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Preface 
 

Translation Memories (TM) are amongst the most used tools by professional translators, if not the 

most used. The underlying idea of TMs is that a translator should benefit as much as possible from 

previous translations by being able to retrieve how a similar sentence was translated before. 

Moreover, the usage of TMs aims at guaranteeing that new translations follow the client’s specified 

style and terminology. Despite the fact that the core idea of these systems relies on comparing 

segments (typically of sentence length) from the document to be translated with segments from 

previous translations, most of the existing TM systems hardly use any language processing for this. 

Instead of addressing this issue, most of the work on translation memories focused on improving 

the user experience by allowing processing of a variety of document formats, intuitive user 

interfaces, etc. 

 

The term second generation translation memories has been around for more than ten years and it 

promises translation memory software that integrates linguistic processing in order to improve the 

translation process. This linguistic processing can involve matching of subsentential chunks, edit 

distance operations between syntactic trees, incorporation of semantic and discourse information in 

the matching process. Terminologies, glossaries and ontologies are also very useful for translation 

memories, by facilitating the task of the translator and ensuring a consistent translation. The field of 

Natural Language Processing (NLP) has proposed numerous methods for terminology extraction 

and ontology extraction. The building of translation memories from corpora is another field where 

methods from NLP can contribute to improving the translation process. 

 

We are happy we could include in the workshop programme four contributions dealing with the 

aforementioned issues. In addition, the programme of the workshop in complemented by the 

presentations of three well-known researchers.  

 

The first edition of this workshop organised at RANLP 2015 confirmed the fact that there is interest 

in the research community for the topics proposed. In addition, it highlighted the need for automatic 

methods for cleaning translation memories. For this reason, the second edition of the NLP4TM 

workshop also organises a shared task on cleaning translation memories in an attempt to make the 

creation of resources for translation memories easier.  

 

The Organising Committee would like to thank the Programme Committee, who responded with 

very fast but also substantial reviews for the workshop programme. This workshop would not have 

been possible without the support received from the EXPERT project (FP7/2007-2013 under REA 

grant agreement no. 317471, http://expert-itn.eu). 

 

 

 

 

 

http://expert-itn.eu/
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Abstract
This paper summarizes the work done to prepare the first shared task on automatic translation memory cleaning. This shared task
aims at finding automatic ways of cleaning TMs that, for some reason, have not been properly curated and include wrong translations.
Participants in this task are required to take pairs of source and target segments from TMs and decide whether they are right translations.
For this first task three language pairs have been prepared: English → Spanish, English → Italian, and English → German. In this paper,
we report on how the shared task was prepared and explain the process of data selection and data annotation, the building of the training
and test sets and the implemented baselines for automatic classifiers comparison.

Keywords: Translation Memories, data selection, data annotation

1. Introduction
Translation Memories (TMs) are among the most used tools
by professional translators, if not the most used. The un-
derlying idea of TMs is that a translator should benefit as
much as possible from previous translations by being able
to retrieve how a similar sentence was translated before.
Moreover, the usage of TMs aims at guaranteeing that new
translations follow the client’s specified style and terminol-
ogy. However, in order to ensure that professional transla-
tors can benefit from the contents already stored in a TM,
this must be properly maintained and clean.
The first edition of the Natural Language Processing for
Translation Memories (NLP4TM 2015) workshop orga-
nized at RANLP 2015 (Orasan and Gupta, 2015) high-
lighted the need for automatic methods for cleaning TMs.
For this reason, in the second edition of the NLP4TM work-
shop (NLP4TM 2016)1 a shared task on cleaning transla-
tion memories has been organized in an attempt to make the
creation of resources for TMs easier as well as to enhance
TM curation. This paper summarizes how the data for the
shared task has been created and how the shared task has
been organized.
The remainder of this paper is organized as follows: Sec-
tion 2. summarizes the shared task. Section 3. shows how
we have selected the data (Subsection 3.1.) to be annotated
for three language pairs English-Italian, English-Spanish
and English-German. The Subsections 3.2. and 3.3. dis-
cuss the annotation of the data and the inter-annotator
agreement respectively. Section 4. shows how we have
made the training and test sets, Section 5. reports on the
baselines we have established to measure the participants’
system submissions. The final section 6. summarizes our
preparatory work for the shared task.

1http://rgcl.wlv.ac.uk/nlp4tm2016/

2. Shared Task
The NLP4TM 2016 shared task on cleaning translation
memories aims at finding automatic ways of cleaning TMs
that for some reason have not been properly curated and
include wrong translations. Participants in this task are
required to take pairs of source and target segments from
TMs and decide whether they are right translations. For
this first task three language pairs have been prepared: En-
glish → Spanish, English → Italian, and English → Ger-
man.
The data was annotated with information on whether the
source and target content of each TM segment represent a
valid translation. In particular, the following 3 point scale
has been applied:

1. The translation is correct (tag “1”).
2. The translation is correct, but there are a few ortho-

typographic mistakes and therefore some minor post-
editing is required (tag “2”).

3. The translation is not correct (content missing/added,
wrong meaning, etc.) (tag “3”).

For each language pair, two thirds of the annotated seg-
ments are provided for training and one third is provided
for testing during the evaluation phase.
Besides choosing the pair of languages with which they
want to work, participants can choose to participate in ei-
ther one or all of the following three tasks:

1. Binary Classification (I): In this task, it is only re-
quired to determine whether a segment is right or
wrong. For the first binary classification option, only
tag (“1”) is considered correct because the transla-
tors do not need to make any modification, whilst tags
(“2”) and (“3”) are considered wrong translations.

1
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2. Binary Classification (II): As in the first task, in this
task it is only required to determine whether the seg-
ment is right or wrong. However, in contrast to the
first task, a segment is considered correct if it was la-
beled by annotators as (“1”) or (“2”). Segments la-
beled (“3”) are considered wrong because they require
major post-editing.

3. Fine-grained Classification: In this task, the partici-
pating teams have to classify the segments according
to the annotation provided in the training data: cor-
rect translations (“1”), correct translations with a few
orthotypographic errors (“2”), and wrong (“3”).

Participants were required to register their intention to par-
ticipate by filling in an online form. Upon registration, we
provided the registered participants with the training set.
The test set will be distributed during the evaluation phase
and the participating teams will be asked to submit the out-
put of their systems in a format similar to the training set2.
For evaluation, the standard measures precision, recall and
the F1 will be used. In addition, we have foreseen a po-
tential manual error analysis of subsets of the test data. The
extent of this analysis will depend on the number of systems
submitted. The numbers of runs submitted by participants
has not been limited, although the participating teams are
required to indicate their primary (and secondary, if rele-
vant) runs.
In order to ensure the reusability and replicability of the
shared task results and with the aim of making a real impact
in professional translation workflows, all participants have
been encouraged to release their systems and make them
publicly available for future use. Besides, the development
of methods that can be run on large datasets without requir-
ing a lot of computational resources is also fostered. Thus,
participans have also been encouraged not to use machine
translation as one of the factors used to determine the class
of a segment.

