 24(2):123–140.

Breiman, L. (2001). Random Forests. Machine Learning,
45(1):5–32.

Brouwers, L., Bernhard, D., Ligozat, A.-L., and François,
T. (2014). Syntactic sentence simplification for french.
In Proceedings of the 3rd Workshop on Predicting and
Improving Text Readability for Target Reader Popula-
tions (PITR), pages 47–56.

Coster, W. and Kauchak, D. (2011a). Learning to Simplify
Sentences Using Wikipedia. In Proceedings of the 49th
Annual Meeting of the Association for Computational
Linguistics (ACL), pages 1–9. ACL.

Coster, W. and Kauchak, D. (2011b). Simple English
Wikipedia: a new text simplification task. In Proceed-
ings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technolo-
gies (ACL&HLT)., pages 665–669. ACL.

Davoodi, E. and Kosseim, L. (2016). CLaC @ QATS:
Quality Assessment for Text Simplification. In Proceed-
ings of the LREC-16 Workshop on Quality Assessment
for Text Simplification (QATS), Portorož, Slovenia.

Denkowski, M. and Lavie, A. (2011). Meteor 1.3: Auto-
matic Metric for Reliable Optimization and Evaluation
of Machine Translation Systems. In Proceedings of the
EMNLP Workshop on Statistical Machine Translation,
pages 85–91.

Denkowski, M. and Lavie, A. (2014). Meteor Universal:
Language Specific Translation Evaluation for Any Tar-
get Language. In Proceedings of the 9th Workshop on
Statistical Machine Translation, pages 376–380. ACL.

Doddington, G. (2002). Automatic evaluation of machine
translation quality using n-gram coocurrence statistics.
In Proceedings of the second international conference on
Human Language Technology Research, pages 138–145.
Morgan Kaufmann Publishers Inc.

Fishel, M. (2016). Deepbow. GitHub.
Glavaš, G. and Štajner, S. (2013). Event-Centered Simpli-

cation of News Stories. In Proceedings of the Student
Workshop held in conjunction with RANLP 2013, Hissar,
Bulgaria, pages 71–78.

Glavaš, G. and Štajner, S. (2015). Simplifying Lexical

30

Simplification: Do We Need Simplified Corpora? In
Proceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 63–68. ACL.

Hall, M. A. and Smith, L. A. (1998). Practical feature
subset selection for machine learning. In Proceedings
of the 21st Australasian Computer Science Conference
(ACSC), pages 181–191. Berlin: Springer.

Horn, C., Manduca, C., and Kauchak, D. (2014). Learning
a Lexical Simplifier Using Wikipedia. In Proceedings of
ACL 2014 (Short Papers), pages 458–463.

le Cessie, S. and van Houwelingen, J. (1992). Ridge
Estimators in Logistic Regression. Applied Statistics,
41(1):191–201.

Levenshtein, V. I. (1966). Binary Codes Capable of
Correcting Deletions, Insertions and Reversals. Soviet
Physics Doklady, 10(8):707–710.

Mathias, S. and Bhattacharyya, P. (2016). Using Ma-
chine Translation Evaluation Techniques to Evaluate
Text Simplification Systems. In Proceedings of the
LREC Workshop on Quality Assessment for Text Simpli-
fication (QATS), Portorož, Slovenia.

Nisioi, S. and Nauze, F. (2016). An Ensemble Method for
Quality Assessment of Text Simplification. In Proceed-
ings of the LREC-16 Workshop on Quality Assessment
for Text Simplification (QATS), Portorož, Slovenia.

Paetzold, G. (2016). SimpleNets: Evaluation Simplifiers
with Resource-Light Neural Networks. In Proceedings
of the LREC Workshop on Quality Assessment for Text
Simplification (QATS), Portorož, Slovenia.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002).
BLEU: a Method for Automatic Evaluation of Machine
Translation. In Proceedings of the 40th Annual Meeting
of the Association for Computational Linguistics (ACL-
02), Philadelphia, PA.

Popović, M. and Štajner, S. (2016). Machine Translation
Evaluation Metrics for Quality Assessment of Automati-
cally Simplified Sentences. In Proceedings of the LREC
Workshop on Quality Assessment for Text Simplification
(QATS), Portorož, Slovenia.

Rios, M. and Sharoff, S. (2015). Large Scale Translation
Quality Estimation. In Proceedings of the 1st Deep Ma-
chine Translation Workshop, Prague, Czech Republic.

Rios, M., Aziz, W., and Specia, L. (2011). TINE: A met-
ric to assess MT adequacy. In Proceedings of the Sixth
Workshop on Statistical Machine Translation (WMT-
2011), Edinburgh, UK, pages 116–122.

Saggion, H., Štajner, S., Bott, S., Mille, S., Rello, L., and
Drndarevic, B. (2015). Making It Simplext: Implemen-
tation and Evaluation of a Text Simplification System for
Spanish. ACM Transactions on Accessible Computing,
6(4):14:1–14:36.

Snover, M., Dorr, B., Schwartz, R., Micciulla, L., and
Makhoul, J. (2006). A Study of Translation Error Rate
with Targeted Human Annotation. In Proceedings of the
7th Conference of the Association for Machine Transla-
tion in the Americas (AMTA-06), Boston, MA.

Specia, L., Shah, K., Guilherme, J., de Souza, C., and

Cohn, T. (2013). QuEst - A translation quality estima-
tion framework. In Proceedings of the Association for
Computational Linguistics (ACL), Demonstrations.

Specia, L. (2010). Translating from complex to simplified
sentences. In Proceedings of the 9th international con-
ference on Computational Processing of the Portuguese
Language (PROPOR), volume 6001 of Lecture Notes in
Computer Science, pages 30–39. Springer.

Tai, K. S., Socher, R., and Manning, C. D. (2015). Im-
proved Semantic Representations From Tree-Structured
Long Short-Term Memory Networks. In Proceedings of
the 53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint Con-
ference on Natural Language Processing, pages 1556–
1566.

Štajner, S., Mitkov, R., and Saggion, H. (2014). One Step
Closer to Automatic Evaluation of Text Simplification
Systems. In Proceedings of the 3rd Workshop on Pre-
dicting and Improving Text Readability for Target Reader
Populations (PITR) at EACL.

Štajner, S., Bechara, H., and Saggion, H. (2015a). A
Deeper Exploration of the Standard PB-SMT Approach
to Text Simplification and its Evaluation. In Proceedings
of the 53rd Annual Meeting of the Association for Com-
putational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume 2:
Short Papers), pages 823–828. ACL.

Štajner, S., Calixto, I., and Saggion, H. (2015b). Au-
tomatic Text Simplification for Spanish: Comparative
Evaluation of Various Simplification Strategies. In Pro-
ceedings of the International Conference Recent Ad-
vances in Natural Language Processing, pages 618–626,
Hissar, Bulgaria.

Štajner, S., Popović, M., and Bechara, H. (2016). Quality
Estimation for Text Simplification. In Proceedings of the
LREC Workshop on Quality Assessment for Text Simpli-
fication (QATS), Portorož, Slovenia.

Woodsend, K. and Lapata, M. (2011). Learning to Sim-
plify Sentences with Quasi-Synchronous Grammar and
Integer Programming. In Proceedings of the 2011 Con-
ference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 409–420.

Yaneva, V. and Evans, R. (2015). Six Good Predictors
of Autistic Reading Comprehension. In Proceedings of
the International Conference Recent Advances in Natu-
ral Language Processing (RANLP), pages 697–707.

Zhu, Z., Berndard, D., and Gurevych, I. (2010). A
Monolingual Tree-based Translation Model for Sen-
tence Simplification. In Proceedings of the 23rd Inter-
national Conference on Computational Linguistics (Col-
ing), pages 1353–1361.

31

Machine Translation Evaluation Metrics
for Quality Assessment of Automatically Simplified Sentences

Maja Popović1 and Sanja Štajner2
1Humboldt University of Berlin, Germany

2Data and Web Science Research Group, University of Mannheim, Germany
1maja.popovic@hu-berlin.de, 2sanja@informatik.uni-mannheim.de

Abstract
We investigate whether it is possible to automatically evaluate the output of automatic text simplification (ATS) systems by using
automatic metrics designed for evaluation of machine translation (MT) outputs. In the first step, we select a set of the most promising
metrics based on the Pearson’s correlation coefficients between those metrics and human scores for the overall quality of automatically
simplified sentences. Next, we build eight classifiers on the training dataset using the subset of 13 most promising metrics as features,
and apply two best classifiers on the test set. Additionally, we apply an attribute selection algorithm to further select best subset of
features for our classification experiments. Finally, we report on the success of our systems in the shared task and report on confusion
matrices which can help to gain better insights into the most challenging problems of this task.

Keywords: text simplification, automatic evaluation, machine translation metrics

1. Introduction
Automatic text simplification (ATS) has gained a consid-
erable attention in the last twenty years. Many ATS sys-
tems have been proposed for various languages, e.g. En-
glish (Angrosh et al., 2014; Glavaš and Štajner, 2015),
Portuguese (Specia, 2010), Spanish (Saggion et al., 2015;
Štajner et al., 2015), French (Brouwers et al., 2014), Ital-
ian (Barlacchi and Tonelli, 2013), and Basque (Aranzabe et
al., 2012). The aim of ATS systems is to transform syntac-
tically and lexically complex sentences into their simpler
variants more accessible to wider audiences (non-native
speakers, children, people with learning disabilities, etc.).
The standard way of evaluating ATS systems is by hu-
man assessment of the quality of the generated sentences
in terms of their grammaticality, meaning preservation,
and simplicity (Woodsend and Lapata, 2011; Glavaš and
Štajner, 2013; Saggion et al., 2015). The annotators are pre-
sented with pairs of original and automatically simplified
sentences (for meaning preservation), and with automati-
cally simplified sentences (for grammaticality and simplic-
ity), and asked to evalute them on a 1–3 or 1–5 scale (where
lower score always denotes worse output).
In addition to this, some ATS systems are also evaluated by
readability metrics (on a text level), e.g. (Zhu et al., 2010;
Woodsend and Lapata, 2011; Glavaš and Štajner, 2013;
Saggion et al., 2015), or by machine translation (MT) eval-
uation metrics, such as BLEU (Papineni et al., 2002), NIST
(Doddington, 2002), or TER (Snover et al., 2006) in case of
the MT-based ATS systems (Specia, 2010; Zhu et al., 2010;
Woodsend and Lapata, 2011; Coster and Kauchak, 2011;
Štajner et al., 2015).
As any other human evaluation, the assessment of gram-
maticality (G), meaning preservation (M), and simplicity
(S) is a costly and time-consuming task. Therefore, au-
tomatic methods are needed in order to provide a faster
and more consistent evaluation. In spite of that, this task
have not attracted much attention so far. To the best of
our knowledge, there has been only one work (Štajner et

al., 2014) tackling this problem by assessing the potential
of several MT evaluation metrics: BLEU (Papineni et al.,
2002), TER (Snover et al., 2006), METEOR (Denkowski
and Lavie, 2011), and TINE (Rios et al., 2011). They
showed that all of them correlate well with the human
scores for meaning preservation, and some of them (BLEU
and TER) also have a good correlation with the human
scores for grammaticality (they did not investigate the cor-
relation of those metrics with the human scores for simplic-
ity). Štajner et al. (2014) further built several classifiers for
automatic assessment of grammaticality, meaning preserva-
tion, and their combination. One of the main limitations of
their work was the dataset used for training and testing. The
dataset1 was produced by the ATS system which performs
syntactic simplification and content reduction (Glavaš and
Štajner, 2013) and is, therefore, not the best representative
for most of the ATS systems (that usually perform syntactic
and/or lexical simplification and no content reduction).
In this work, we built upon previous work (Štajner et al.,
2014) on several levels:

1. We significantly extended the list of MT metrics, in-
cluding the MT evaluation metrics based on one of the
two usual approaches: n-gram matching or edit dis-
tance.

2. We calculated Pearson’s correlation of all MT met-
rics with human scores for grammaticality, meaning
preservation and simplicity (not only for grammatical-
ity and meaning preservation).

3. We preselected a subset of most promising MT metrics
based on their Pearson’s correlations with the human
scores.

4. We tested the usefulness of MT metrics on a larger and
more heterogeneous dataset (which also contains lexi-
cal simplifications and simplifications without content
reduction) provided for the shared task.

1takelab.fer.hr/data/evsimplify/

32

Version Sentence
Aspect

Modification
G M S O

Original Mladic reportedly gave a thumbs-up and clapped to
supporters in the court’s public gallery as the trial got
under way. ok ok ok ok syntactic + content reduction

Simple Mladic gave a thumbs-up. Mladic clapped to support-
ers. The trial got under way.

Original Philippine President Benigno Aquino said he was look-
ing to end the standoff through diplomatic means. bad bad good bad content reduction

Simple Philippine President Benigno Aquino said.

Original Her mother wanted her to leave school and marry, but
she rebelled. good good good good lexical

Simple Her mother wanted her to leave school and marry, but
she did not.

Original The novel received favorable reviews in several major
newspapers. bad ok ok ok dropping

Simple The received favorable reviews in several major news-
papers.

Original The place where Waste was executed is now the site of
a Roman Catholic church. good good good good lexical + insertion

Simple The place where Joan Waste was killed is now the site
of a church.

Table 1: Examples from the training dataset (differences between the original and simplified versions are presented in bold)

We calculated a total of 26 metrics on the provided training
dataset, using the original English sentences as references,
and their simplifications as hypotheses. In the next step,
we selected the most promising metrics based on Pearson’s
correlation coefficients between them and the assigned hu-
man scores for the overall quality of the sentences. Finally,
we used that subset of MT metrics to train eight classifiers,
out of which we submitted the two best ones to the shared
task. Additionally, we experimented with one attribute se-
lection algorithm and submitted the best of the two classi-
fiers trained on that subset of features.