3. Data preparation
3.1. Data selection
The data was sampled from the public part of MyMemory
(Trombetti, 2009) the biggest translation memory database
in the world. The public part of MyMemory is composed of
all bi-segments that the translators agreed to make public,
from public parallel corpora and glossaries, data crawled
from parallel sites on the web and the individual contribu-
tions through a collaborative web interface.
Regarding the percentage of errors, the bi-segments com-
ing from the translators have fewer errors, the bi-segments
coming from the collaborative web interface have most er-
rors and the bi-segments coming from public parallel cor-
pora or from crawling the web are somewhere in the mid-
dle.
In the initial phase we extracted approximately 30K bi-
segments for each language pair taking care to sample from
all the above mentioned sources. The bi-segments are het-
erogeneous and belong to different domains ranging from

2Due to time constraints, the testing phase will take place in
the last weeks prior to the NLP4TM 2016 workshop and therefore
no results can be reported at this time.

medicine and physics to colloquial conversations. Once
we had this first pre-selection, we filtered the extracted bi-
segments according to the following criteria:

1. Minimum length. The source and target segments
should contain at least three words. MyMemory con-
tains a significant number of entries that have only a
word or two. However in many cases it is hard to un-
derstand if the source is a translation of the target be-
cause the context for interpreting the source and target
is missing. We decided to avoid this situation for the
task and therefore all segments shorter than a 3-word-
span were deleted.

2. No tags. The extracted bi-segments should not contain
tags or strange characters. Even if in the translation
memory cleaning task one should consider segments
that contain tags or strange characters, their identifi-
cation is trivial and therefore was excluded from the
task.

3. Appropriate language codes. The language codes
of the source and target segments should coincide
with the declared language codes. For example, if
the source segment language code is declared as En-
glish and the target language code segment is declared
as Spanish then the source segment language code
should be English and the target segment language
code should be Spanish. To check that this is indeed
the case we used the high quality automatic language
detector Cybozu 3.

4. One to Many/Many to One. We only accepted those
bi-segments where one source sentence corresponds
to at least one target sentence or one target sentence
corresponds to at least one source sentence. That is:
all bi-segments where many sentences in the source
segment corresponded to many sentences in the tar-
get sentence were rejected because these bi-segments
need realignment.

5. Uniqueness. The source and target segments should
be unique across the set. We allowed the possibil-
ity of having a repeated source segment with multi-
ple corresponding target segments as long as the tar-
get segments differed from each other, and viceversa:
a unique target segment with diferring source seg-
ments4.

From the bi-segments that met the above criteria we sam-
pled again 10K bi-segments per language pair from which
we then manually selected approximately 3K bi-segments
per language pair. To facilitate the manual selection of the
negative examples, we computed the cosine similarity score
between the Machine Translation of the English segment
and the target bi-segment. The hypothesis to consider was
that low cosine similarity scores can signal bad translations.

3https://github.com/shuyo/
language-detection

4Two segments are different if the segments as character string
are different after space normalization.
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The manually selected bi-segments do not contain inappro-
priate language or other errors that cannot be identified au-
tomatically.

3.2. Data annotation
The set containing approximately 3K bi-segments per lan-
guage pair was annotated by two native speakers of each
target language. The guidelines for annotating this data
set contain annotation instructions and examples5. In what
follows, we present the annotation guidelines for English–
Spanish. Similar annotation guidelines have been pro-
duced for the English–German and English–Italian lan-
guage pairs.

1. You should give the score “1” if the translations can
be accepted without editing. That is, the segment in
Spanish preserves the meaning of the English seg-
ment.

Example: “This product contains mineral oil.”→“Este
producto contiene aceite mineral.” is a good Spanish
translation of the English original segment. You do
not need to change anything: punctuation or words.

2. You should give the score “2” when the few operations
of editing you perform do not affect the meaning of the
phrase. For example you should annotate “2” when:

• The Spanish segment preserves the meaning of
the English segment. However the Spanish seg-
ment has very few extra stuff that once deleted
makes the translation acceptable:
Example: “This product contains mineral
oil.”→“d Este producto contiene aceite mineral.”.
Deleting the “d” at the beginning makes the trans-
lation acceptable (tag “1”)

• The Spanish segment has (or lacks) punctua-
tion that however do not impede understand-
ing the segment. Adding or deleting the extra-
punctuation renders the translation acceptable
(tag “1”):
Example: “This product contains mineral
oil.”→“Este producto contiene aceite mineral”.
Adding the final dot renders the translation (tag
“1”).

• The Spanish segment has very few typos relative
to the length of translation. Correcting the typos
makes the translation acceptable (tag “1”).
Example: “This product contains mineral
oil.”→“Este produto contiene aceite mineral.”.
Correcting produto→producto makes the trans-
lation acceptable (tag “1”).

3. You should give the score “3” if you need to perform
substantial editing or editing that changes the meaning
of the Spanish segment.

5The reader can consult these annotation guidelines at the
web address: http://rgcl.wlv.ac.uk/nlp4tm2016/
shared-task/.

Annotator Annotator 2
Category 1 2 3

Annotator 1
1 1127 276 281
2 209 382 305
3 10 9 360

Table 1: The agreement for English–Italian

• Example: “This product contains mineral
oil.”→“Este producto contiene agua mineral.”.
You need to replace a whole content word that
is “agua” (water) with a new word “aceite” (oil)
and thus the meaning of the sentence changes.

• Example: “This product contains mineral
oil.”→“Este produto contiene aceite mineral”. In
this case, you need to change produto→producto,
aciete→aceite and add the final dot to render an
acceptable translation. Even if the editing oper-
ations do not change the meaning of the Spanish
segment the numbers of edits you need to per-
form is substantial relative to the length of the
segment.

The annotation has been performed with the aid of the
MT-Equal (Girardi et al., 2014), a toolkit for Human As-
sessment of Machine Translation Output, developed and
maintained by FBK. MT-Equal is an online tool accessible
through the Chrome web browser6. It defines two types of
users: administrators and annotators. While the annotators
perform the annotation, the administrators can load data,
assign tasks to the annotators, follow the task progress, ex-
port the results etc.
Our initial idea was that after the two annotators annotate
the 3K they will agree on more than 2K bi-segments. The
identical annotated bi-segments would then be used to build
the training and test sets. In the next section, we discuss the
inter-annotator agreement for each language-pair.

3.3. Inter-annotator agreement
We computed the inter-annotator agreement using the well
known Cohen’s kappa coefficient (Cohen, 1960). In Ta-
ble 3.3., we present the agreement for the English–Italian
language pair. The main diagonal of the table shows the
number of bi-segments where the annotators7 agree. They
agreed for 1869 bi-segments. The number fell short of the
2K bi-segments we were expecting. To reach at least that
number we asked an arbiter to annotate the 281 bi-segments
that were annotated with tag 1 by annotator 1, and with tag
3 by annotator 2. The arbiter annotated 182 instances with
1, 32 instances as 2 and 67 instances as 3. The final set
to be used for training and testing for English–Italian con-
sists of the sum of all agreements and the arbiter resolution
(2118 bi-segments). The Cohen’s kappa coefficient for the
English–Italian annotation task is 0.41.
The initial English–Spanish set had 3012 bi-segments. The
first annotator annotated all bi-segments whereas the sec-
ond annotator annotated 2708 bi-segments. The annotator

6http://mtequal.fbk.eu/
7labeled Annotator 1 and Annotator 2, respectively
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Annotator Annotator 2
Category 1 2 3

Annotator 1
1 1413 63 166
2 203 193 107
3 64 29 470

Table 2: The agreement for English–Spanish

Annotator Annotator 2
Category 1 2 3

Annotator 1
1 1629 131 13
2 23 42 3
3 3 10 15

Table 3: The agreement for English–German

agreement is calculated for the 2708 common annotations
and is reported in table 3.3..
The set to be used for training and testing for English-
Spanish consists of the sum of all agreements (2076 bi-
segments). The Cohen’s kappa coefficient for the English–
Spanish annotation task is higher than the same coefficient
for English–Italian 0.57.
The initial English–German set had 3016 bi-segments. The
first annotator annotated 2509 bi-segments and the second
annotator annotated only 2404 bi-segments. However, the
annotators chose to work on a different order and while an-
notator 1 started from the first segment, the second annota-
tor chose to perform the annotation in reverse order, starting
by the last bi-segment. The annotator agreement is calcu-
lated for the 1869 common annotations in table 3.3..
The Cohen’s kappa coefficient for the English–German an-
notation task is 0.37. Two things can be observed relative
to Table 3.3.: the number of bi-segments for which we have
agreement is less than 2K (1686), just like in the English–
Italian case, and the number of negative bi-segments (anno-
tated with 3 by both annotators) is very low (15). To have
a training and test sets comparable with the training and
test sets for the other language pairs (English–Italian and
English–Spanish), we added noise to the English–German
set. We took 410 bi-segments annotated by one of the anno-
tators and not by the other and added noise such as to trans-
form them in 300 bi-segments annotated with 3 and 109
bi-segments annotated with 2. The set to be used for train-
ing and testing for English–German consists of the set of
all bi-segments where both annotators agreed plus the 410
bi-segments to which we added noise (2096 bi-segments in
total).
In conclusion, we selected three sets containing approxi-
mately 2K bi-segments where two annotators agreed. Ac-
cording to the interpretation that Landis and Koch (Landis
and Koch, 1977) give to Cohen’ kappa coefficient, the re-
ported agreement coefficients is borderline between poor
and fair. We have not conducted a study to see why the
agreement is low. However inspecting a sample of dis-
agreement cases we have noted that the annotators disagree
when the translators bring into the translation process back-
ground knowledge that is not stated explicitly in the source
sentence. For example the word “drug” in the source lan-
guage can be translated as “the drug for dogs” in the target

language when the information that the drug was meant to
be for dogs was stated in the context before the segment to
be translated.

4. Training and Test Sets
The training and test have been built using stratified sam-
pling. This means that the training and test sets contain the
same percentage of bi-segments with the same category la-
bel. Table 4. gives the number of bi-segments having the
category labels “1”, “2” and “3” in the training and test sets
for all language pairs. The names of the columns E–G, E–S
and E–I stand for English–German (E–G), English–Spanish
(E–S) and English–Italian (E–I), respectively.

Language Pair
Category
Label

Training Set

E–I E–S E–G
872 942 1086 1
254 128 100 2
284 313 210 3

Test Set

E-I E-S E-G
437 471 544 1
128 65 51 2
143 157 105 3

Table 4: The size of the training and test sets

5. Baseline systems
To benchmark the results of the classifiers that the partici-
pants to the Shared Task will submit we have implemented
two baselines. The first baseline generates random labels
for the test set with the same distribution of the labels in
the training set. The second baseline corrects the results of
the first baseline when the Church-Gale (Gale and Church,
1993) score of the source and target segments is above a
predefined threshold fixed to 2.58. The idea is that if the
difference in length between the source and target segments
is too big, then it is likely that the target segment is not the
translation of the source. Therefore in these cases we mod-
ified the score given by the first baseline to “3”. To mea-
sure the length of the source and destination segments, we
use the modified Church-Gale length difference algorithm
(Tiedemann, 2011) presented in Equation 1:

CG =
ls − ld√

3.4(ls + ld)
(1)

The results of the two baselines for all the shared tasks de-
fined in section 2. are presented in table 5..
As stated earlier, we compute Precision, Recall and the F1
score for the two baselines defined before and each sub task
defined in the shared task. It is expected that baseline 2 is
harder to beat than baseline 1 (baseline 2 gains at most 3
points of F-score over baseline 1). With the exception of
the Fine-Grained task, the baselines are not easy to beat, as
they reach, in the case of the Binary Classification approx-
imately 0.8 F-score points.

8The script that computes the baselines can be downloaded
from the URL http://rgcl.wlv.ac.uk/resources/
NLP4TM2016/baselines.py.remove

4

http://rgcl.wlv.ac.uk/resources/NLP4TM2016/baselines.py.remove
http://rgcl.wlv.ac.uk/resources/NLP4TM2016/baselines.py.remove


Language Pair Measure

Baseline 1
Fine-Grained

E–I E–S E–G
0.45 0.52 0.63 P
0.45 0.52 0.63 R
0.45 0.52 0.63 F1

Baseline 2
Fine -Grained

E-I E-S E-G
0.47 0.55 0.62 P
0.47 0.55 0.62 R
0.47 0.55 0.62 F1

Baseline 1
Binary
Classification 1

E-I E-S E-G
0.61 0.68 0.78 P
0.62 0.69 0.78 R
0.61 0.69 0.78 F1

Baseline 2
Binary
Classification 1

E-I E-S E-G
0.62 0.71 0.78 P
0.62 0.69 0.77 R
0.62 0.70 0.78 F1

Baseline 1
Binary
Classification 2

E-I E-S E-G
0.8 0.77 0.85 P
0.79 0.77 0.86 R
0.79 0.77 0.85 F1

Baseline 2
Binary
Classification 2

E-I E-S E-G
0.82 0.80 0.85 P
0.79 0.77 0.85 R
0.80 0.78 0.85 F1

Table 5: Baselines for the shared task

6. Conclusion

In this paper we have presented the methodology for con-
structing three sets of parallel bi-segments for English–
Italian, English–Spanish and English–German sampled
from the MyMemory translation memory database. We ex-
pected a higher agreement in the annotation task but due
to time constraints to release the data for the shared task,
we could not assess properly why the level of disagreement
was so high. For English–Italian we needed an arbiter to
decide a number a cases and thus achieve around 2K an-
notated examples where at least two annotators agreed in
their annotations. The English–German set did not contain
enough negative examples , meaning that MyMemory has
good quality segments for this language pair. We have cre-
ated some artificial negative segments by adding noise to
the acceptable ones. We have implemented and presented
two baselines to be compared against the classification re-
sults sent by the participants in the shared task.
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Abstract
Digital Humanities are persisting ascending and the need for translating humanistic texts using Computer Assisted Translation (CAT)
tools demands for a specific investigation both of the available technologies and of the evaluation techniques. Indeed, humanistic texts
can present deep differences from texts that are usually translated with CAT tools, due to complex interpretative issues, the request
of heavy rephrasing, and the addition of explicative parts in order to make the translation fully comprehensible to readers and, also,
stylistically pleasant to read. In addition, these texts are often written in peculiar languages for which no linguistic analysis tool can be
available. We faced this situation in the context of the project for the translation of the Babylonian Talmud from Ancient Hebrew and
Aramaic into Italian. In this paper we describe a work in progress on the application of distributional semantics to the informing of the
Translation Memory, and on the evaluation issues arising from its assessment.