2. Shared Task Description
The shared task participants were provided with a training
dataset of 505 sentence pairs and a test set (without ‘gold
standard’ scores) of 126 sentence pairs from news articles
and Wikipedia articles. The automatically simplified sen-
tences were obtained by various automatic text simplifi-
cation systems and thus cover different simplification phe-
nomena (only lexical simplification, only syntactic simpli-
fication, mixure of lexical and syntactic simplification, con-
tent reduction, etc.).
The training dataset contained a quality label (good, ok, or
bad) for each sentence according to four aspects:

• Grammaticality (G)

• Meaning preservation (M)

• Simplicity (S)

• Overall (O)

where the overall score presents a combination of the previ-
ous three scores which rewards more meaning preservation
and simplicity than grammaticality.2

Several examples from the training dataset are presented in
Table 1. It can be noted that some of the changes to the orig-
inal sentence affect only one word (lexical changes, drop-
ping, or insertion), while others reflect on larger portions of
the sentence (syntactic changes and content reduction).
The MT evaluation metrics calculate similarity between the
obtained translation and a reference translation. The higher
similarity indicates better translation quality. For TS eval-
uation, which is a similar – but nevertheless distinct – task,
we expected that the MT evaluation metrics could be good
indicators of grammaticality and meaning preservation. We
also expected that the simplicity aspect will be difficult to
capture using the overall MT evaluation scores. However,
we thought that certain components, such as insertions or
deletions, might be able to capture relations between text
reduction and quality.
We did not investigate complex MT evaluation metrics
which require language dependent knowledge such as se-
mantic roles, etc. Most of the metrics we used are com-
pletely language independent, while some of them require
part-of-speech taggers and/or lemmatisers for the given lan-
guage.

3. MT Evaluation Metrics
We focused on 26 automatic MT metrics:

• N-gram based metrics (9)

2http://qats2016.github.io/shared.html

33

– BLEU – n-gram precision (Papineni et al., 2002);

– METEOR – n-gram matching enhanced by us-
ing synonymes and stems (Denkowski and Lavie,
2011);

– wordF, baseF, morphF, posF, chrF – F1
scores of word, base form, morpheme,
POS tag (Popović, 2011b) and character n-
grams (Popović, 2015); for word and character
n-grams, F3 scores are investigated as well
(wordF3, chrF3).

BLEU and METEOR are widely used for MT evalua-
tion, and the other metrics have shown very good cor-
relations with human judgments in recent years, espe-
cially the character n-gram F3 score (chrF3) for mor-
phologically rich languages.

• Edit-distance based metrics (4)

– WER – Levenshtein (edit) distance (Levenshtein,
1966);

– TER – modified edit distance taking into account
shifts of word sequences (Snover et al., 2006);

– Serr – sum of word-level error rates provided
by Hjerson, automatic tool for MT error analy-
sis (Popović, 2011a);

– bSerr – Hjerson’s sum of block-level error rates.

WER is the basic edit-distance metric widely used
in speech recognition and at the beginnings of ma-
chine translation development. It was later substituted
by TER which shows better correlations with human
judgments as it does not penalise small differences as
much as WER. Recently, Hjerson’s error rates have
also shown good correlations with human judgments.

• Components of edit-distance based metrics (13)

– WER and TER substitutions, deletions and inser-
tions (wer-sub, ter-sub, wer-del, ter-del, wer-ins,
ter-ins);

– TER shifts and word shifts (ter-sh, ter-wsh);

– Hjerson’s error classes:

∗ Inflectional errors (infl)

∗ Reordering errors (reord)

∗ Missing words (miss)

∗ Extra words (ext)

∗ Lexical errors (lex).

It should be noted that the n-gram based metrics represent
scores, i.e. the higher the value, the more similar the seg-
ments, whereas edit-distance based metrics represent error
rates, i.e. the lower the value, the more similarity between
the segments.

4. Correlations with Human Scores
The first step in exploring those 26 MT metrics consisted in
calculating Pearson’s correlation coefficients between each
metric and human scores for four aspects (grammaticality,
meaning preservation, simplicity and overall score), which
are presented in Table 2. The metrics are sorted from best
to worst according its correlation with the human scores for
the overall quality of sentences.

Metric Aspect
Overall G M S

posF 0.288 0.386 0.559 -0.043
wer-del -0.265 -0.297 -0.542 0.097
ter-del -0.257 -0.264 -0.496 0.059
miss -0.252 -0.267 -0.529 0.117
BLEU 0.251 0.326 0.582 -0.122
wordF3 0.250 0.333 0.588 -0.124
baseF 0.248 0.340 0.578 -0.111
morphF 0.239 0.332 0.559 -0.104
WER -0.237 -0.302 -0.543 0.104
chrF3 0.231 0.303 0.575 -0.147
TER -0.229 -0.296 -0.539 0.119
METEOR 0.228 0.262 0.527 -0.140
Serr -0.223 -0.276 -0.536 0.127
wordF 0.219 0.316 0.552 -0.129
chrF 0.216 0.299 0.549 -0.140
ter-sh -0.155 -0.261 -0.186 -0.175
ter-wsh -0.151 -0.150 -0.157 0.052
reord -0.142 -0.172 -0.156 -0.124
bSerr -0.097 -0.222 -0.345 0.097
infl -0.033 -0.024 -0.136 0.104
ter-ins -0.025 -0.111 -0.069 -0.034
ter-sub -0.021 -0.052 -0.130 -0.129
wer-sub -0.001 -0.029 -0.149 0.085
wer-ins 0.016 -0.029 0.020 -0.058
lex 0.065 -0.012 -0.119 0.140
ext 0.074 -0.025 0.014 0.013

Table 2: Pearson’s correlation coefficients between auto-
matic metrics and human scores.

First of all, it can be confirmed that the TS evaluation task,
although similar to the MT evaluation task, requires differ-
ent approaches to evaluation of certain aspects. The MT
evaluation metrics show the best correlations for the mean-
ing preservation where a number of metrics have correla-
tions over 0.5. Grammaticality seems to be more difficult
aspect (the MT metrics achieve maximum correlation of
about 0.390). Simplicity is, as intuitively expected, the
most difficult aspect. While in MT evaluation the simi-
larity between the reference and the hypothesis should be
rewarded, this is not the case for the simplicity. The cor-
relations with the overall score are not greater than 0.290;
this score is also difficult for MT metrics since it takes all
aspects (including simplicity) into account.
Contrary to the expected, simplicity is not well captured
by deletions/omissions. Those metrics, instead, have rather
high correlation with meaning preservation scores, prob-
ably due to the fact that text reduction can influence the
meaning.

34

For building the classifiers, we selected only those metrics
which had the correlation greater than 0.200 with the over-
all score, i.e. the first 13 rows in Table 2.3

5. Classification Experiments
After selection of the 13 best correlating features, for each
of the four aspects (G, M, S, and Overall), we trained eight
different classifiers implemented in Weka Experimenter
(Hall et al., 2009):

1. Log – Logistic Regression (le Cessie and van
Houwelingen, 1992)

2. NB – Naı̈ve Bayes (John and Langley, 1995)

3. SVM-n – Support Vector Machines with feature nor-
malisation

4. SVM-s –Support Vector Machines with feature stan-
dardisation

5. IBk – K-nearest neighbours (Aha and Kibler, 1991)

6. JRip – a propositional rule learner (Cohen, 1995)

7. J48 – C4.5 decision tree (Quinlan, 1993)

8. RandF – Random Forest (Breiman, 2001)

All experiments were conducted in a 10-fold cross-
validation setup with 10 repetitions, using the provided
training dataset of 505 sentence pairs.4

Classifier Aspect
G S M Overall

Log 0.710 0.452 0.641 0.493
NB 0.653 0.416 0.628 0.373
SVM-n 0.652 0.363 0.633 0.424
SVM-s 0.655 0.363 0.653 0.494
IBk 0.737 0.532 0.655 0.530
JRip 0.671 0.458 0.620 0.461
J48 0.718 0.507 0.609 0.470
RandF 0.747 0.519 0.653 0.499
Majority class 0.652 0.363 0.428 0.240

Table 3: Results of the classification experiments (weighted
F-score). The two best results for each aspect (G, S, M, and
Overall) are presented in bold.

5.1. Results on the Training Dataset
The results of the classification experiments are presented
in Table 3. The majority-class baseline was already quite
high for grammaticality aspect (G). Nevertheless, the two
best classification algorithms (IBk and RandF) significantly
outperformed that baseline, as well as the majority-class
baseline on all other aspects (S, M, and Overall).

3Although wordF and chrF scores also fulfill this criterion,
they are not used in the best set because their F3 versions showed
better performance.

4http://qats2016.github.io/shared.html

5.2. Feature Selection
We further selected a subset of best features using the Cf-
sSubsetEval attribute selection algorithm (Hall and Smith,
1998) implemented in Weka by applying it to the whole
training dataset (in a 10-fold cross-validation setup). Next,
for each aspect, we trained a classifier (the most successful
one for that aspect according to the results in Table 3) only
on that subset of features. The CfsSubsetEval attribute se-
lection algorithm uses a correlation-based approach to the
feature selection problem, following the idea that “good
feature sets contain features that are highly correlated with
the class, yet uncorrelated with each other” (Hall, 1999).
On small datasets, the CfsSubsetEval gives results similar
to, or better than, those obtained by using a wrapper (Hall,
1999).
The CfsSubsetEval attribute selection algorithm returned
the following subsets of best features:

• For Grammaticality (G): {BLEU, METEOR, TER,
WER, chrF3, morphF, posF, ter-d, wer-d} – a total
of 9 features

• For Simplicity (S): {BLEU, chrF3, morphF} – a total
of 3 features

• For Meaning preservation (M): All except Serr – a to-
tal of 12 features

• For Overall: {BLEU, WER, chrF3, posF, miss, wer-d}
– a total of 6 features

5.3. Results on the Test Dataset
We submitted three runs for each aspect to the shared task.
The first two runs were the two classifiers which led to the
best results of the 10-fold cross-validation experiments on
the training dataset, the IBk and RandF classifiers. In the
third run, we built a classifier – either IBk or RandF, de-
pending on which of them was more successful in the cross-
validation experiments on the training dataset (the IBk for
Overall, M, and S, and RandF for G) – using only the sub-
set of features returned by the CfsSubsetEval attribute se-
lection algorithm (Section 5.2.).
The results of all three runs are presented in Table 4, to-
gether with the majority-class baseline, which turned out to
be a very strong baseline for this task (Štajner et al., 2016).
On the task of predicting the meaning preservation score
(M), all three of our systems outperformed the majority-
class baseline in terms of accuracy and the weighted aver-
age F-score. On the task of predicting the overall score,
all our systems achieved higher weighted F-scores than the
majority-class baseline. On the other two tasks, predicting
grammaticality and simplicity, only some of our systems
(two for grammaticality, and one for simplicity) succeeded
in outperforming the majority-class baseline in terms of
the weighted F-score, and none of the systems achieved a
higher accuracy score than the majority-class baseline.
Among all our systems, the Random Forest classification
algorithm with all 13 preselected features (RandF) achieved
the best results on all four tasks.

35

System Grammaticality Meaning Simplicity Overall
accuracy weighted-F accuracy weighted-F accuracy weighted-F accuracy weighted-F

Run 1 (IBk) 60.32 0.620 61.90 0.615 38.10 0.381 38.10 0.383
Run 2 (RandF) 72.22 0.675 66.67 0.656 49.21 0.478 39.68 0.398
Run 3 (best) 69.84 0.667 62.70 0.617 37.30 0.377 38.10 0.382
Majority class 76.19 0.659 57.94 0.425 55.56 0.397 43.65 0.265

Table 4: Results on the shared task (performances better than those of the baseline are presented in bold)

5.4. Error Analysis
In order to better understand which sentences pose most
difficulties in these classification tasks, the confusion ma-
trices for our best systems in each of the four aspects (ac-
cording to Table 4) are presented in Table 5.

Table 5: Confusion matrices (RandF using all 13 features)

Aspect Predicted Actual class
good ok bad

Grammaticality
good 87 9 14
ok 8 4 2
bad 1 1 0

Meaning
good 61 11 7
ok 9 17 7
bad 3 5 6

Simplicity
good 47 22 10
ok 18 12 5
bad 5 4 3

Overall
good 15 13 6
ok 13 23 17
bad 8 19 12

In most misclassification cases (all except those for the ok
sentences for the Overall aspect), our systems have a ten-
dency of assigning a higher class than the actual class. This
is particularly accentuated in classifications according to
sentence grammaticality and simplicity, where more than
a half of sentences that should be classified as bad were
classified as good.

6. Conclusions
Automatic evaluation of the quality of sentences produced
by automatic text simplification (ATS) systems is an im-
portant task which could significantly speed up evaluation
process and offer a fairer comparison among different ATS
systems. Nevertheless, it has hardly been addressed so far.
In this paper, we reported on results of our classification
systems, which were submitted to the QATS shared task
on quality assessment for text simplification. The proposed
feature sets were based on the use of standard – as well as
some more recent – machine translation (MT) evaluation
metrics.
More importantly, we explored the correlation of 26 MT
evaluation metrics with human scores for grammaticality,
meaning preservation, simplicity, and overall quality of au-
tomatically simplified sentences. The results revealed some

important differences between evaluation tasks in MT and
TS, which may seem very similar at first sight. They indi-
cated that it is necessary to propose different, TS-specific,
features in order to better assess the simplicity of automat-
ically simplified sentences.

7. References
Aha, D. and Kibler, D. (1991). Instance-based learning al-

gorithms. Machine Learning, 6:37–66.
Angrosh, M., Nomoto, T., and Siddharthan, A. (2014).

Lexico-syntactic text simplification and compression
with typed dependencies. In Proceedings of the 25th
International Conference on Computational Linguistics
(COLING): Technical Papers, pages 1996–2006, Dublin,
Ireland. ACL.

Aranzabe, M. J., Dı́az De Ilarraza, A., and González, I.
(2012). First Approach to Automatic Text Simplification
in Basque. In Proceedings of the first Natural Language
Processing for Improving Textual Accessibility Workshop
(NLP4ITA).

Barlacchi, G. and Tonelli, S. (2013). ERNESTA: A Sen-
tence Simplification Tool for Children’s Stories in Ital-
ian. In Computational Linguistics and Intelligent Text
Processing, LNCS 7817, pages 476–487.

Breiman, L. (2001). Random Forests. Machine Learning,
45(1):5–32.

Brouwers, L., Bernhard, D., Ligozat, A.-L., and François,
T. (2014). Syntactic sentence simplification for french.
In Proceedings of the 3rd Workshop on Predicting and
Improving Text Readability for Target Reader Popula-
tions (PITR), pages 47–56.

Cohen, W. W. (1995). Fast Effective Rule Induction. In
Proceedings of the Twelfth International Conference on
Machine Learning, pages 115–123.