1. Introduction
Computer-Aided Translation (CAT) tools have become an
essential component of translators’ working environments.
They allow to create more consistent translations, reduce
repetitiveness, and, in general, increase the translation pace.
One of the core components of a CAT tool is the Transla-
tion Memory System (TMS). TMSs leverage on a Transla-
tion Memory (TM) that is a sentence-pair database which
automatically stores all translated text segments together
with the source text during the translation process (Reinke,
2013). Basically, the main purpose of a TMS is to al-
low translators to reuse already done translations. A TMS
works best with documents containing a large proportion of
repeated or partially repeated text (e.g., formulaic expres-
sions) such as software specifications, instruction and op-
erator manuals, or domain-specific texts, like legal or med-
ical ones. Even if humanistic texts usually present deeply
different natures and purposes from those of texts that are
usually translated with TMs, they can still share some fea-
tures that make them suitable for being translated with the
aid of a CAT tool. In literature, there are few works de-
scribing the application of TMs to humanistic texts (see the
following section). However, the “Digital Humanities” are
currently relentless ascending and the need for translating
humanistic texts using CAT demands for a specific investi-
gation both of the available technologies and of the evalu-
ation techniques. Many humanistic texts (for example an-
cient writings) pose complex interpretative issues and their
translation can require heavy rephrasing together with the
addition of explicative parts in order to make the transla-
tion fully comprehensible to readers and, also, stylistically
pleasant to read. In these cases, translators must: i) fully
understand the text they are translating, ii) provide an “ex-
plicative translation” that has to be intelligible for readers
and, iii) make the translation pleasant and fluent to read (for
example by introducing paraphrases and synonyms).
As reported in the following section, some of the ap-
proaches aimed at enhancing the TMS adopt linguistic anal-

ysis techniques to the source text. However, a remark-
able amount of interesting literary texts worth translating
are written in languages for which there are no tools or
resources available for automatic linguistic analysis. We
faced this situation in the context of the Project for the
translation of the Babylonian Talmud (BT), as we had to
develop a TMS to support the translation of the Talmud
from Ancient Hebrew and Aramaic into Italian. The main
tool available for the automatic linguistic analysis of He-
brew, (Itai, 2006), has been developed for the analysis of
modern Hebrew. To the best of our knowledge, there are
no tools for the analysis of ancient Hebrew and Aramaic,
thus making the “linguistic informing” of our TM impossi-
ble. Moreover, the BT attests to different linguistic stages
of Hebrew and Aramaic, all of which are often alternated in
the text. In order to find out an alternative strategy, we ex-
perimented the application of Distributional Semantics to
extract semantically related words from the BT and inte-
grate them, as a kind of “semantic informing”, into the TM.
In Section 2, we depict our reference background, briefly
illustrating either the TMS researches we took into account
and some basic notions about Distributional Semantics. In
Section 3 we describe the approach we adopted for seman-
tically informing our TM, the evaluation of which raised
some important issues we discuss in Section 4. To con-
clude, in Section 5 we discuss the weaknesses and the
strong points of the proposed approach, and we outline the
next steps of this work in progress.

2. Background
In general, a TM consists of, i) a database D containing
pairs of segments (s, t), where s is the source language seg-
ment of text and t is its translation in the target language,
ii) a similarity function Sim, and iii) a threshold σ having a
value between 0 and 1. Given a segment sq to be translated,
the TMS returns a translation tq by searching for the best
match in D, i.e., a pair (s, tq) whose similarity Sim(sq)
= σ is maximal, if it exists (Sikes, 2007). The function
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Sim measures the similarity between two source-language
segments. Typically, it produces a percentage value, where
100% stands for “identical segments”, i.e., exact match, and
0% for “completely different segments”. Intermediate per-
centage values are called fuzzy matches; in this case the
translator has to edit the proposed suggestions.
The similarity function of most systems is based on vari-
ants of the edit distance normalized over the length of the
query segment, i.e., the minimum number of edit operations
(Edit(s1, s2)) required to transform the string s1 into s2:

SimED(sq, s) = (1−min(1, Edit(sq,s)
max(|sq|,|s|) )) ∗ 100 (1)

In literature, there are two main kinds of approaches for
the maximization of the function in Equation 1: approaches
leveraging on Machine Translation (MT) confidence mea-
sures as in (Simard & Fujita, 2010), and approaches which
integrate linguistic and semantic information in TMSs. A
common methodology adopted in the first category is to
first exploit the (manually made) translations contained in
the TM and, then, automatically translate the unmatched
lexical items using MT techniques (He et. al, 2010a), (He
et. al, 2010b), (Smith & Clark, 2009), (Koehn & Senellart,
2010), (Wang et. al, 2014), (Dong et. al, 2014). Researches
belonging to the second category are more similar to ours:
they point out the need for similarity computation in TMSs
to go beyond the simple surface form comparison. Planas &
Osamu (1999) and Hodasz & Gabor (2005) propose to in-
tegrate the TM with lemmas and parts of speech along with
surface form comparison. Pekar & Ruslan (2007) present
an approach based on syntactic transformation rules, where
they show how syntactic rules can bring a considerable
help in retrieving more useful source segments. Masao et.
al (2011), Gupta & Orasan (2014), and Ganitkevitch et.al
(2013) propose approaches describing improvements in the
retrieval of source segments with paraphrasing techniques.
Wolff et. al (2014) proved that a similarity metric based
on edit distance is likely to miss several useful suggestions:
they found that the largest category of missing suggestions
is composed of segments which were orthographically dif-
ferent but semantically similar. A common approach to the
automatic extraction of semantically related textual chunks
is to use the notion of Distributional Semantics (DS).
The assumption behind all DS models is that the notion of
semantic similarity can be defined in terms of linguistic dis-
tributions (Miller & Charles, 1991). The distribution of an
element can then be inferred from the sum of all its con-
texts, where a context is the setting of a word among the
surrounding words i.e., co-occurrency window. One way to
collect this information is to provide, for each word, a list
of the co-occurrences of the word and the number of times
they have co-occurred. The approach described by Schütze
(1992,1993) became standard practice for word-space algo-
rithms: data is collected in a matrix of co-occurrence counts
(M), called a co-occurrence matrix. A cell mij of the co-
occurrence matrix records the frequency of occurrence of
word i in the context of word j. Such data is then used to
build n-dimensional context vector, defined as the rows or
columns of the matrix. Context vectors allow us to define
(distributional) similarity between words in terms of vector

similarity. A convenient way to compute the similarity be-
tween the vectors representing such words, is to calculate
the cosine of the angles between the two vectors ~wi and ~wj

representing the words.