Coster, W. and Kauchak, D. (2011). Learning to Simplify
Sentences Using Wikipedia. In Proceedings of the 49th
Annual Meeting of the Association for Computational
Linguistics (ACL), pages 1–9. ACL.

Denkowski, M. and Lavie, A. (2011). Meteor 1.3: Auto-
matic Metric for Reliable Optimization and Evaluation
of Machine Translation Systems. In Proceedings of the
EMNLP Workshop on Statistical Machine Translation,
pages 85–91.

Doddington, G. (2002). Automatic evaluation of machine
translation quality using n-gram coocurrence statistics.
In Proceedings of the second international conference on
Human Language Technology Research, pages 138–145.
Morgan Kaufmann Publishers Inc.

Glavaš, G. and Štajner, S. (2013). Event-Centered Simpli-

36

cation of News Stories. In Proceedings of the Student
Workshop held in conjunction with RANLP 2013, Hissar,
Bulgaria, pages 71–78.

Glavaš, G. and Štajner, S. (2015). Simplifying Lexical
Simplification: Do We Need Simplified Corpora? In
Proceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 63–68. ACL.

Hall, M. A. and Smith, L. A. (1998). Practical feature
subset selection for machine learning. In Proceedings
of the 21st Australasian Computer Science Conference
(ACSC), pages 181–191. Berlin: Springer.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reute-
mann, P., and Witten, I. H. (2009). The WEKA data
mining software: an update. SIGKDD Explor. Newsl.,
11:10–18.

Hall, M. A. (1999). Correlation-based Feature Selection
for Machine Learning. Ph.D. thesis, The University of
Waikato. Hamilton, New Zealand.

John, G. H. and Langley, P. (1995). Estimating Continuous
Distributions in Bayesian Classifiers. In Proceedings of
the Eleventh Conference on Uncertainty in Artificial In-
telligence, pages 338–345.

le Cessie, S. and van Houwelingen, J. (1992). Ridge
Estimators in Logistic Regression. Applied Statistics,
41(1):191–201.

Levenshtein, V. I. (1966). Binary Codes Capable of
Correcting Deletions, Insertions and Reversals. Soviet
Physics Doklady, 10(8):707–710.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002).
BLEU: a Method for Automatic Evaluation of Machine
Translation. In Proceedings of the 40th Annual Meeting
of the Association for Computational Linguistics (ACL-
02), Philadelphia, PA.

Popović, M. (2011a). Hjerson: An Open Source Tool for
Automatic Error Classification of Machine Translation
Output. The Prague Bulletin of Mathematical Linguis-
tics, (96):59–68.

Popović, M. (2011b). Morphemes and POS tags for
n-gram based evaluation metrics. In Proceedings of
the Sixth Workshop on Statistical Machine Translation
(WMT 2011), pages 104–107, Edinburgh, Scotland, July.

Popović, M. (2015). chrF: character n-gram F-score for au-
tomatic MT evaluation. In Proceedings of the 10th Work-
shop on Statistical Machine Translation, pages 392–395,
Lisbon, Portugal, September. Association for Computa-
tional Linguistics.

Quinlan, R. (1993). C4.5: Programs for Machine Learn-
ing. Morgan Kaufmann Publishers, San Mateo, CA.

Rios, M., Aziz, W., and Specia, L. (2011). TINE: A met-
ric to assess MT adequacy. In Proceedings of the Sixth
Workshop on Statistical Machine Translation (WMT-
2011), Edinburgh, UK, pages 116–122.

Saggion, H., Štajner, S., Bott, S., Mille, S., Rello, L., and
Drndarevic, B. (2015). Making It Simplext: Implemen-
tation and Evaluation of a Text Simplification System for
Spanish. ACM Transactions on Accessible Computing,
6(4):14:1–14:36.

Snover, M., Dorr, B., Schwartz, R., Micciulla, L., and
Makhoul, J. (2006). A Study of Translation Error Rate
with Targeted Human Annotation. In Proceedings of the
7th Conference of the Association for Machine Transla-
tion in the Americas (AMTA-06), Boston, MA.

Specia, L. (2010). Translating from complex to simplified
sentences. In Proceedings of the 9th international con-
ference on Computational Processing of the Portuguese
Language (PROPOR), volume 6001 of Lecture Notes in
Computer Science, pages 30–39. Springer.

Štajner, S., Mitkov, R., and Saggion, H. (2014). One Step
Closer to Automatic Evaluation of Text Simplification
Systems. In Proceedings of the 3rd Workshop on Pre-
dicting and Improving Text Readability for Target Reader
Populations (PITR) at EACL.

Štajner, S., Calixto, I., and Saggion, H. (2015). Automatic
Text Simplification for Spanish: Comparative Evaluation
of Various Simplification Strategies. In Proceedings of
the International Conference Recent Advances in Natu-
ral Language Processing, pages 618–626, Hissar, Bul-
garia.

Štajner, S., Popović, M., Saggion, H., Specia, L., and
Fishel, M. (2016). Shared Task on Quality Assessment
for Text Classification. In Proceedings of the LREC
Workshop on Quality Assessment for Text Simplification
(QATS).

Woodsend, K. and Lapata, M. (2011). Learning to Sim-
plify Sentences with Quasi-Synchronous Grammar and
Integer Programming. In Proceedings of the 2011 Con-
ference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 409–420.

Zhu, Z., Berndard, D., and Gurevych, I. (2010). A
Monolingual Tree-based Translation Model for Sen-
tence Simplification. In Proceedings of the 23rd Inter-
national Conference on Computational Linguistics (Col-
ing), pages 1353–1361.

37

Using Machine Translation Evaluation Techniques to Evaluate Text
Simplification Systems

Sandeep Mathias, Pushpak Bhattacharyya
Department of Computer Science and Engineering

IIT Bombay, India
{sam,pb}@cse.iitb.ac.in

Abstract
In this paper, we discuss our approaches to find out ways to evaluate automated text simplification systems, based on the grammaticality
and simplicity of their output, as well as the meaning preserved from the input, and the overall quality of simplification of the system.
In this paper, we discuss existing techniques currently used in the area of machine translation, as well as a novel technique for text
complexity analysis, to assess the quality of the text simplification system.
Keywords: METEOR, Language modelling, Lexical complexity

1. Introduction
While there has been a lot of research in automated text
simplification, there has been relatively little work done in
evaluating automated text simplification systems. One of
the main bottlenecks in coming up with solutions to this
problem lies in what should be measured. Should we pro-
vide more emphasis on the grammar of the output, or the re-
tention of the meaning of the output, or the difficulty of the
output, or a combination of all three? Our paper aims to de-
scribe different techniques to solve these problems. Some
of them are already in use in the field of machine transla-
tion, while others are relatively new techniques specifically
for text simplification.

2. Problem Statement
The LREC (Language Resources and Evaluation Confer-
ence) 2016 had a workshop called the Quality Assessment
for Text Simplification (QATS) workshop that had a shared
task which aims to find out ways to evaluate various as-
pects of assessing the output from text simplification sys-
tesms. The main aim of the shared task is to find out ways
to evaluate different text simplification systems based on
their output. For this task, we consider the following ques-
tions:

1. How grammatically correct is the output of the sys-
tem?

2. How simple is the output of the system?

3. How much of the meaning of the input sentence is pre-
served in the output of the system?

4. How good is the overall quality of the system?

The training data has 505 sentence pairs that are manually
scored for various aspects, such as grammaticality, meaning
preservation, simplicity, and overall quality. The sentence
pairs (or output sentences in the case of grammaticality and
simplicity) are classified as either “good”, “ok”, or “bad”.
A separate test set of 126 sentence pairs was also used to
test the quality of our approaches.
We view each of these questions as individual classifica-
tion problems, with each instance being classified as either

“good”, or “ok”, or “bad”. The following sections will ex-
plain our approaches to solve each of these questions.

3. Grammaticality
Grammaticality is a means of finding out how grammati-
cally correct a sentence is. Grammaticality is scored based
on the quality of the simplified sentence only. To evaluate
grammaticality, we make use of language modelling - one
of the tasks in machine translation. In machine translation,
the language model is used to check how likely a string in
the target language is. Hence, we use language modelling
to score the grammaticality of the system.
To build the language model, we make use of the Sim-
ple English Wikipedia from the English Wikipedia - Sim-
ple English Wikipedia (Kauchak, 2013) corpus. The cor-
pus consists of a sentence aligned and a document aligned
parallel corpus between articles in English Wikipedia1 and
Simple English Wikipedia2. The sentence aligned corpus
has sentences in the Simple English Wikipedia aligned with
their corresponding sentence in the English Wikipedia. On
the other hand, the document aligned corpus has the arti-
cle in the Simple English Wikipedia aligned with the cor-
responding article in the English Wikipedia. Since every
article in the Simple English Wikipedia has a correspond-
ing article in the English Wikipedia, using the document-
aligned Simple English Wikipedia is equivalent to using the
entire Simple English Wikipedia (at least upto the point of
the corpus’ creation).
For our task, we take all the Simple Engilsh Wikipedia ar-
ticles from the document aligned corpus to calculate the
language modelling score. We make use of the SRILM
toolkit used for machine translation to train the language
model. Using SRILM, we also find out the out of vocab-
ulary words (OOVs), the perplexity (ppl), and the average
perplexity per word (ppl1) in each sentence. The following
features are used to help classify the how grammatical the
output sentence is:

1. Number of words in the sentence

2. Number of OOVs

1http://en.wikipedia.org
2http://simple.wikipedia.org

38

3. Log of the probabililty score (Language model score
for the sentence)

4. Perplexity of the sentence

5. Average perplexity per word of the sentence

Details of the experiment and results are covered in Section
6.

4. Meaning Preservation
The second aspect that we score is the amount of mean-
ing retained in the output, given a particular input sentence.
Consider the following sentence:

Warsaw lies on the Vistula River, about 240 miles
southeast of the Baltic coast city of Gdansk.3

An example of a good meaning preservation would be
Warsaw is on the Vistula River, about 240 miles southeast
of Gdansk. Gdansk is a Baltic coast city. However, a sen-
tence with bad meaning preservation would be something
like Vistula is on the Warsaw River, about 240 miles south-
east of the Baltic coast city of Gdansk. To accomplish this
task, we make use of the METEOR (Denkowski and Lavie,
2014) metric, already being used in machine translation.
Unlike BLEU (Papineni et al., 2002) , the advantages of
using METEOR are as follows:

1. BLEU matches words only if they are completely
matched (i.e. their surface forms are the same). For
instance, BLEU would score a match of live → lives
as 0. However, since both live and lives have the same
stem, METEOR will award some value to the match.

2. BLEU does not match synonyms. A word like jail→
prison will be scored as 0. However, in METEOR, it
would be awarded a score, since prison is a synonym
of jail.

3. BLEU does not score paraphrases. At times, the out-
put sentence may have a paraphrase of the reference
phrase - for example, kicked the bucket→ died. BLEU
will score it as 0, but METEOR will award it a score.

METEOR works by identifying all possible matches be-
tween the input and simplified sentences. We consider 4
different types of matches, namely

1. Exact If the surface words are the same.

2. Stem If the stems of the words unmatched by the pre-
vious matcher are the same. This is done using the
Snowball Stemmer for English (Porter, 2001).

3. Synonym If the stems of the words also remain un-
matched, the remaining words are matched if they be-
long to the same synset in WordNet (Fellbaum, 1998).

4. Paraphrase Among the remaining unmatched words,
match them if they occur as paraphrases in a para-
phrase table (Denkowski and Lavie, 2014).

3This was one of the sentences in the test set of the shared task.

For each type of match, a weight is used to calculate the
score. We use the weights described in (Denkowski and
Lavie, 2014) for exact, stem, synonym, and paraphrase
matching. Table 1 gives the weights of different types of
matches used. We make use of the METEOR scores for es-

Type of match Weight
Exact 1.00
Stem 0.60
Synonym 0.80
Paraphrase 0.60

Table 1: Weights of different matchers in METEOR

timating the meaning preservation of the input sentence in
the simplified output sentence. Here, for each sentence pair,
we calculate the METEOR score for the simplified sentence
with respect to the original input sentence. We use the ME-
TEOR score as the only feature to measure the meaning of
the input sentence preserved in the output sentence.

5. Simplicity
Along with measuring the grammaticality of the simplified
output sentence, as well as the meaning of the input sen-
tence preserved in the output sentence, we also look at how
simple the output sentence is. This is important in judging
the quality of the text simplification.
There are many measures to judge the quality of the sim-
plified output. One of the earliest methods was the Flesch
Reading Ease Score (FRES) (Flesch, 1948), proposed by
Rudolph Flesch in 1948. This approach took into account
mainly the average number of words per sentence, and the
average number of syllables per word. It used a simple for-
mula to calculate the reading ease of a piece of text, with-
out the use of any extra data. More recently, the presence
of data, in the form of the English Wikipedia - Simple En-
glish Wikipedia (Kauchak, 2013) gave rise to data driven
approaches to simplify texts.
For calculating the complexity of the texts, we take into
account mainly two types of complexity, namely structural
complexity and lexical complexity. Structural complexity
is a measure of how complex the sentence is, based on its
parse tree. For structural compexity, we calculate the num-
ber of

1. Main clause sentences

2. Sentences from relative clauses

3. Sentences from appositives

4. Sentences from noun and verb participial phrases

5. Sentences from other subordinate clauses

that we can extract from a single input sentence using
Michael Heilman’s factual statement extractor4 (Heilman
and Smith, 2010).

4The system can be downloaded from
www.cs.cmu.edu/˜ark/mheilman/qg-2010-workshop

39

Lexical complexity is the complexity of the text based on
its vocabulary. It is based on the complexity of the words
and phrases used in the text.
We use a unigram and bigram language model of the En-
glish Wikipedia - Simple English Wikipedia (Kauchak,
2013) parallel corpus to calculate the lexical complexity of
each n-gram. The complexity of an n-gram is comprised
of 2 parts, namely the corpus complexity and the syllable
count.

1. Corpus complexity For each n-gram (g) of the sen-
tence, we calculate its corpus complexity (Biran et al.,
2011), Cc(g), defined as the ratio of the log likelihood
of g in the English corpus to the log likelihood of g in
the Simple English corpus. In other words,

Cc(g) =
LL(g|normal)
LL(g|simple)

Here, we assume that every n-gram in the Simple En-
glish corpus has to occur at least once in the English
corpus.