3. Description of the Approach
The TM we worked with has been constructed from the col-
laborative translation carried on, during the last four years,
by a group of 40 translators by means of the Traduco1 web-
based system (Albanesi et. al, 2015). The text being trans-
lated, the BT, represented a good test for our experimen-
tal approach, since, to date, there are no available tools
suitable for processing ancient North-western Semitic lan-
guages, nor proper bilingual parallel corpora. We started by
running the DS algorithm, described in (Baroni & Lenci,
2010), on the whole Talmud, by setting the co-occurrency
window to 32. Then we stored the extracted related word
pairs and the relative cosine values in a database Dsem,
to be used by the TMS with an updated similarity mea-
sure, that we call SimED+DS . This measure is defined
to exploit the relatedness between words by refining the
weight of the substitution operation in the computation of
the Edit() function in Equation 1: the closer the vectors rep-
resenting the words are in the distributional space (i.e., the
higher is the cosine of the angle between them), the lesser
is the weight assigned to the substitution. For each word
substitution operation found when comparing two source
segments, the TMS looks for the relative word pair inside
Dsem and sets the weight of such operation considering the
associated cosine value, as shown in Table 1. Finally, the
match between the two segments is scored by the updated
SimED+DS similarity function.

type of edit operation weight
insertion: ⊥→ wi 1
substitution: wi→ wj 1− cos( ~wi, ~wj)
deletion: wi →⊥ 1

Table 1: Weights assigned to the Edit() function

Here is an example of two source segments s1 פִּלְאֵי=
לוֹ! נ®עֲשֹוּ ,פְלָאוֹת s2 לוֹ!= נ®עֲשֹוּ Mנ¢סִּי נ¢סֵּי differing on the words
נ¢סֵּי! and ! פִּלְאֵי (meaning “miracles of” and “marvels of”
respectively), and the words ! Mנ¢סִּי and פְלָאוֹת! (meaning
“miracles” and “marvels” respectively), both translated into
the segment “saranno fatti miracoli di miracoli” (meaning
“miracles of miracles will be done”). By detecting the re-
lations between the above words (synonymy and presence
of conjunction), the two relative pairs have been scored
with the cosine values 0.42 and 0.41, respectively. The
similarity value calculated by means of the simple word-
based edit distance on these two source segments would be
SimED(s1, s2) = 50.00%, while the DS-boosted measure
increases that value to SimED+DS(s1, s2) = 70.75%.

1Test Traduco at http://talmud-dev.ilc.cnr.it:8082/talmud
(user&pass:traducodemo)

2The window size could vary according to the task and the data
to analyze (Kruszewski & Baroni, 2014)
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4. Evaluation Issues
To evaluate the contribution yielded by the DS component
in the TMS, we initially decided to address the state of
the art evaluation techniques, such as those cited in (Why-
man and Somers, 1999), (O’Brien, 2012), (Bloodgood and
Strauss, 2014), (Snover et. al, 2002), (Papineni et. al,
2002), (Lavie et al., 2004). This preliminary study high-
lighted how the evaluation of a “semantically informed”
TM would not have been a trivial task. As a matter of fact,
the reference corpora mentioned in literature appeared very
different from the text translated in our case study (the BT),
and, in general, from every humanistic texts requiring par-
ticular interpretative and explicative translations. To verify
our hypothesis and estimate those differences, we selected
two reference corpora among those most used to evaluate
TMSs in literature and compared them with the BT.
The strategy we adopted to tackle the problem of evaluating
the approach was carried out in three steps: i) evaluation of
the quality of the related pairs extracted from a text which
is considerably smaller than the ones typically used with
DS algorithms (section 4.1), ii) evaluation of the impact
of the proposed approach in terms of TM retrieval (section
4.2), and iii), evaluation of the translation quality of those
segments for which the fuzzy match score was improved
with the DS-boosted similarity measure (section 4.3).

4.1. Quality of the Related Word Pairs
Typically, DS models use large text corpora to derive esti-
mates of relatedness between words, and it has been proved
that massive quantities are required to match the quality ad-
vantage (Sridharan and Murphy, 2012). We anyway think
that the (relatively) scarce size of our corpus could be bal-
anced out, as shown further on in Table 3, both from a
marked lexical poverty (TTR) and a high repetitivity of the
formulaic expressions contained in the text (RR)3. In order
to verify the quality of the extracted related word pairs, we
relied on the expertise of a talmudist who manually anal-
ysed a selected set of word pairs SWP we constructed
in the following steps: i) we collected all the different
source segments translated with the same Italian sentence;
ii) we selected those source segments having the same to-
ken length to ease the process of evaluation; iii) for each
combination of these source segments, the expert identi-
fied the pairs of words in which they differed, thus obtain-
ing 150 pairs; iv) to each pair we added the cosine value
assigned by the DS algorithm. In addition to the usual
lexico-semantic and morphological relations, the DS algo-
rithm was able to detect word pairs involved in other kinds
of relations. We identified five classes of relations:

• idiomatic: words having the same meaning but writ-
ten in different languages, typically Hebrew and Ara-
maic, e.g. the words !Nכְּשׁ¨ר£י and !Mכְּשׁ¨ר£י both translated
into “adatti” (“suitable”);

• orthographic: words appearing in different writings,
e.g. the words !Nבַּזּוּג¢י and !Nבַּז³ּג¢י both translated into
“campanelli” (“bells”);

3For the RR measure we refer to (Bertoldi et. al, 2015).

• morphological: words having the same root but dif-
ferent flexions, e.g. the words יוֹצֵא! and י¦צֵא! meaning
“exits”, and “will exit” both translated into “esce”
(“exits”);

• syntactic: words with or without articles or conjunc-
tions, due to the agglutinating nature of the involved
semitic idioms, e.g. the word !Mֹמָקו meaning “place”,
and the word !Mֹהַמָּקו meaning “the place”, and words
appearing in distinct sentences with a different order,
e.g. אָמַר! פַּפָּא ר¯ב and ! פַּפָּא ר¯ב אָמַר meaning “Rabbi
Papá said” and “said Rabbi Papá” respectively;

• lexico − semantic: words involved in synonymic or
quasi-synonymic relations, e.g. the word הִנּי²ח! mean-
ing “to put” and !NַתÉ meaning “to place” or !Mּמִ�ו mean-
ing “on behalf of ” and מִ� מֵיהּ! meaning “as a represen-
tative of ”.

Finally, the expert rejected 16 word pairs, by validating
about 90% of the relations extracted by the DS algorithm.

4.2. Evaluation of the suggestions retrieval
For the comparison between SimED and SimED+DS we
computed the recall of both in terms of source segments
having 1 suggestion at least. We created a Talmud Test Set
(TTS) by randomly choosing 500 translations from the Tal-
mud corpus, and we considered the rest of the corpus as
TM. Finally, we found the best-matching segment from the
TM for each TTS segment according to the retrieval met-
rics SimED and SimED+DS . Table 2 shows the results.

100% 99%-85% 84%-70% 69%-55%

SimED 184 9 101 226

SimED+DS 184 12 121 245

increase(%) 0% 33% 20% 8%

Table 2: SimED and SimED+DS recall in terms of source
segments having 1 suggestion at least.

First of all, we can observe that SimED+DS did not pro-
duce new exact matches (100%) w.r.t. the baseline. It was
expected, since the distributional algorithm did not find
pairs with a cosine value of 1. An increment of the ex-
act matches has been achieved in other works, especially
when the source languages were linguistically analyzable.
An example is documented in (Gupta et. al, 2015) where
the authors obtained around 13.76% increase in the retrieval
of exact matches thanks to paraphrasing. It is interesting
to note that the gains achieved w.r.t. SimED are directly
proportional to the category of similarity, meaning that
SimED+DS retrieves more segments in higher categories.
This probably happens since many of the sentences in the
text containing the contexts shared by the related words are
(more or less) the same segments that users translate and
that are stored inside the TM. The boosting approach im-
proves the scores by 33% in category 99% - 85%, 20% in
category 84% - 70%, 8% in category 69% - 55%.
We submitted the results to the expert talmudist, who con-
firmed their usefulness. However, a single evaluation is not
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statistically relevant. We are currently setting up an exper-
iment involving the translators working with the Traduco
system on the BT. To do so, as described in the next section,
we need to understand to what extent the existing evaluation
techniques can be applied to our case study.