2. Syllable count We consider that readers read words
one syllable at a time. The syllable count, s(g), of an
n-gram (g) is defined as the sum of syllables of the
words in that n-gram.

With these two ideas, we go ahead and calculate the lexical
complexity of an n-gram (g) as:

Lc(g) = s(g)× Cc(g)

Hence, for a given sentence S, and an n-gram size, the lex-
ical complexity is given by

Lc(S, n) =
∑
g
s(g)× Cc(g),

where g is an n-gram of size n.
In addition to this, we also attach a weight Wn to the lexical
complexity calculated for a particular n-gram. For a given
n-gram size of n, the weight is 1

n . This is because the un-
igrams in the n-gram are added n-times. For example, if n
is 2, and we have an n-gram sequence “a b c d e f g ...”,
unigrams like b, c, d, e, f, etc. get added twice.
Therefore, we can say that the lexical complexity of a sen-
tence is given by

Lc(S) =
∑
n
Wn

∑
g
s(g)× Cc(g),

The final complexity of the text is calculated as the sum of
the lexical and structural complexity. We use this value as
the feature in calculating the complexity of the simplified
sentence.

6. Shared Task Results
For each of the tasks - grammaticality, meaning preserva-
tion, simplicity - we treat them as a classification problem
and classify the outputs of the simplification systems as ei-
ther “good”, “ok”, or “bad”. We use Bagging with the REP-
Tree classifier in Weka running 10 iterations to train our
model. The training data was a set of 505 sentence pairs,

and the test data, an additional 126 sentence pairs. Accu-
racy (Acc.) is the percentage of sentences correctly classi-
fied. To calcuate the mean absolute error (MAE), and the
root mean square error (RMSE), 100, 50 and 0 were given
to the classes “good”, “ok”, and “bad” respectively. The
baseline we use is the majority class of our training data.
The following are the results of various aspects of our task.

6.1. Grammaticality
The following table gives the results for our experiments
with the grammaticality of the output sentences.

Experiment Acc. (%) MAE RMSE
Training set - Baseline 75.64 17.23 36.96
Training set 76.04 16.63 36.01
Test set - Baseline 76.19 18.25 21.63
Test set 72.22 21.43 25.78

Table 2: Results of grammaticality classification

From the results, we can clearly see that existing language
modelling toolkits (like SRILM) can provide reasonably
accurate results for grammaticality.

6.2. Meaning Preservation
The following table gives the results for our experiments
in estimating the meaning preservation of the input in the
output sentences.

Experiment Acc. (%) MAE RMSE
Training set - Baseline 58.21 28.61 46.94
Training set 66.34 19.50 35.25
Test set - Baseline 57.94 28.97 35.30
Test set 63.49 20.63 26.75

Table 3: Results of Meaning Preservation using METEOR

From the above results, we see that the use of METEOR for
classifying the output gives satisfactory results.

6.3. Simplicity
The following table gives the results for our experiments in
estimating the simplicity of the output of the text simplifi-
cation system.

Experiment Acc. (%) MAE RMSE
Training set - Baseline 52.67 32.18 49.60
Training set 48.31 32.87 48.59
Test set - Baseline 55.56 29.37 31.22
Test set 47.62 34.13 38.85

Table 4: Results of Simplicity of output

From the above results, we realize that calculating the sim-
plicity of the output of the system requires a lot of research
to solve.

40

6.4. Overall quality
In addition to calculate the above metrics, we also clas-
sify the overall quality of the system. Here, we consider
two experiments. The first uses only the classes output that
we get from the different aspects of the simplification sys-
tem, namely the class values of grammaticality, simplicity
and meaning preservation as features. The second uses the
classes output as well as the other values (like OOVs, lexi-
cal complexity, etc.) that we used to classify the individual
aspects of simplification as features. The following table
gives the results of classifying the overall quality of the text
simplification system:

Experiment Acc. (%) MAE RMSE
Training set - Baseline 43.76 33.17 46.51
Training Set - Classes 45.74 31.39 44.67
Training Set - Values 56.23 23.56 36.70
Test Set - Baseline 43.65 28.17 40.52
Test Set - Classes 33.33 42.46 47.83
Test Set - Values 39.68 34.92 42.97

Table 5: Overall Quality Classification Results

Training Set - Classes and Test Set - Classes make use
of only the classes output from our tasks, like simplicity,
meaning preservation and grammaticality. Training Set -
Values and Test Set - Values use all the other values calcu-
lated, like METEOR Score, lexical complexity, etc. in ad-
dition to the class values to help classify the overall quality
of the output. One of the factors affecting the low quality of
the overall quality classification is the fact that our simpli-
fication results are comparatively low as compared to those
of meaning preservation and grammaticality.

7. Conclusions
Among the three given tasks, we have seen that, for the
evaluation of text simplification systems, metrics such as
METEOR and techniques like language modelling can
achieve good results as compared to more complex tasks,
like evaluating the simplicity of the text, which is also why
the accuracy in the overall quality classification of the var-
ious text simplification systems is quite low.

8. Bibliographical References
Biran, O., Samuel, B., and Elhadad, N. (2011). Putting

it simply: a context-aware approach to lexical simplifi-
cation. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Human
Language Technologies: short papers, volume 2, pages
496–501. Association for Computational Linguistics.

Denkowski, M. and Lavie, A. (2014). Meteor universal:
Language specific translation evaluation for any target
language. In Proceedings of the EACL 2014 Workshop
on Statistical Machine Translation.

Fellbaum, C. (1998). WordNet: An electronic database.
Flesch, R. (1948). A new readability yardstick. Journal of

applied psychology, 32(3):221–233.

Heilman, M. and Smith, N. A. (2010). Extracting simpli-
fied statements for factual question generation. In Pro-
ceedings of QG2010: The Third Workshop on Ques-tion
Generation, page 11.

Kauchak, D. (2013). Improving text simplification lan-
guage modelling using unsimplified text data. In Pro-
ceedings of the 51st Annual Meeting of the Association
for Computational Linguistics, pages 1537–1546. Asso-
ciation for Computational Linguistics.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002).
Bleu: a method for automatic evaluation of machine
translation. In Proceedings of the 40th annual meeting
on association for computational linguistics, pages 311–
318. Association for Computational Linguistics.

Porter, M. F. (2001). Snowball: A language for stemming
algorithms.

41

SimpleNets: Evaluating Simplifiers with Resource-Light Neural Networks

Gustavo H. Paetzold and Lucia Specia
Department of Computer Science, University of Sheffield

Western Bank, Sheffield, UK
ghpaetzold1@sheffield.ac.uk, l.specia@sheffield.ac.uk

Abstract
We present our contribution to the shared task on Quality Assessment for Text Simplification at QATS 2016: the SimpleNets systems.
We introduce a resource-light Multi-Layer Perceptron classifier, as well as a deep Recurrent Neural Network that predicts the quality of
a simplification by assessing the quality of its n-grams. Our Recurrent Neural Networks have achieved the state-of-the-art solution for
the task, outperforming all other system in terms of overall simplification Accuracy.

Keywords: Text Simplification, Neural Networks, Evaluation

1. Introduction

In Text Simplification, the goal is to modify a given portion
of text in order to make it simpler to read. In previous re-
search, the needs of various target audiences have been ad-
dressed, such as the aphasic (Carroll et al., 1998), dyslexic
(Rello et al., 2013b; Rello et al., 2013a; Rello et al., 2013c),
poor literacy readers (Watanabe et al., 2009; Aluisio and
Gasperin, 2010) and non-native speakers (Paetzold, 2015;
Paetzold and Specia, 2016). Simplifiers can focus on differ-
ent linguistic aspects. For example, lexical simplifiers re-
place single words and expressions, while syntactic simpli-
fiers apply complex transformations to the syntactic struc-
ture of sentences.

As with any other task in Natural Language Processing,
Text Simplification faces many challenges. The biggest
among them is producing a simplifier capable of preserving
the grammaticality and meaning of a text while still making
it simpler to read. Researchers have shown that, regardless
of the approach used, preserving the integrity of a text is a
tall order (Siddharthan, 2006; Woodsend and Lapata, 2011;
Kauchak and Barzilay, 2006; Paetzold, 2013; Paetzold and
Specia, 2013). Another challenge is finding ways of deter-
mining how well a simplifier is capable of doing so without
relying on costly human judgments.

For automatic quality assessment, early simplification ap-
proaches such as the ones of (Specia, 2010) and (Zhu et
al., 2010), have used the BLEU (Papineni et al., 2002) and
NIST (Martin and Przybocki, 2003) metrics, which are,
to this day, very popular in Machine Translation evalua-
tion. However, the experiments in (Štajner et al., 2014), in
which the reliability of various Machine Translation evalu-
ation metrics is compared, reveal that they do not correlate
well with human judgments: the highest performing metric
obtains no more than 0.234 Pearson correlation for gram-
maticality, and 0.442 for meaning preservation.

In this paper we describe our contribution to the QATS
2016 shared task on Text Simplification Quality Assess-
ment. We introduce two new, supervised approaches to the
task, which use different types of features and Neural Net-
work architectures to tackle the evaluation problem.

2. Task, Datasets and Evaluation
In this first Quality Assessment for Text Simplification
shared task, participants were required to create new ways
of predicting the quality of simplified English sentences.
The training and test sets provided contains 505 and 126
instances, respectively. Each instance is composed of a
sentence in its original from, a simplified version, and four
human-produced quality labels. The sentences were taken
from news articles and Wikipedia, then simplified with by
various systems. The quality labels had one of three val-
ues: “Good”, “Ok” and “Bad”. Participants were asked to
assign these labels to four assessment aspects: Grammati-
cality, Meaning Preservation, Simplicity and Overall Qual-
ity.
Participants could submit up to three solutions for each as-
pect. Their solutions could either treat the task as a discrete
classification problem, and hence provide a Good/Ok/Bad
label as output for each instance, or as a continuous scor-
ing problem, and hence produce a numerical quality coef-
ficient. Classifiers were evaluated with Accuracy, MAE,
RMSE and weighted F-measure, and scorers with Pearson
correlation.
In order to avoid confusion, we hereon refer to “simplifica-
tions” as a pair composed by the original and the simplified
sentence.

3. Resource-Light Neural Networks
Our intention in participating in the Quality Assessment
task was to introduce a resource-light evaluation frame-
work that exploits the proven effectiveness of deep Neu-
ral Network architectures. Since Neural Networks are
very flexible, we were able to devise two distinct systems:
SimpleNets-MLP and SimpleNets-RNN.

3.1. SimpleNets-MLP: A Deep Classifier
The SimpleNets-MLP is the simpler of the two systems.
It consists on a Multi-Layer Perceptron composed of vari-
ous dense hidden layers and a sigmoid activation layer with
three nodes (one for each possible label). The architecture
of SimpleNets-MLP is illustrated in Figure 1.
SimpleNets-MLP receives as input a set of features that de-
scribe a given simplification, and outputs its quality label

42

Figure 1: Architecture of SimpleNets-MLP

for a given aspect. For training, it uses a Categorical Cross-
Entropy optimization function along with a Stochastic Gra-
dient Descent learning algorithm.
We use the same 14 resource-light features for all quality
aspects:

• Original and simplified sentences’ number of charac-
ters.

• Original and simplified sentences’ number of tokens.

• Original and simplified sentences’ number of types.

• Original and simplified sentences’ 5-gram language
model probabilities from Wikipedia (Kauchak, 2013).

• Original and simplified sentences’ 5-gram language
model probabilities from Simple Wikipedia (Kauchak,
2013).

• Original and simplified sentences’ 5-gram language
model probabilities from SUBTLEX (Brysbaert and
New, 2009).

• Original and simplified sentences’ 5-gram language
model probabilities over SubIMDB (Paetzold and
Specia, 2016).

Language models were trained with the help of SRILM
(Stolcke and others, 2002).

3.2. SimpleNets-RNN: An N-gram Model
SimpleNets-RNN shares the same overall architecture of
SimpleNets-MLP, but it is not a Multi-Layer Perceptron.
Instead, it is a deep sequence-to-label network of recurrent
Long Short-Term Memory (LSTM) hidden layers, tailed
also by a three-noded dense sigmoid activation layer. Un-
like SimpleNets-MLP, SimpleNets-RNN does not exploit
engineered features, but an n-gram model and word em-
beddings.
The n-gram model works under the assumption that the
quality of a sentence is the product of the quality of its
n-grams. In other words, if the sentence is composed of
grammatical, meaningful and simple n-grams, then it will
be so too. In order to train a recurrent net that predicts the
quality of a sentence based on the quality of its n-grams,
we first decompose the instances in the dataset. For each
n-gram of size 1 ≤ s ≤ N in the union of n-grams from

the original and the simplified sentence, we create a new
decomposed training instance. Each decomposed instance
is represented by a label for a given quality aspect and a
N×M matrix, in which N is the maximum n-gram size of
the model and M the size of the word vectors being used.
The label of each decomposed instance is the label of the
simplification in the original training set. Each column of
the matrix represents a time-step, and each line a word vec-
tor. In order to normalize the matrix sizes for n-grams with
size s < N , we use padding. It uses the same optimization
function and learning algorithm as SimpleNets-MLP.

Figure 2: SimpleNets workflow

During test time, we do the same: decompose each instance
of the dataset into n-gram instances and predict their qual-
ity using the trained network. But with this setup, we obtain
a series of quality predictions of individual n-grams, not a
single quality label for the simplification as a whole, which
is what the task requires. To transform n-gram quality la-
bels into a single sentence quality label, we first transform
Bad/Ok/Good labels into numerical scores using the rules
below:

• Bad = 0.0

• Ok = 1.0

• Good = 2.0

We then average the label scores of all n-grams in a simpli-
fication and obtain a real-valued quality score. To infer a
final quality label, we use a set of three equally sized label
translation intervals:

• [−∞, 0.665]→ Bad

43

• [0.666, 1.332]→ Ok

• [1.333,∞]→ Good

Figure 2 illustrates the SimpleNets workflow.

4. Experimental Setup
In order to assess the efficacy of our systems, we use train-
ing and test sets provided by the task organizers, which con-
tain 505 and 126 instances, respectively. For evaluation, we
resort to the two metrics described in the task’s description
page: Accuracy and Pearson correlation.
We have trained an instance of SimpleNets-MLP and two
instances of SimpleNets-RNN for each quality aspect in-
cluded in the shared task, along with various baselines. The
two versions of SimpleNets-RNN are SimpleNets-RNN2
and SimpleNets-RNN3, which employ bigram and trigram
models, respectively. The architecture of each system was
determined individually through 5-fold cross-validation for
each quality aspect over the training set. The parameters of
the architecture considered and the values tested for each
one of them are:

1. Number of hidden layers: 1 to 5 in steps of 1.

2. Hidden layer size: 100 to 500 in steps of 100.

3. Word vector size: 100 to 1,500 in steps of 200.

The word vector models used were trained with
word2vec (Mikolov et al., 2013). We use the bag-of-
words (CBOW) model, and train the models over a corpus
of around 7 billion words comprised by SubIMDB (Paet-
zold and Specia, 2016), UMBC webbase1, News Crawl2,
SUBTLEX (Brysbaert and New, 2009), Wikipedia and
Simple Wikipedia (Kauchak, 2013). The baselines in-
cluded in our evaluation are:

• All Bad: Assigns “Bad” to all simplifications.

• All Ok: Assigns “Ok” to all simplifications.

• All Good: Assigns “Good” to all simplifications.

• Meteor: Computes Meteor scores between the orig-
inal and simplified sentences (Denkowski and Lavie,
2011).

• BLEU: Computes BLEU scores between the original
and simplified sentences (Papineni et al., 2002).

• TER: Computes TER scores between the original and
simplified sentences (Snover et al., 2006).

• WER: Computes WER scores between the original
and simplified sentences (Klakow and Peters, 2002).

• MT: Combines the Meteor, TER, and WER scores us-
ing Support Vector Machines trained on sentence la-
bels.

1http://ebiquity.umbc.edu/resource/html/id/351
2http://www.statmt.org/wmt11/translation-task.html

The Meteor, BLEU, TER, WER and MT baselines were
provided by the task organizers. We also compare the per-
formance of our Neural Networks to that of other five Ma-
chine Learning classification techniques:

• Support Vector Machines.

• Ada Boosting.

• Decision Trees.

• Random Forests.

• Gradient Boosting.

As input, we use the same features described in Sec-
tion 3.1.. To train models using these algorithms, we use
their implementation within scikit-learn (Pedregosa
et al., 2011). The parameters of all models, including
kernels, optimization functions and regularizers, are deter-
mined through 5-fold cross-validation.
Finally, we also include in the comparison all other 30 sys-
tems submitted to the QATS 2016 shared task.
For correlation assessment, all classifiers, including
SimpleNets-MLP, output the labels’ numerical equivalent
following the method described in Section 3.2.. For the
SimpleNets-RNN systems, however, correlation scores are
calculated based on the raw average n-gram quality score,
and Accuracy based on the label translation intervals as de-
scribed in Section 3.2.

5. Results
Table 1 shows the Accuracy (A) and Pearson correlation
(r) scores obtained. Complementary MAE, RMSE and F-
measure scores can be found in the task’s webpage3. The
Accuracy scores for most baselines suggest that their over-
all performance is not much superior, and often even worse,
than predicting the same label for all instances. Pearson
correlation scores reveal that Machine Learning approaches
are, in fact, much better alternatives. Machine Transla-
tion evaluation metrics have proved a much less reliable
approach to Text Simplification evaluation.
Our proposed metrics obtained very competitive scores
according to all four simplification aspects. According
to Accuracy, they ranked 3rd in Meaning and Simplicity,
2nd in Grammaticality, and 1st in Overall Quality. While
SimpleNets-RNN classifiers have shown to be more pro-
ficient in predicting Grammaticality and Overall Quality,
SimpleNets-MLP performed best in predicting Meaning
and Simplicity. We believe that the learning setup used
by SimpleNets-RNN is not very suitable for Meaning and
Simplicity, and consequently led to the rather low scores
obtained for these aspects. For Meaning, we believe that
it would be more effective to train Neural Networks that
attempt to learn not the quality of n-grams with respect to
Meaning, but rather how compromising the deletions and
additions in the simplified sentence are with respect to the
original sentence. For Simplicity, an RNN that receives the
entire sentence as input instead of separate n-grams could,
in principle, better capture sentence length as well as long
distance dependencies, which could also improve the per-
formance of our approach.

3http://qats2016.github.io/shared.html

44

Grammaticality Meaning Simplicity Overall
System A r A r A r A r

All Ok 11.11 0.050 26.19 −0.074 30.16 −0.072 43.65 −0.001
All Bad 12.70 0.050 15.87 −0.074 14.29 −0.072 27.78 −0.001
All Good 76.19 0.050 57.94 −0.074 55.56 −0.072 28.57 −0.001
Meteor 63.49 0.384 61.90 0.527 35.71 −0.169 42.86 0.196
BLEU 69.84 0.344 65.08 0.533 38.10 −0.267 37.30 0.107
TER 68.25 0.323 66.67 0.513 38.10 −0.242 38.10 0.130
WER 65.87 0.308 62.70 0.495 38.10 −0.260 35.71 0.111
MT 76.19 - 66.67 - 50.79 - 38.10 -
SVM 76.19 0.047 57.94 −0.050 55.56 −0.051 43.65 −0.001
Ada Boosting 73.81 0.148 58.73 0.205 53.97 0.284 51.59 0.271
Decision Trees 65.87 0.073 53.97 0.191 56.35 0.316 50.79 0.392
Random Forests 69.05 0.020 59.52 0.348 49.21 0.199 46.03 0.273
Gradient Boosting 69.05 0.027 65.87 0.391 52.38 0.102 50.00 0.271
Davoodi-0.5 - - - - - - 34.13 -
Davoodi-0.6 - - - - - - 32.54 -
Davoodi-0.7 - - - - - - 33.33 -
Davoodi-RF - - 49.21 - - - - -
Davoodi-RF-0.5 - - - - 34.92 - - -
Davoodi-RF-0.6 - - - - 35.71 - - -
Davoodi-RF-0.7 - - - - 35.71 - - -
Davoodi-RF-Perp 58.73 - - - - - - -
DeepBow 76.19 - 53.17 - 42.06 - 41.27 -
DeepIndiBow 76.19 - 47.62 - 52.38 - 40.48 -
MS-IBk 60.32 - 61.90 - 38.10 - 38.10 -
MS-IBk-best - - 62.70 - 48.41 - 38.10 -
MS-RandForest 72.22 - 66.67 - 49.21 - 39.68 -
MS-RandForest-best 69.84 - - - - - - -
Mathias-Default - - - - - - 33.33 -
Mathias-LM 72.22 - - - - - - -
Mathias-Meteor - - 63.49 - - - - -
Mathias-Metrics - - - - - - 39.68 -
Mathias-S - - - - 47.62 0.052 - -
OSVCML - 0.340 - 0.585 - 0.339 - 0.334
OSVCML1 - - - 0.482 - - - 0.230
OSVCML2 - - - 0.573 - 0.376 - -
SMH-IBk 70.63 - - - 50.00 - - -
SMH-Logistic - - 69.05 - - - 47.62 -
SMH-RandForest 75.40 - 65.87 - 52.38 - 44.44 -
SMH-RandForest-best 75.40 - 61.90 - 57.14 - 48.41 -
UoLGP-combo - 0.256 - 0.250 - 0.123 - 0.189
UoLGP-emb - 0.256 - 0.188 - 0.120 - 0.205
UoLGP-quest - 0.208 - 0.285 - 0.086 - 0.144
UoW 41.27 - 63.49 - 44.44 - 50.79 -
SimpleNets-MLP 74.60 0.309 65.87 0.461 53.17 0.323 38.10 0.196
SimpleNets-RNN2 75.40 0.058 57.94 0.262 50.00 0.243 52.38 0.232
SimpleNets-RNN3 74.60 0.068 51.59 0.258 52.38 0.310 47.62 0.112

Table 1: Accuracy and Pearson correlation scores

6. Conclusions

We have introduced the SimpleNets-MLP and SimpleNets-
RNN systems: two different solutions for Text Simplifica-
tion Quality Assessment that combine resource-light fea-
tures with minimalistic Neural Network architectures.
The results show that, while our Multi-Layer Perceptrons
trained over simple features (SimpleNets-MLP) are more
reliable at predicting Meaning and Simplicity, our Recur-

sive Neural Networks that predict and combine the quality
of individual n-grams (SimpleNets-RNN) achieve the state-
of-the-art performance in predicting the Overall Quality of
simplifications.

In future work, we aim to explore the use of more sophisti-
cated n-gram models and Recurrent Neural Network archi-
tectures in other domains of Quality Assessment, such as
Machine Translation and Summarization.

45

References
Aluisio, S. and Gasperin, C., (2010). Proceedings of the

NAACL 2010 Young Investigators Workshop on Com-
putational Approaches to Languages of the Americas,
chapter Fostering Digital Inclusion and Accessibility:
The PorSimples project for Simplification of Portuguese
Texts, pages 46–53.

Brysbaert, M. and New, B. (2009). Moving beyond kučera
and francis: A critical evaluation of current word fre-
quency norms and the introduction of a new and im-
proved word frequency measure for american english.
Behavior research methods, 41:977–990.

Carroll, J., Minnen, G., Canning, Y., Devlin, S., and Tait,
J. (1998). Practical simplification of english newspaper
text to assist aphasic readers. In Proceedings of AAAI-
98 Workshop on Integrating Artificial Intelligence and
Assistive Technology, pages 7–10.

Denkowski, M. and Lavie, A. (2011). Meteor 1.3: Auto-
matic metric for reliable optimization and evaluation of
machine translation systems. In Proceedings of the 6th
WMT, pages 85–91. Association for Computational Lin-
guistics.

Kauchak, D. and Barzilay, R. (2006). Paraphrasing for au-
tomatic evaluation. In Proceedings of the 2006 NAACL,
pages 455–462.

Kauchak, D. (2013). Improving text simplification lan-
guage modeling using unsimplified text data. In Pro-
ceedings of the 51st ACL, pages 1537–1546.

Klakow, D. and Peters, J. (2002). Testing the correlation of
word error rate and perplexity. Speech Communication,
38(1):19–28.

Martin, A. F. and Przybocki, M. A. (2003). Nist 2003 lan-
guage recognition evaluation. In Interspeech.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013).
Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781.

Paetzold, G. H. and Specia, L. (2013). Text simplification
as tree transduction. In Proceedings of the 9th STIL.

Paetzold, G. H. and Specia, L. (2016). Unsupervised lex-
ical simplification for non-native speakers. In Proceed-
ings of The 30th AAAI.

Paetzold, G. H. (2013). Um Sistema de Simplificação
Automática de Textos escritos em Inglês por meio de
Transduçao de Árvores. State University of Western
Paraná.

Paetzold, G. H. (2015). Reliable lexical simplification for
non-native speakers. In Proceedings of the 2015 NAACL
Student Research Workshop.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002).
Bleu: a method for automatic evaluation of machine
translation. In Proceedings of the 40th ACL, pages 311–
318.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
(2011). Scikit-learn: Machine learning in Python. Jour-
nal of Machine Learning Research, 12:2825–2830.

Rello, L., Baeza-Yates, R., Bott, S., and Saggion, H.

(2013a). Simplify or help?: text simplification strate-
gies for people with dyslexia. In Proceedings of the 10th
W4A, page 15.

Rello, L., Baeza-Yates, R., Dempere-Marco, L., and Sag-
gion, H. (2013b). Frequent words improve readabil-
ity and short words improve understandability for peo-
ple with dyslexia. Human-Computer Interaction, pages
203–219.

Rello, L., Bautista, S., Baeza-Yates, R., Gervás, P., Hervás,
R., and Saggion, H. (2013c). One half or 50%? An
eye-tracking study of number representation readability.
Human-Computer Interaction.

Siddharthan, A. (2006). Syntactic Simplification and Text
Cohesion. Research on Language and Computation,
4(1):77–109, March.

Snover, M., Dorr, B., Schwartz, R., Micciulla, L., and
Makhoul, J. (2006). A study of translation edit rate
with targeted human annotation. In Proceedings of 2006
AMTA, pages 223–231.

Specia, L. (2010). Translating from complex to simpli-
fied sentences. In Computational Processing of the Por-
tuguese Language, pages 30–39. Springer.

Štajner, S., Mitkov, R., and Saggion, H. (2014). One step
closer to automatic evaluation of text simplification sys-
tems. In Proceedings of the 3rd PITR, pages 1–10.

Stolcke, A. et al. (2002). Srilm - an extensible language
modeling toolkit. In Interspeech.

Watanabe, W. M., Junior, A. C., Uzêda, V. R., Fortes, R.
P. d. M., Pardo, T. A. S., and Aluı́sio, S. M. (2009).
Facilita: reading assistance for low-literacy readers. In
Proceedings of the 27th ACM, pages 29–36.

Woodsend, K. and Lapata, M. (2011). Learning to sim-
plify sentences with quasi-synchronous grammar and in-
teger programming. In Proceedings of the 2011 EMNLP,
pages 409–420.

Zhu, Z., Bernhard, D., and Gurevych, I. (2010). A Mono-
lingual Tree-based Translation Model for Sentence Sim-
plification. Computational Linguistics, (August):1353–
1361.

46

An Ensemble Method for
Quality Assessment of Text Simplification

Sergiu Nisioi�∗, Fabrice Nauze∗
University of Bucharest�,

Oracle Service Cloud∗

sergiu.nisioi@oracle.com, fabrice.nauze@oracle.com

Abstract
In this paper we describe the Oracle Service Cloud Machine Learning (OSVCML) systems used for the Quality Assessment of Text
Simplification, 2016 (QATS) shared task. We construct an ensemble method using particle swarm optimization and different scoring
methods (SVM, string kernels, logistic regression, boosting trees, BLEU). The purpose is to capture relevant combinations of classifier
and features for each different aspects of text simplification: simplicity, grammaticality, meaning preservation, and overall scores. In
addition, we compare our approach with a deep neural network architecture and show that the generated models are stronger when
combined together.
Keywords: Text Simplification Evaluation, Particle Swarm Optimization, Ensemble Methods, LSTM

1. Introduction
The need for simplified texts has largely been acknowl-
edged by international instances like the United Nations or
the European Union, with text simplification guidelines be-
ing issued to clarify the process for writers. The obvious
next step has been to build computational systems to auto-
mate the text simplification process. We are now facing the
last stage in this evolution where we need to evaluate our
systems for automatic text simplification (ATS).
In recent years, text simplification has been viewed as a sta-
tistical machine translation process which involves trans-
lating from a complex to a simplified version of a sen-
tence (Specia, 2010; Coster and Kauchak, 2011; Wubben et
al., 2012; Stajner et al., 2015). Therefore, the structure of
ATS datasets (Kauchak, 2013) is often based on sentence-
aligned parallel corpora and the evaluation methods re-
semble the BLEU score (Papineni et al., 2002) and other
machine translation metrics (Clarke and Lapata, 2006;
Kauchak, 2013). However, there is no standard procedure
for the automatic evaluation of text simplification, nor an
expected standard baseline, rather the best evaluation is car-
ried using supervised human annotators, which can poten-
tially produce high quality datasets for text simplification
evaluation.
Therefore, in our study we employ features widely used in
text classification and train several classifiers with the judg-
ments provided by human evaluators. Our approach con-
sists of multiple scoring methods: support vector machines,
logistic regression, gradient boosting trees, BLEU metric,
string kernels and deep neural encoder-decoder architec-
tures, aggregated using an ensemble method optimized with
swarms of particles.