4.3. Evaluation of the suggestions quality

As already depicted in section 1, the nature of the transla-
tion of a humanistic text like the Talmud is quite different
from those typically faced with traditional CAT systems.
In order to analyze this difference, we considered two other
corpora and involving two language pairs, English-French
and German-Italian. The first one is the OpenOffice (OO3)
parallel corpus (Tiedemann, 2009), relative to the OO3
software documentation, and the second one is a portion
of the EMEA parallel corpus (Tiedemann, 2009) consti-
tuted of medical documents from the European Medicines
Agency. Table 3 shows that the two source texts of the
parallel corpora under examination present a difference in
terms of lexical variety and repetitivity w.r.t to Talmud,
whose data are shown in Table 3.

Text Corpus (language) #Tokens #Types TTR RR

Talmud (hebrew/aramaic) 533400 52352 0.098 0.117

OO3 (english) 398646 22074 0.05 0.148

EMEA (german) 1150649 24631 0.021 0.115

Table 3: Texts statistics.

Since it was not possible to linguistically analyse the source
language of the BT, we did not stem or lemmatize the
source languages of these two corpora either. To calcu-
late the necessary statistics we just removed all punctua-
tion marks and numbers and we lowercased the texts. Ta-
ble 4 shows that the ratio between the number of target to-
kens and source tokens is more or less the same for the two
reference corpora, while the one relative to the Talmud is
almost the double (2.938). Indeed, the translation of the
BT is seldom literal, being usually enriched with explica-
tive additions. In particular, the ratio between the target
tokens related to the contextual part and the source tokens
is 1.20, suggesting that almost the 42% of each source seg-
ment translation consists in an explicative part. Since ex-
plicative additions can provide to translators an important
help in the translation of particularly challenging source
segments, they cannot be removed from suggestions, for
example, to attempt a direct (word-by-word) translation.
For the aforementioned reasons, manually or automatically
evaluating the quality of the provided suggestions is a re-
ally complicated task. Similarly, evaluations based on post-
editing and keystrokes are probably not suitable for our
translation context. The translation of a new segment which
has been (even partially) already translated, could be signif-
icantly different and require, for example, a greater number
of words in the target segment to correctly explain the sen-
tence in a different context. For this reason even automatic
evaluations, based on assessing how close a translation is
w.r.t. to a gold, such as (Snover et. al, 2002), (Papineni
et. al, 2002), and (Lavie et al., 2004) would have not been

Talmud TM OO3 TM EMEA TM

#segments 124924 72371 106579

#source tokens 533400 398646 1150649

#target tokens 1567645 451286 1445491

target/source ratio 2.938 1.42 1.332

#literal-target tokens 924986 - -

context-target tokens 642659 - -

literal-target/source ratio 1.73 - -

context-target/source ratio 1.20 - -

IV AR 2.97 1.426 1.147

Table 4: TM comparison.

suitable. Furthermore, IV AR
4 shows that the Talmud has

a higher variability while translating identical source seg-
ments, w.r.t. the other evaluated corpora. For example,
similar segments could require really different translation
times, for example when one of them contains a peculiar
word like Shemá, that has to be properly explained using
an annotation.

5. Conclusion
The application of CAT tools to the translation of human-
istic texts requires careful reflection on the applicability of
the usual techniques, and, in particular, on the ways each
research advancement can be evaluated. In this work, still
in progress, we have investigated the contribution of a dis-
tributional based semantic informing of a TM in the transla-
tion of texts i) written in languages not served by linguistic
analysis tools and resources, ii) posing particular challeng-
ing interpretative issues, and iii) requiring explicative trans-
lations to be understood by a non-scholarly audience. The
approach has been experimented in the context of the trans-
lation of the BT into Italian. The selected portion of the
Talmud we used for the experiment, though being relatively
small in size, provided significative results. As reported in
the relative section, there are a number of evaluation issues
arising from the assessment of a TM informing technique
applied to humanistic texts. As a matter of fact, apart from
documenting what seems to be a promising linguistically
agnostic approach for the semantic informing of a TM, the
purpose of this work is to provide a starting point of discus-
sion about the application and evaluation of CAT tools for
the translation of texts which can be substantially different
from those typically used in literature.
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Abstract
This paper explores how translations of unmatched parts of an input sentence can be discovered and inserted into
Translation Memory (TM) suggestions generated by a Computer Aided Translation (CAT) tool using a parse tree and
part of speech (POS) tags to form a new translation which is more suitable for post-editing. CATaLog (Nayek et al.,
2015) is a CAT tool based on TM and a modified Translation Error Rate (TER) (Snover et al., 2006) metric. Unmatched
parts of the sentence to be translated can often be found in some other TM suggestions or in sentences which are not
part of TM suggestions. Therefore, we can find the translations of those unmatched parts within the TM database itself.
If we can merge the translations of the unmatched parts into one single sentence in a meaningful way, then post-editing
effort will be reduced. Inserting the translations for the unmatched parts into TM suggestions may lead to loss of fluency
in the generated target sentence. To avoid that, we use parsing and POS tagging together with a back off POS n-gram
model to generate new translation suggestions.

Keywords: Computer Aided Translation, Post-editing, Translation Memory based CAT tool

1. Introduction
Computer-aided translation tools (CAT) are widely
used by language service providers, freelance trans-
lators to improve translation quality and to increase
translator‘s productivity. CATaLog (Nayek et al.,
2015) is a CAT tool developed based on Translation
Memory (TM). CATaLog uses modified TER (Snover
et al., 2006) as the similarity metric. It introduced the
concept of color-coding the TM suggestions both in
the source language and the target language. Matched
and unmatched parts are color coded in green and red,
respectively, to facilitate post-editing and to guide the
user. The intuition behind the color coding scheme
in CATaLog is that the more green color in a TM
suggestion, the more matching and hence less post-
editing effort is required. It also provides options for
length based sentence pruning and indexing techniques
to minimize search time. CATaLog has been specifi-
cally designed to improve user experience with TM. In
this paper, we report additional functionality to the
CATaLog tool and TM technology in general.
TM tools traditionally do not generate any transla-
tion; instead they present the user with matching sen-
tence pairs that are similar to the sentence being trans-
lated. Post-editors, when working with TM tools, sel-
dom find an exact match. Therefore, almost all the
times, the TM suggestions contain at least a few un-
matched parts. However, it can often be observed that
the translation for those unmatched parts are available
in other suggestions or in some other sentences in the
TM database. If we can extract the translations for
those unmatched parts from other sentences and in-
troduce them into the suggested TM translations, then

we can generate almost the entire translation for a par-
ticular input sentence. While filing those unmatched
parts may lead to a loss of fluency in the suggested new
translation, often it improves the accuracy of the sug-
gested translation. Thus, it reduces the post-editing
cost significantly since the user does not have to type
in the entire translation for the unmatched parts. We
introduced this new capability to the CATaLog tool
which is reported in this paper.

2. Related Work
CAT tools are very popular among professional trans-
lators. They use these tools in their translation work-
flows on a regular basis to reduce translation time and
improve productivity (Lagoudaki, 2008). Along with
basic research on CAT tools, some researchers tried
to fill the gaps for the mismatched parts in the in-
put sentence in different ways. Biçici and Dymetman
(2008) combined dynamically extracted source-target
phrase pairs from the TM with the phrase table of
a phrase-based SMT (PB-SMT) system. Translation
for a mismatched part is taken from the SMT phase
table and the translation is replaced in the target sen-
tence. Simard and Isabelle (2009) combined TM with
PB-SMT to enable PB-SMT to take advantage of ex-
act or fuzzy matching features of TM. They proposed
two different strategies: (i) an MT-TM combined sys-
tem where, above a certain similarity threshold value,
the combined system provides the translation from the
TM, otherwise it produces the MT output; and, (ii) it
allows the PB-SMT system to actively exploit the most
similar material identified by the TM, via TM-based
feature functions. Zhechev and van Genabith (2010)
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explored similar strategies, but use syntactic informa-
tion during fuzzy matching by applying sub-tree align-
ment in order to link nodes between the input sentence,
TM match and TM translation. Sub-tree based align-
ments reliably determine the correspondences between
an input sentence and a TM suggestion. An SMT sys-
tem is used to translate the mismatched parts of the in-
put sentence. The complete translation ensures higher
quality than the TM suggestions. Koehn and Senel-
lart (2010) proposed a similar method to combine MT
with TM. They used fuzzy matching to retrieve simi-
lar segments from the TM for each source segment that
needs to be translated and identified the mismatched
parts using automatic word alignment. Finally, those
mismatched parts are replaced by SMT translations.
Ma et al. (2011) use support vector machine and dis-
criminative learning methods to identify the matched
words to select a translation unit. They addressed sev-
eral problems in fuzzy matching based translation unit
identification. In general, translation units with lower
fuzzy match value are thrown away, however, their
method considers those units during translation.
Dandapat et al. (2011) also worked on identifying un-
matched parts of the input sentence and replacing their
translations in the TM candidate translation. From
the original translation memory, they first identified
sub-segment level translation pairs which form a sub-
segment TM. When some unmatched sub-segment is
found in the input sentence, they look for its transla-
tion in the sub-segment TM. They did not consider the
context of the unmatched sub-segments while inserting
their translations; they just plugged those sub-segment
translations into the target sentence based on how they
appear in the input sentence.

3. System Description
CATaLog generates top 5 suggestions based on modi-
fied TER. Whenever the post-editor chooses one sug-
gestion for post-editing, the CAT system tries to fill
the unmatched parts of that suggestion and presents
the user with a new translation suggestion. The system
components are detailed in the following subsections.

3.1. Generating Dictionary
In our approach presented in this paper, we try to fill
the unmatched parts of a TM suggestion at the word
level. Whenever we find some unmatched words in the
input sentence to be translated, we need to look for
their translation(s) somewhere. One way of achiev-
ing this is to keep a bilingual dictionary. However,
a dictionary is a costly resource for many language
pairs. Therefore, rather than using a built-in dictio-
nary, we generate a dictionary from the background
bilingual corpus available with the translation mem-
ory. For illustration purposes, all the examples pre-
sented in this paper are in English–Bengali obtained
from an English–Bengali parallel corpus with 13,000
sentences. English is considered as the source language
and Bengali as the target language in the present work.
We generate our English to Bengali dictionary from the

parallel corpus where English words are stored along
with their parts of speech information and their corre-
sponding translations in Bengali. In the present work
we used the Stanford POS tagger1 to generate the
POS tags for the source side of the parallel corpus.
The GIZA++ (Och and Ney, 2003) implementation of
the IBM word alignment model (Brown et al., 1993)
is used to produce one to many alignments between
source and target language words. From these source–
target alignments we find the translation correspon-
dences of each English word available in the parallel
corpus. This dictionary is generated offline once and
for good and it gets loaded when the TM application
is loaded.
The meaning of a polysemous word depends on the
context it appears in. In case of translation, a source
word can have completely different translations or may
have different suffixes attached to it based on its con-
text. Therefore, to determine which translation is
more accurate in a particular context, we look at the
neighboring context. Instead of considering the lexical
context, we take into consideration the POS context
in this work. In our current system, we use a trigram
back-off model for determining the contextual trans-
lation of a source word. We generate three dictionar-
ies: one is trigram context based, the second one is
bigram context based and the third one is simply a
unigram dictionary. Here context refers to a POS se-
quence context. In the trigram contextual dictionary,
for a particular source word, we store the previous two
POS tags, the POS tag of the word under consider-
ation and the next two POS tags. We also store the
frequency of this entire context tag sequence (in the
training corpus) along with the particular translation
for that word. Trigram context based dictionary en-
tries look as follows:

Example 1. bottle: VBP_DT_NN_IN_NN|2| এক
Ȳবাতল|1; PRP_CD_NN_IN_NN|2|Ȳবাতল|1;

The example given above is the dictionary entry cor-
responding to the word ‘bottle’. Here the POS tag
sequence is VBP_DT_NN_IN_NN. Number ‘2’ rep-
resents the zero based positional index of the POS tag
of the word. ‘এক Ȳবাতল(botol)’ is the corresponding
translation. The number ‘1’ appearing at the end rep-
resents the frequency of this translation in the train-
ing corpus for the word ‘bottle’ for this particular POS
context.
We follow the same format for all the three dictionar-
ies. The entries in the bigram and unigram context
based dictionaries corresponding to the word ‘bottle’
are given below.

Example 2.
bottle: DT_NN_IN|1| এক Ȳবাতল|1;
CD_NN_IN|1|Ȳবাতল|1; ...
bottle: NN|Ȳবাতল|7; NN| এক Ȳবাতল|6; NN|Ȳবাতল খুেল|1;
NN|Ȳবাতল�|1; ...

1http://nlp.stanford.edu/software/tagger.shtml
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In order to find the translation of a non-matching word
in the input sentence, we first look at the trigram dic-
tionary; if no match is found there, we look for a match
in the bigram dictionary and finally back-off to the
unigram dictionary. If multiple matches are found in
any particular dictionary, we choose the most frequent
translation from among them. In case of a frequency
tie, which is very unlikely, we choose any one of them
randomly. While doing the POS context matching,
we first try to get an absolute match first. If there is
no absolute POS context match, then we look for ap-
proximate POS context match. This concept of abso-
lute POS context match and approximate POS context
match is explained in next section.

3.2. Grouping Part Of Speech Tags
We used the Stanford POS tagger to generate the
POS tag sequence for the input sentence. The use of
POS tags is explained in a later section of the paper.
The Stanford tagger uses the Penn Treebank tagset2

which contains 38 different types of POS tags. How-
ever, since we intend to generate a translation for use
in post-editing, we relax the constraint of exact POS
tag match. Therefore, we group together similar POS
tags into coarse grained POS categories to get more
matches between the input sentence and the TM sug-
gestions. E.g., we group together VB, VBD, VBZ,
VBN, VBG, and VBP into a coarse grained group
called VB (i.e., verb). Similarly we group JJ, JJR,
and JJS into a JJ group. NN, NNS, NNP, NNPS
are grouped into the NN group. POS tags like RB,
RBS, and RBR are grouped into the RB group. When
performing POS tag matching between the input sen-
tence and TM suggestion, first we look for an absolute
match, i.e., POS tag match. In case of no absolute
match we go for matching at basic POS category level.