2. Corpus
The dataset provided for the QATS shared task1 consists of
phrases from news domain and Wikipedia, and the corre-
sponding simplified version (generated using various auto-
matic text simplification methods). The data was annotated

1http://qats2016.github.io/shared.html

by judges along four dimensions: grammaticality, mean-
ing preservation, simplicity, and overall score, with labels
(good, ok, bad) representing how well the systems per-
formed. The provided training set consists of 505 phrase
pairs and judgments, and the test set contains of 126 phrase
pairs.
The QATS dataset provided in the shared task is a use-
ful and rare resource, however some critical observations
are worth being made. The dataset used is not balanced
in terms of different numbers of classes for each metric, a
fact which makes the models harder to train properly and
the systems harder to evaluate. In addition, we don’t have
multiple opinions on the label of a phrase form different
manual annotators, a fact that can determine a certain bias
in the way the gold standard is constructed. We are aware,
however, that this is probably the best dataset we currently
have to evaluate text simplification.

3. Features
We combine two approaches on this task: (1) involving text
classification with features extracted either from the sim-
plified (S) or from the original (O) phrases and (2) using an
architecture based on deep neural networks, which takes as
input both original and simplified phrases in an attempt to
learn the similarities and differences between them.
We use a wide set of features to cover different aspects that
vary in simplified texts, features ranging from simple to-
kens, part of speech tags, presence of negation, readability
measures and sentiment information. A summary of all the
features we use is available in Table 1.
We consider content independent features, those that do not
directly reflect topic, genre or content information from the
text. For example, part of speech tags, syntactic chunks,
dependency parse trees, punctuation marks, verb negation,
and readability measures should reflect grammaticality ir-
respective of the topics addressed in the text. On the other
hand, content dependent features are meant to capture se-
mantic shifts from original to simplified sentences, mean-
ing preservation, common content words, and possibly spe-
cific marks that are present only in certain classes of sim-
plified examples. Among the content dependent features,

47

Feature Quantification Feature class

de
pe

nd
en

t Tokens count, total no., tf-idf Ft1, F t2, F t3
GloVe global word vectors from Common Crawl corpus LSTM architecture

Character n-grams n = 2, 3, 4 string kernel
Polarity information positive and negative polarity Ft3

in
de

pe
nd

en
t

Parts of speech count, total no., tf-idf Ft1, F t2, F t3
Punctuation marks count Ft3

Sentences
no. of sentences, length of the

longest sentence Ft3

NP chunks length of the longest NP group Ft3

NN chunks
no. of chunks, no. of terms in

each chunk Ft3

Flesch-Kincaid readability score, minimum age, US grade Ft3
Negated tokens no. of negated tokens Ft3

Dependency parse trees LSTM architecture

Table 1: A complete list of content dependent and independent features used. Quantification reflects how are the features
represented numerically. The last column indicates the class (Ft1, F t2, F t3) or machine learning method that is being
compiled with the respective features.

we count polarity information, tokens, character n-grams,
and global word vectors (word embeddings (Pennington et
al., 2014) extracted from Common Crawl corpus2). We are
aware that content independent features, may reflect differ-
ent patterns of style, genre, and possibly semantic informa-
tion present in grammatical structures.
We use two feature extractors: NLTK (Bird et al., 2009)
and a proprietary software created by the Oracle Language
Technology (OLT) group. OLT delivers linguistic technolo-
gies and data components for use in Oracle search and text
analysis applications requiring support for numerous lan-
guages. It currently supports 86 languages, 16 technolo-
gies, and 5 APIs in integrations with over 8 Oracle products
and applications (Oracle, 2014). However, we do not com-
pare the two toolkits here, rather we use them together for
more accurate sentence splitting, syntactic chunking and
POS tagging. We count the number of sentences and the
length (in words) of the longest sentence. Similarly, we
count the number of NN and NP syntactic chunks and the
length of the longest group. Tokens and parts of speech are
weighted according to frequency, tf-idf and the total num-
ber of tokens / POS in the simplified and original phrase.
Last but not least, character n-grams are used as features in
the string kernel representation.
Overall we create three classes of features:

1. Ft1 = Stf−idf - tf-idf of parts of speech and text
(Stf−idf) from the simplified examples

2. Ft2 = |Stf−idf−Otf−idf |+Stf−idf ∗Otf−idf - tf-idf
extracted from both simplified (Stf−idf) and original
(Otf−idf) parts of speech and text

3. Ft3 - simple numerical features obtained from token,
parts of speech, sentence, chunks and other counts,
readability measure, and polarity values

These classes are used in combination with multiple scor-
ing methods to create an ensemble based on which we will
decide our final predictions.

2http://commoncrawl.org/

In addition, we use the Stanford parser (Chen and Man-
ning, 2014) to construct deep neural networks using the de-
pendency parse relations and GloVe word embeddings. We
expect this approach to cover both syntactic and semantic
differences between the simplified and original sentences.

4. Our Approach
4.1. Scoring Methods
We use different scoring methods comprising classifiers, re-
gression models, and similarity measures, to predict a value
for each example. The values are aggregated and weighted
using a particle swarm optimization-based ensemble ap-
proach, which we detail in Section 4.2. Table 2 contains
the pairs of scoring methods and features.

BLEU. The modified n-gram precision metrics are the
building blocks of BLEU score (Papineni et al., 2002),
computed as the number of common token n-grams be-
tween two sentences divided by the total number of occur-
rences of those sentences. In our case, we have computed
the modified unigram and bigram precision - shorter n-
grams indicating the preservation of meaning while longer
n-grams indicate the preservation of fluency (Papineni et
al., 2002). In addition to the standard score, we computed
the modified n-gram precision between parts of speech,
hoping to cover grammatical changes between POS se-
quences in original and simplified sentences.

SVM We decided to use a linear kernel to train sup-
port vector machines for text classification (Chang and Lin,
2011). These models proved effective in numerous text
classification studies (Koppel et al., 2009; Zampieri et al.,
2015), especially when the number of features is relatively
large. Therefore, we trained different classifiers using the
three classes of features previously defined: Ft1, F t2 and
Ft3, to predict the final label (good, bad, ok).

SVM + String Kernel A kernel function can be used in
combination with support vector machines either to embed
the data in a higher dimensional space in order to achieve
linear separability, or to replace the dot product between

48

Classifier or Metric Features
Modified n-gram precision Original vs. Simplified parts of speech
Modified n-gram precision Original vs. Simplified tokens

String Kernel, n=2, 3, 4 Simplified text and POS
Logistic Regression Ft1, F t2, F t3

Linear SVM Ft1, F t2, F t3
Gradient Boosting Trees Ft1, F t2, F t3

Long Short-Term Memory
GloVe word vectors and dependecy

parse trees

Table 2: Different classifiers used in the ensemble

vectors with values that are more appropriate for the data
used. Previous studies on text classification, revealed that
character n-gram-based string kernels can be effective tools
for authorship attribution, native language identification or
plagiarism detection (Grozea and Popescu, 2010; Ionescu
et al., 2014).
On our datasets, however, we are faced with relatively
short-length examples of either simplified or original
phrases. Therefore, we propose a kernel suitable for short
texts, computed by summing the number of common char-
acter n-grams between two examples, where n = 2, 3, 4.
The kernel function, in our case, will measure common as-
pects in terms of content words, punctuation marks, and
affixes, based on character n-grams similarities.
Formally, given an alphabetA, we define the mapping func-
tion Φn : D → {0, 1}Qn for an example e ∈ C in the
dataset to be the vector of all the binary values of existence
of the n-gram g in the example:

Φn(e) = [φg(e)]g∈An

The function φg(e) = 1 if the n-gram g is in the example e
and equal to zero otherwise. Computationally, Qn depends
on all the possible character n-grams between two examples
at certain instance.
The corresponding Gram matrix K of size |C| × |C| has the
following elements:

Kij =

n≤4∑
n=2

< Φn(ei)Φn(ej) >

The gram matrix is then normalized to [0, 1] interval:

Kij =
Kij√
KiiKjj

(1)

Logistic Regression In addition, we wanted to add re-
gression values to our ensemble in order to have fine-
grained predictions of the classes. For this purpose, we
train a logistic regression model (Fan et al., 2008) in
one-vs-rest approach, by fitting a binary classifier with l2
penalty, for each label. In this scenario, we use the three
classes of features (Ft1, F t2 and Ft3). this situation.

Gradient Boosting Trees Last but not least, for each fea-
ture class, we train a gradient boosting ensemble classifier
(Friedman, 2002)3 with softmax multi-class objective, 120
trees and a max depth of 12.

3https://github.com/dmlc/xgboost

C2 w2 Σ y

Output

C1 w1

...

CN wN

Weights

Scoring methods

Figure 1: Ensemble architecture with PSO-learned weights

Thus, we obtain nine different scoring methods by training
support vector machines, logistic regression and gradient
boosting trees on each class of features defined in Section
3.: Ft1, F t2, and Ft3. In addition, we added the SVM
String Kernel, and the two modified n-gram precision com-
putations (tokens and parts of speech), in total having as
much as twelve different prediction values for each exam-
ple. To aggregate these values, we train a particle swarm
optimization-based ensemble method to learn the different
weights corresponding to each predicted value as described
in the following section.

4.2. Ensemble Method
Through our approach, we construct N scoring methods
comprising classifiers, regression models and similarity
metrics, which we will denote by C1, C2, . . . , CN . The
final prediction value is determined by a linear combina-
tion of the predictions generated by each individual scoring
method:

prediction = w1C1 + w2C2 + · · ·+ wNCN

The results of each individual method are weighted and
summed-up together to ensemble the final prediction value.
In other words, for each example in the test set, a scoring
method Ci will predict either a class, a similarity score or a
regression value. Then, each prediction is weighted by the
corresponding wi and summed up with other predictions
in a linear combination. The architecture is represented in
Figure 1. The problem now remains to properly find the
optimal weights for each scoring method, given an objec-
tive function, and, at the same time, to avoid weights that
over-fit individual training / testing datasets.
Pearson correlation ρ ∈ [−1, 1] measures the degree of de-
pendence between two random variables X = {xi} and

49

Y = {yi} of size n, and has the following formula:

ρ =

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
∑
i(yi − ȳ)2

(2)

where x̄ and ȳ are the sample mean of X and Y, respectively.
We use the negative log of squared Pearson correlation as
objective function. Therefore, we maximize the correlation
between the predicted and the gold standard examples by
minimizing the objective function. Our objective function
becomes:

Obj = −log(ρ2) (3)

To search for the optimal weights, we use particle swarm
optimization (PSO) (Kennedy and Eberhart, 1995) - effec-
tive for fast optimizations when gradients are not available
or when they are not trivial to compute. This strategy uses a
swarm of particles (a set of different solutions) for a given
problem which are individually adjusted based on nearest
neighbor and a velocity variable (0.55 in our case). We ini-
tialize two hundred particles to search between [0, 1] values
for each weight, and let the algorithm run for a maximum
of 1000 iterations. Particle swarm optimization is able to
find weights to minimize an arbitrary function, however,
the weights are not necessarily optimal, since the approach
can converge to a local minimum.
We treat this problem by computing a set of candidate
weights from multiple cross validation (CV) epochs in
which the training and development data are disjointly4

split. This way, we avoid over-fitting the weights on in-
dividual train-development pairs. The mean values of all
the weight-candidates, computed over multiple CV epochs,
are selected as final weights for the ensemble method. For
reproducibility, parts of the source code and data will be
made available in a public repository5.

4.3. PSO for Class Prediction
A particle swarm optimization method can be used to pre-
dict the best threshold values to convert floating points to
classes. Having a three-class classification problem, we
can split the resulting predictions based on two thresh-
olds (mint and maxt): therefore, the values below mint
are considered bad, the values above maxt are considered
good and the values in between are labeled ok. For our data,
classes can be ranked by the following scale:

bad < mint ≤ ok ≤ maxt < good

We use each cross-validation epoch to search for the mint
and maxt values in the min-max interval of predictions,
to maximize the classification accuracy (as objective func-
tion in the PSO algorithm). Over different CV epochs,
these values can vary significantly, especially when the pre-
dicted classes are not evenly balanced. Therefore, we use
the mean mint and maxt values over all cross-validation
epochs, to predict the final results.

4By disjoint, we mean that the development examples do not
contain original, unsimplified sentences from the training set

5https://github.com/senisioi/qats-pso-ensemble.git

4.4. Deep Learning Approach
Recurrent neural networks have recently been used in nu-
merous NLP studies, offering solid results for different
tasks and applications, from language modelling, machine
translation, evaluation of machine translation, and seman-
tic measures of similarity (Cho et al., 2014; Karpathy et al.,
2015; Bengio et al., 2003). Our approach is based on the
work of Tai et al. (2015) for semantic relatedness and Gupta
et al. (2015) for machine translation evaluation. Thus, we
build a recurrent neural network architecture based on de-
pendency parse trees using both the simplified and the orig-
inal sentences.
The dependency parse trees are constructed from example
pairs, which are then used to build the LSTM-based recur-
rent neural network (TreeLSTM). We use a three layered
TreeLSTM, with 30 hidden units, 0.05 learning rate and
a batch size of 55 phrases. The inputs for the neural net-
works are word embeddings corresponding to tokens from
each sentence. The metric between original and simplified
sentences is defined as a LSTM unit that uses the hidden
states obtained from the original and simplified TreeLSTM
representations:

hmul = horig ∗ hsimp
hadd = |horig − hsimp|

hs = σ(W (mul)hmul +W (add)hadd + b(h))

p̂θ = softmax(W (p)hs + b(p))

ŷ = rT p̂θ

where p̂θ is the estimated probability distribution, and rT =
[1, 2, 3] are the annotated labels encoded as integers. The
sparse target distribution, as defined in Tai et al. (2015) is:

pi =


y − byc, if i = byc+ 1

byc − y + 1, if i = byc
0, otherwise

The cost function is defined over probability distributions
p and p̂θ using regularized Kullback-Leibler (KL) diver-
gence.
This approach predicts a floating value representing the
similarity relation between original and simplified sen-
tences. In order to predict the labels, we use at each node
j a softmax classifier to predict the label ŷ given the inputs
{x}j observed at nodes in the subtree rooted at j:

p̂θ(y|{x}j) = softmax(W (s)hs + b(s))

ŷj = argmax
y

(p̂θ(y|{x}j))

Training the neural networks over several epochs can be
time consuming, therefore, we do not use the TreeLSTM
model directly to train our ensemble method. We decided
to average the output generated by the deep neural networks
with the predictions of the PSO ensemble, equally weight-
ing both models.

50

5. Results and Discussion
We report only our final results submitted for the QATS
2016 shared task. The predictions are made on the test cor-
pus provided by the organizers.
In addition, we convert our floating values into good, bad,
ok by splitting them according to mint and maxt com-
puted as mean values over every cross-validation step. The
TreeLSTM system is retrained to predict both scores and
individual classes.
In what follows, we describe the classifiers submitted for
the shared task.

Simplicity: When predicting simplicity, we use three en-
sembles:

1. PSO Simplif1 - which does not contain features ex-
tracted with OLT - NP groups, OLT parts of speech,
punctuation, OLT sentence splits

2. PSO Simplif2 - which contains both features ex-
tracted with OLT and features extracted with NLTK

3. PSO Simplif3 - uses the same features as PSO
Simplif2, but it is trained as three pairwise classifiers
between: ok vs. bad, ok vs. good, and bad vs. good.
The final label is decided based on the maximum num-
ber of votes from each classifier.

Classifier Correlation Accuracy F1 measure
1. PSO Simplif1 0.342 0.555 0.537
2. PSO Simplif2 0.382 0.579 0.527
3. PSO Simplif3 0.376 0.579 0.522

Table 3: Main results for simplicity labels

In this particular case, we do not use the TreeLSTM ap-
proach since the human judgments were made only by
looking at the simplified phrase, irrespective of the origi-
nal. The results for each ensemble are depicted in Table 3.
The pairwise approach together with the features extracted
using OLT, improved the overall evaluation.

Meaning: To predict meaning preservation, we construct
(1) a PSO ensemble with OLT features, (2) a TreeL-
STM neural network, and (3) an average between the two.
The PSO ensemble method performs better than any other
model, and it’s worth noticing that the ensemble combined
with recurrent neural networks (model nr. 3) lowers the
overall results. Among the classifiers in the ensemble, the
n-gram precision metric obtained a relatively large corre-
lation value (0.55) by itself, being the simplest and most
effective single metric for meaning evaluation.

Classifier Correlation Accuracy F1 measure
1. PSO ensemble 0.58 0.7 0.695

2. TreeLSTM 0.482 0.55 0.53
3. PSO ensemble
and TreeLSTM 0.568 0.69 0.64

Table 4: Main results for meaning preservation labels

Grammaticality: The task of predicting grammaticality
is biased by the large numbers of good grammatical sen-
tences in the test data. We submitted two PSO ensembles,
one trained on the entire dataset provided by the organizers
and another one trained on a random subset of the train-
ing data (a local subset) which was used in cross-validation
scenarios. To our surprise, the local dataset proved to bet-
ter fit the test data provided by the organizers (see Table 5)
obtaining better results compared to the system trained on
the entire training data (0.482 vs. 0.38). We are inclined
to believe, this accidental phenomenon reveals that similar-
ities between training and testing datasets can greatly in-
fluence the results. Given this situation, we consider addi-
tional studies to be mandatory for a better understanding of
the these results.

Classifier Correlation Accuracy F1 measure
1. PSO Gramat1 0.323 0.7 0.657
2. PSO Gramat2 0.483 0.753 0.678

Table 5: Main results for grammaticality labels

Overall: The final predictions for overall labels are built
using (1) a PSO ensemble model, (2) the TreeLSTM ap-
proach described in Section 4.4. and (3) a combination be-
tween the two. The PSO ensemble proved better than the
recurrent neural networks approach (see Table 6), and the
combination between the two obtained the best F1 score
and accuracy values. Empirical experiments showed that it
is more efficient to directly predict the overall results, than
to use each individual label (meaning, grammaticality or
simplicity) as a scoring method in the ensemble.

Classifier Correlation Accuracy F1 measure
1. PSO ensemble 0.332 0.49 0.43

2. TreeLSTM 0.230 0.43 0.41
3. PSO ensemble
and TreeLSTM 0.343 0.5 0.46

Table 6: Main results for overall labels

A brief analysis of the classifiers involved in the ensemble
revealed that the simple features, the majority in Ft3 class,
do not contribute significantly to the overall results.
We managed to observe improvements by using negation,
sentiment and readability metrics, we believe these fea-
tures can capture small changes in register or meaning from
original to simplification. In addition, the n-gram preci-
sion metric performed surprisingly well for meaning pre-
diction, being the simplest and most effective single metric
for meaning evaluation.
Our adapted string kernel measures fine-grained similari-
ties covering content, punctuation marks, affixes etc., but,
at the same time, it obfuscate behind the Gramm matrix the
actual features that contribute to classification results, mak-
ing hard to interpret the features that are useful for this task.
Finally, the deep neural network architecture (TreeLSTM)
obtained comparable accuracy and correlation scores by it-
self, apart from this, it improved the prediction of the over-
all judgments in combination with the particle swarm opti-
mization ensemble method.

51

6. Conclusions and Future Work
We describe a particle swarm optimized ensemble method
trained in order to aggregate multiple strong classifiers. The
overall correlation values and the accuracy values are not
exceedingly high for the quality assessment of text simpli-
fication, making the evaluation of such algorithms a task
not yet easily solvable by machines.
Our proposed ensemble can be inspected to observe the in-
fluence of each scoring method for different tasks, never-
theless, the results are hard to interpret in terms of indi-
vidual features. The scoring methods used in the ensem-
ble cover a wide variety of textual features and more work
is needed to better understand the usefulness of each fea-
ture set. As future work, we plan to carry a more exhaus-
tive analysis of the automatic text simplification models to-
gether with the relevant features that improve evaluation.

7. Bibliographical References
Bengio, Y., Ducharme, R., Vincent, P., and Janvin, C.

(2003). A neural probabilistic language model. Journal
of Machine Learning Research, 3:1137–1155.

Bird, S., Klein, E., and Loper, E. (2009). Natural language
processing with Python. ” O’Reilly Media, Inc.”.

Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A library
for support vector machines. ACM Transactions on In-
telligent Systems and Technology, 2:27:1–27:27.

Chen, D. and Manning, C. D. (2014). A fast and accurate
dependency parser using neural networks. In EMNLP,
pages 740–750.

Cho, K., van Merrienboer, B., Gülçehre, Ç., Bahdanau,
D., Bougares, F., Schwenk, H., and Bengio, Y. (2014).
Learning phrase representations using RNN encoder-
decoder for statistical machine translation. In Proceed-
ings of the 2014 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2014, October
25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Spe-
cial Interest Group of the ACL, pages 1724–1734.

Clarke, J. and Lapata, M. (2006). Models for sentence
compression: A comparison across domains, training re-
quirements and evaluation measures. In ACL. The Asso-
ciation for Computer Linguistics.

Coster, W. and Kauchak, D. (2011). Simple english
wikipedia: A new text simplification task. In The 49th
Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, Proceed-
ings of the Conference, 19-24 June, 2011, Portland, Ore-
gon, USA - Short Papers, pages 665–669.

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and
Lin, C.-J. (2008). Liblinear: A library for large linear
classification. J. Mach. Learn. Res., 9:1871–1874, June.

Friedman, J. H. (2002). Stochastic gradient boosting.
Computational Statistics & Data Analysis, 38(4):367–
378.

Grozea, C. and Popescu, M. (2010). Encoplot - perfor-
mance in the second international plagiarism detection
challenge - lab report for PAN at CLEF 2010. In CLEF
(Notebook Papers/LABs/Workshops), volume 1176 of
CEUR Workshop Proceedings. CEUR-WS.org.

Gupta, R., Orasan, C., and van Genabith, J. (2015). Reval:
A simple and effective machine translation evaluation
metric based on recurrent neural networks. In EMNLP,
pages 1066–1072. The Association for Computational
Linguistics.

Ionescu, T. R., Popescu, M., and Cahill, A. (2014). Can
characters reveal your native language? a language-
independent approach to native language identification.
In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 1363–1373. Association for Computational Lin-
guistics.

Karpathy, A., Johnson, J., and Li, F. (2015). Visu-
alizing and understanding recurrent networks. CoRR,
abs/1506.02078.

Kauchak, D. (2013). Improving text simplification lan-
guage modeling using unsimplified text data. In Pro-
ceedings of the 51st Annual Meeting of the Association
for Computational Linguistics, ACL 2013, 4-9 August
2013, Sofia, Bulgaria, Volume 1: Long Papers, pages
1537–1546. The Association for Computer Linguistics.

Kennedy, J. and Eberhart, R. (1995). Particle swarm op-
timization. In Neural Networks, 1995. Proceedings.,
IEEE International Conference on, volume 4, pages
1942–1948 vol.4.

Koppel, M., Schler, J., and Argamon, S. (2009). Computa-
tional methods in authorship attribution. J. Am. Soc. Inf.
Sci. Technol., 60(1):9–26, January.

Oracle, (2014). Oracle Endeca R© Commerce, Internation-
alization Guide. Oracle Commerce. Version 11.0.

Papineni, K., Roukos, S., Ward, T., and Zhu, W. (2002).
Bleu: a method for automatic evaluation of machine
translation. In ACL, pages 311–318. ACL.

Pennington, J., Socher, R., and Manning, C. D. (2014).
Glove: Global vectors for word representation. In
Empirical Methods in Natural Language Processing
(EMNLP), pages 1532–1543.

Specia, L. (2010). Translating from complex to simpli-
fied sentences. In Computational Processing of the Por-
tuguese Language, 9th International Conference, PRO-
POR 2010, Porto Alegre, RS, Brazil, April 27-30, 2010.
Proceedings, pages 30–39.

Stajner, S., Béchara, H., and Saggion, H. (2015). A deeper
exploration of the standard PB-SMT approach to text
simplification and its evaluation. In Proceedings of the
53rd Annual Meeting of the Association for Computa-
tional Linguistics, ACL 2015, pages 823–828.

Tai, K. S., Socher, R., and Manning, C. D. (2015).
Improved semantic representations from tree-structured
long short-term memory networks. In ACL (1), pages
1556–1566. The Association for Computer Linguistics.

Wubben, S., van den Bosch, A., and Krahmer, E. (2012).
Sentence simplification by monolingual machine transla-
tion. In ACL (1), pages 1015–1024. The Association for
Computer Linguistics.

Zampieri, M., Tan, L., Ljubešic, N., Tiedemann, J., and
Nakov, P. (2015). Overview of the dsl shared task 2015.
In Joint Workshop on Language Technology for Closely
Related Languages.

52

CLaC @ QATS: Quality Assessment for Text Simplification

Elnaz Davoodi and Leila Kosseim
Concordia University

Montreal, Quebec, Canada
e davoo@encs.concordia.ca, kosseim@encs.concordia.ca

Abstract
This paper describes our approach to the 2016 QATS quality assessment shared task. We trained three independent Random Forest
classifiers in order to assess the quality of the simplified texts in terms of grammaticality, meaning preservation and simplicity. We
used the language model of Google-Ngram as feature to predict the grammaticality. Meaning preservation is predicted using two
complementary approaches based on word embedding and WordNet synonyms. A wider range of features including TF-IDF, sentence
length and frequency of cue phrases are used to evaluate the simplicity aspect. Overall, the accuracy of the system ranges from 33.33%
for the overall aspect to 58.73% for grammaticality.

Keywords: Simplification, Word Embedding, Language Model

1. Introduction
Automatic text simplification is the process of reducing the
complexity of a text to make it more accessible to a broader
range of readers with different readability levels. While
preserving its meaning as much as possible, a text’s lexi-
cal, syntactic and discourse level features should be made
more simple. However, evaluating the simplicity level of
a text is still a challenging task for both humans and auto-
matic systems.
Current approaches to automate text simplification vary de-
pending on the type of simplification. Lexical simplifica-
tion was the first effort in this area. In particular, Devlin and
Tait (1998) introduced an approach of replacing words with
their most common synonym based on frequency (Kuc̆era
et al., 1967). More recently, publicly available resources
such as Simple English Wikipedia 1 and the Google 1T
corpus 2 have been used to automate lexical simplification
based on similar approaches such as common synonym re-
placement and context vectors (e.g. (Biran et al., 2011; Bott
et al., 2012; Rello et al., 2013; Kauchak, 2013)).
Another approach to automatic text simplification involves
syntactic simplification. Current work in this area aims
to identify and simplify complex syntactic constructions
such as passive phrases, embedded clauses, long sentences,
etc. Initial work on syntactic simplification focused on
the use of transformation rules in order to generate sim-
pler sentences (e.g. Chandrasekar and Srinivas (1997)).
Later, work have paid more attention on sentence splitting
(e.g. Carroll et al. (1998)), rearranging clauses (e.g. Sid-
dharthan (2006)) and dropping clauses (e.g. (Barlacchi and
Tonelli, 2013; Štajner et al., 2013)). To our knowledge,
Siddharthan (2003) is the only effort that specifically ad-
dressed the preservation of a text’s discourse structure by
resolving anaphora and ordering sentence.
In the remainder of this paper, we describe the method-
ology we used to measure the 4 simplification criteria
of the QATS workshop: GRAMMATICALITY, MEANING

1http://www.cs.pomona.edu/˜dkauchak/
simplification/

2https://books.google.com/ngrams

PRESERVATION, SIMPLICITY and OVERALL. In Sections
2 and 3, the details of our submitted system are described,
while Section 4 summarises our results.

2. System Overview
As can be seen in Figure 1, our system consisted of three
independent supervised models in order to predict each
of the three main aspects: GRAMMATICALITY, MEANING
PRESERVATION and SIMPLICITY. We used 10 fold cross-
validation in order to choose the best supervised models.
The 4th aspect (i.e. OVERALL) was predicted using the pre-
dictions of MEANING PRESERVATION and SIMPLICITY.

2.1. Grammaticality Prediction
In order to predict the quality of the simplified sentences
from the point of view of grammaticality, we have used
the log likelihood score of the sentences using the Google
Ngram corpus3. To do this, the BerkeleyLM language mod-
eling toolkit4 was used (Pauls and Klein, 2011) to built a
language model from the Google Ngram corpus, then the
perplexity of all simple sentences in the training set were
calculated. These log likelihood scores were used as fea-
tures to feed a Random Forest classifier.

2.2. Meaning Preservation Prediction
The purpose of meaning preservation is to evaluate how
close the meaning of the original sentence is with respect
to its simple counterpart. To do this, we used two com-
plementary approaches based on word embedding and the
cosine measure.

2.2.1. Word Embedding
We used the Word2Vec package (Mikolov et al., 2013a;
Mikolov et al., 2013b) to learn the representation of words
on the Wikipedia dump5. We then trained a skip-gram
model using the deeplearing4j6 library. As a result, each

3https://books.google.com/ngrams
4http://code.google.com/p/berkeleylm/
5http://www.cs.pomona.edu/˜dkauchak/

simplification/
6http://deeplearning4j.org/

53

http://www.cs.pomona.edu/~dkauchak/simplification/
http://www.cs.pomona.edu/~dkauchak/simplification/
https://books.google.com/ngrams
https://books.google.com/ngrams
http://code.google.com/p/berkeleylm/
http://www.cs.pomona.edu/~dkauchak/simplification/
http://www.cs.pomona.edu/~dkauchak/simplification/
http://deeplearning4j.org/

Figure 1: System Overview

word in the original sentence and its simple counterpart are
represented as a vector. As calculating the similarity of two
sentences using word embedding is still a challenging task,
our approach to this problem was to use average similar-
ity. To do so, we calculated the similarity of each word
(each vector) in the original sentence to all the words in its
simpler counterpart. Then using the average length of the
original and simple pairs, we calculated the average simi-
larity between a pair of sentences. This similarity was the
first feature we fed to a Random Forest classifier.

2.2.2. Cosine Similarity of WordNet Synonyms
The second feature we used for meaning preservation was
based on WordNet synonyms. Each sentence was repre-
sented as a vector of its constituent words. Then, using
WordNet7, all synonyms of each word were added to the
corresponding vector of the sentence. However, as each
word can have various part of speech (POS) tags, before
expanding the vector, we first identified the POS of all the
words in the sentence using the Stanford POS tagger (Man-
ning et al., 2014). Afterwards, we filtered the synonyms
according to the POS tags and added only those with the
same POS tag of the word. As a result, each sentence was
represented as a vector of words and their synonyms. Us-
ing the cosine similarity to calculate the similarity between
corresponding vectors of pairs of sentences, we measured
how close the meaning of two sentences were.

Cosine Sim(i) =

„

Oi.
#„

Si

|| # „

Oi|| × ||
#„

Si||

7https://wordnet.princeton.edu/

2.3. Simplicity Prediction

The purpose of simplicity prediction is to evaluate how sim-
pler the simple sentences are compared to their original
counterpart. As simplicity can be measured at various lev-
els (i.e. lexical, syntactic and discourse), we considered the
following sets of features in order to capture the changes at
each level.

2.3.1. Vector Space Model Similarity
The first feature we considered in order to evaluate the sim-
plicity of the simple sentences compared to their original
counterpart, was the cosine similarity between the Term
Frequecy-Inverse Document Frequency (TF-IDF) vectors
of each pair. A cosine similarity of 1 indicates that no
change has been made in the simplification process. How-
ever, before transforming sentences into their correspond-
ing TF-IDF vector, we preprocessed them. First, stop words
were removed, then all words were stemmed using the
Porter Stemmer (Porter, 1980). As a result, each sentence
was represented as a vector of the size of all the stems in
all sentences. It is worth noting that in order to compute
the inverse document frequency for each stem, we consid-
ered each sentence as a document. The cosine similarity
between original and simple sentences of the ith pair is cal-
culated using Formula 1, where

„

Oi and
#„

Si represent the
vectors of the original sentence and its simple counterpart
correspondingly.

54

https://wordnet.princeton.edu/

2.3.2. Sentence Length
Traditional approaches to readability level assessment have
identified text length as an important feature to measure
complexity (e.g. Kincaid et al. (1975)). Following this,
we investigated the influence of sentence length in terms of
the number of open class words only. By ignoring closed
class words, we eliminated the effect of words which do
not contribute much to the meaning of the sentence. Thus,
we considered the difference between the length of pairs of
sentences as our second feature for simplicity prediction.

2.3.3. Average Word Length
According to Kincaid et al. (1975), not only can the num-
ber of words in the sentence be an indicator of simplicity
level, but also its length in terms of the number of charac-
ters. To account for this, we also considered the difference
between the average number of characters between pairs
of sentences. Using this feature along with the number of
words of each sentence (see Section 2.3.2), we investigated
not only the influence of the length of sentence, but also the
length of each word in the sentence.

2.3.4. Frequency in the English Wikipedia Corpus
The frequency of each word in the regular English
Wikipedia can be an indicator of the simplicity level of the
word. We expected that words in the original sentences
would be more frequent in the regular English Wikipedia
than words of the simple sentences. Thus, we calculated
the difference between the average frequency of all words
of the original sentence and their simple counterpart. To
do this, we preprocessed both pairs of sentences and the
regular English Wikipedia corpus, in order to remove stop
words and then stem the remaining words.

2.3.5. Frequency in the Simple English Wikipedia
Corpus

The Simple English Wikipedia corpus8 is an aligned cor-
pus of 60K ¡regular, simple¿ pairs of Wikipedia articles.
We used this corpus in order to calculate the average fre-
quency of words of each pair of sentences. We expected the
words of simpler sentences to be more frequent in the Sim-
ple Wikipedia articles compared to the original sentences.
To do this, we performed the same preprocessing as de-
scribed in Section 2.3.4. and used the average frequency of
the sentence’s stems as features.

2.3.6. Frequency of Cue Phrases
The last feature we considered to predict the simplicity as-
pect was the difference in the usage of cue phrases. Cue
phrases are special terms such as however, because, since,
etc. which connect text segments and mark their discourse
purpose. Several inventories of cue phrases have been pro-
posed (e.g. (Knott, 1996; Prasad et al., 2007)). For our
work, we used the list of 100 cue phrased introduced by
Prasad et al. (2007) and calculated the difference between
the frequency of cue phrases across pairs of sentences. It
is worth noting that cue phrases may be used to explicitly
signal discourse relations between text segments or may
be used in a non-discourse context. However, here we

8http://www.cs.pomona.edu/˜dkauchak/
simplification/

considered both discourse and non-discourse usage of cue
phrases.

2.4. Overall Prediction
The last aspect to be predicted evaluated the combination of
all other aspects. According to our analysis of the training
data set, this aspect depended mostly on the SIMPLICITY
and the MEANING PRESERVATION aspects. Our prediction
of this aspect was based only on a simple set of rules using
the predictions of these two aspects. The following shows
the rules we used to predict the value of this aspect.

• If both simplicity and meaning preservation are clas-
sified as GOOD, then overall = GOOD,

• If at least one of simplicity or meaning preservation is
classified as BAD, then overall = BAD,

• otherwise, overall = OK.

3. Data and Results
The training set contains 505 pairs of original and simple
sentences. The original sentences were taken from the news
domain and from Wikipedia and the simple counterparts
were automatically simplified using various text simplifica-
tion systems. Thus, the simple counterparts may contain
various types of simplifications such as lexical, syntactic or
mixture of both. Table 1 shows the distribution of the data
for each of the four aspects. As can be seen, none of the
aspects have a normal distribution over the class-labels.

Aspect
Value(%)

Good Ok Bad

Grammaticality 75.65 14.26 10.09
Meaning preservation 58.22 26.33 15.45
Simplicity 52.68 30.29 17.03
Overall 26.33 46.14 27.53

Table 1: Distribution of data

For our participation, we submitted one run for GRAMMAT-
ICALITY and MEANING PRESERVATION and three runs for
the SIMPLICITY and OVERALL aspects. The three runs had
different classification threshold to assign class labels. Our
official results are listed in Table 2. MAE and RMSE stand
for Mean Average Error and Root Mean Square Error cor-
respondingly.

4. Bibliographical References
Barlacchi, G. and Tonelli, S. (2013). Ernesta: A sentence

simplification tool for children’s stories in Italian. In
Computational Linguistics and Intelligent Text Process-
ing (CICLing-2013), pages 476–487.

Biran, O., Brody, S., and Elhadad, N. (2011). Putting it
simply: A context-aware approach to lexical simplifica-
tion. In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Lan-
guage Technologies: short papers-Volume 2, pages 496–
501.

55

http://www.cs.pomona.edu/~dkauchak/simplification/
http://www.cs.pomona.edu/~dkauchak/simplification/

System Name Accuracy MAE RMSE
Grammaticality-Davoodi-RF-perplexity 58.73% 27.38 34.66
Meaning preservation-Davoodi-RF 49.21% 30.56 36.31
Simplicity-Davoodi-RF-0.5 34.92% 43.25 45.32
Simplicity-Davoodi-RF-0.6 35.71% 41.67 44.48
Simplicity-Davoodi-RF-0.7 35.71% 40.48 44.48
Overall-Davoodi-0.5 34.13% 41.27 44.21
Overall-Davoodi-0.6 32.54% 42.06 45.67
Overall-Davoodi-0.7 33.33% 41.27 45.16

Table 2: Official Results of our system at QATS.

Bott, S., Rello, L., Drndarevic, B., and Saggion, H. (2012).
Can Spanish be simpler? LexSiS: Lexical simplification
for spanish. In Coling, pages 357–374.

Carroll, J., Minnen, G., Canning, Y., Devlin, S., and Tait,
J. (1998). Practical simplification of english newspa-
per text to assist aphasic readers. In Proceedings of the
AAAI-98 Workshop on Integrating Artificial Intelligence
and Assistive Technology, pages 7–10.

Chandrasekar, R. and Srinivas, B. (1997). Automatic
induction of rules for text simplification. Knowledge-
Based Systems, 10(3):183–190.

Devlin, S. and Tait, J. (1998). The use of a psycholinguistic
database in the simplification of text for aphasic readers.
Linguistic Databases, pages 161–173.

Kauchak, D. (2013). Improving text simplification lan-
guage modeling using unsimplified text data. In Pro-
ceeding of ACL (Volume 1: Long Papers), pages 1537–
1546.

Kincaid, J. P., Fishburne, J., Robert, P., Rogers, R. L.,
and Chissom, B. S. (1975). Derivation of new readabil-
ity formulas (automated readability index, fog count and
flesch reading ease formula) for navy enlisted personnel.
Technical report, DTIC Document.

Knott, A. (1996). A data-driven methodology for motivat-
ing a set of coherence relations. Ph.D. thesis, The Uni-
versity of Edinburgh: College of Science and Engineer-
ing: The School of Informatics.

Kuc̆era, H., Francis, W. N., et al. (1967). Computational
analysis of present-day American English. Technical re-
port, Brown University Press.

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J. R.,
Bethard, S., and McClosky, D. (2014). The Stanford
CoreNLP Natural Language Processing Toolkit. In Pro-
ceedings of 52nd Annual Meeting of the Association
for Computational Linguistics: System Demonstrations,
pages 55–60.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a).
Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and
Dean, J. (2013b). Distributed representations of words
and phrases and their compositionality. In Advances
in Neural Information Processing Systems (NIPS-2013),
pages 3111–3119.

Pauls, A. and Klein, D. (2011). Faster and smaller n-gram
language models. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguis-

tics: Human Language Technologies-Volume 1, pages
258–267.

Porter, M. F. (1980). An algorithm for suffix stripping.
Program, 14(3):130–137.

Prasad, R., Miltsakaki, E., Dinesh, N., Lee, A., Joshi,
A., Robaldo, L., and Webber, B. L. (2007). The Penn
Discourse Treebank 2.0 annotation manual. https:
//www.seas.upenn.edu/˜pdtb/.

Rello, L., Baeza-Yates, R., Dempere-Marco, L., and Sag-
gion, H. (2013). Frequent words improve readabil-
ity and short words improve understandability for peo-
ple with dyslexia. In Human-Computer Interaction–
INTERACT 2013, pages 203–219.

Siddharthan, A. (2003). Preserving discourse structure
when simplifying text. In Proceedings of the European
Natural Language Generation Workshop (ENLG), 11th

Conference of the European Chapter of the Association
for Computational Linguistics (EACL’03), pages 103–
110.

Siddharthan, A. (2006). Syntactic simplification and
text cohesion. Research on Language & Computation,
4(1):77–109.

Štajner, S., Drndarevic, B., and Saggion, H. (2013).
Corpus-based sentence deletion and split decisions for
Spanish text simplification. Computación y Sistemas,
17(2):251–262.

56

https://www.seas.upenn.edu/~pdtb/
https://www.seas.upenn.edu/~pdtb/

	LREC16-QATS-workshop
	5_Final_Manuscript
	QATS_Paper 3
	AutomaticEvaluationTS-forQATS-final
	qats-sanja-final
	MS-QATS-SharedTask-maja (1)
	QATS_Paper 9
	6_Final_Manuscript
	paper-Nisiou-Nauze
	7_Final_Manuscript
	Introduction
	System Overview
	Grammaticality Prediction
	Meaning Preservation Prediction
	Word Embedding
	Cosine Similarity of WordNet Synonyms

	Simplicity Prediction
	Vector Space Model Similarity
	Sentence Length
	Average Word Length
	Frequency in the English Wikipedia Corpus
	Frequency in the Simple English Wikipedia Corpus
	Frequency of Cue Phrases

	Overall Prediction

	Data and Results
	Bibliographical References

	Untitled
	Untitled