3.3. Finding Translations for Unmatched
Parts

Since CATaLog uses the TER metric as the measure
of similarity between the input sentence and the TM
database, as a byproduct, TER also provides the align-
ment between input sentence and selected TM sugges-
tion sentences. From this alignment we can easily find
out which words of the input sentence do not match
with the suggested sentence.
The TER alignment is shown in Example 3 where ‘M’,
‘D’, ‘I’ and ‘S’ correspond to match, deletion, insertion
and substitution operations, respectively. ‘I’ and ‘S’
editing operations in the TER alignment correspond to
the unmatched words between the input sentence and
the corresponding TM suggestion. The ‘D’ editing op-
eration corresponds to the deletion of extra words that
are not present in the input sentence and this editing
operation is easily catered to by simply deleting the
corresponding word(s) in the target identified through
word alignments. In the CATaLog tool these words are
shown in red color. ‘I’ signifies that the corresponding

2https://www.ling.upenn.edu/courses/Fall_2003/
ling001/penn_treebank_pos.html

input sentence word has to be inserted, while an ‘S’
represents the substitution of the TM suggestion word
for the input sentence word. In either case, the trans-
lation of the unmatched input sentence word has to be
inserted to generate the translation of the input sen-
tence.
If we do not consider the POS of the unmatched word
in the input sentence, we could only use the most fre-
quent translation of that word from the dictionary. In
that case we also do not need to store the POS in-
formation in the dictionary. However, considering the
POS of the unmatched word allows us to be more spe-
cific about its translation in the context (e.g., book:
NN|বই; VBD|সংর¶ণ করা). When the unmatched word
‘book’ in input sentence is identified as an NN, the sys-
tem provides the translation “বই (boi)”; similarly, when
the POS is VBD, then the system prefers the transla-
tion “সংর¶ণ করা (sangrokshon kora, English gloss: to
reserve)”. POS based dictionary matching reduces the
POS level ambiguity. If the word is not present in the
dictionary it remains untranslated.
While matching the POS tag we might not find an ex-
act POS tag match. In that case we try to find an
approximate POS match, i.e., at the coarse-grained
POS category level. For example, if the ‘book|VBD’
word|POS combination can not be found in the dic-
tionary, we look for a dictionary entry for the word
‘book’ together with POS category VB, i.e., any of
VB, VBD, VBZ, VBN, VBG, and VBP. If, for exam-
ple, the ‘book|VBZ’ combination is found, the corre-
sponding translation is taken into consideration. The
idea is that the translation of ‘book|VBD’ might not
be exactly the same as ‘book|VBZ’; however, they are
derived from the same root verb and thus a little post-
editing effort would result in the correct translation.

3.4. Finding Positions to Insert
Translations

After obtaining the translations of all the unmatched
words, we need to find out where to put the target lan-
guage words in the selected TM translation. If the tar-
get language words are not put in appropriate places,
the suggested new translation becomes less fluent and
ineligible for post-editing. TM, despite being techno-
logically very simple, has proved itself to be a widely
used technology in the localization industry mainly be-
cause of its strength that it presents the user with per-
fectly fluent translation suggestions for post-editing.
Thus, presenting the user with a more accurate but
less fluent translation suggestion might not be accept-
able. Our idea is to use POS tagging and parsing to
guide the identification of the proper location for in-
sertion of the translation of the unmatched word. To
achieve this we subject both the input sentence and
the selected suggestion sentence to POS tagging and
parsing. POS tagging and parsing are performed us-
ing the Stanford POS tagger3 and Stanford parser4,

3http://nlp.stanford.edu/software/tagger.shtml
4http://nlp.stanford.edu/software/lex-parser.

shtml
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respectively.

3.5. Matching using POS n-grams
When we search for the location for inserting the trans-
lation of an unmatched word, we first try to find a cor-
responding word in the TM suggestion sentence that
does not match with any word in the input sentence.
Successively, we find the words and their positions in
the target side of the parallel sentence that the un-
matched source word corresponds to. Those positions
are the potential positions where the translation of the
unmatched word can be put. The corresponding word
in the TM suggestion sentence can be found using the
POS tag of the unmatched word. We try to find the
same POS tag in source suggestion sentences and the
corresponding word should not match with any other
word in input sentence. Once we find such a corre-
sponding word, we mark it so that the next time when
we try to find another corresponding word for another
unmatched word we do not consider it again. While
matching the POS tag, first we consider the complete
POS tag match. If we do not find any such match, we
go for a POS tag which belongs to same POS category
as described in the previous section.
We have used a back off POS trigram model for search-
ing the location of the corresponding word. In this
model, an n-gram represents a sequence of three con-
secutive POS tags. Since we consider trigram POS
sequences, we have to take into consideration three
different trigrams. We test each of the three POS
trigrams individually. If none of them matches with
any POS trigram sequence in the selected suggestion
translation, we back off to POS bigram matching. If
multiple matches are found, we resolve the ambigu-
ity using parse tree information of the input sentence
to determine which trigram sequence is more suitable.
This parse tree matching process is detailed in the fol-
lowing subsection. If we do not find any higher order
n-gram match, we fall back to unigrams. If the sys-
tem fails to find even a unigram POS tag match (i.e.,
word|POS), then the unmatched word in the input sen-
tence remains un-translated. For such words, the sys-
tem disregards the POS of the word and provides a
drop down list of probable translations which become
available on right click of the mouse from which the
user can directly choose a translation (as opposed to
typing) by left click of the mouse and can put the tar-
get word in a proper place.

3.6. Parse Tree Matching
When multiple POS n-gram matches are found, the
system resolves this ambiguity using the parse tree of
the input sentence. For all the higher order POS n-
gram matches, we determine the lowest common an-
cestor node in the parse tree. The n-gram POS se-
quence choice for which the depth of the common an-
cestor node is maximum is considered as the winner. If
there is a tie, the system chooses one among them ran-
domly. The idea behind choosing the lowest common
(i.e., maximum depth) ancestor is that the lower the

common ancestor in the parse tree, the more syntacti-
cally coherent they are. If the lowest common ancestor
is located at the top of the sub-tree, the words consid-
ered in the n-gram sequence are unrelated and hence
they should be ignored. This motivates our philosophy
behind using the lowest common ancestor.
After we have found the location of the correspond-
ing word in the selected TM suggestion, we determine
the positions of translation of that word in the trans-
lation of that TM suggestion using the alignment gen-
erated by GIZA++. These positions in the TM sug-
gestion translation are the potential positions where
the translation of the unmatched word could be put.
Since GIZA++ generates one to many alignments from
source to target, three situations can arise here. Let
w1 be the unmatched source word in a TM suggestion
translation and w2 be the unmatched source word in
the input sentence.
The length of the translation of w2 could be equal to,
shorter, or longer than the length of the translation of
w1.
We define the length in terms of number of words. The
potential positions for inserting the translation of w2

may be continuous or discontinuous in the TM sugges-
tion translation. If the translation of w1 has the same
length or is longer than the translation of w2, then we
just replace the translation of w2 in those positions.
We replace one word in translation of w1 with one
word from the translation of w2. Therefore, our sys-
tem will work properly even if the potential positions
of insertion are not continuous. Some positions will
not be replaced in case the translation of w1 is longer
than the translation of w2. However, if the transla-
tion of w1 is shorter, we merge the extra words of the
translation of w2 with the last word of the translation
of w2 (separated by space) and put this merged word
in the last position of translation of w1. In this way
we place the translation of unmatched word(s) of the
input sentence in the TM translation suggestion.
The process is illustrated below with two examples. In
the following two examples, for the sake of simplicity,
we just make use of the unigram dictionary to get the
translation for the unmatched words. However, in the
actual system, a trigram back-off model is used.

Example 3.
Input sentence: you gave me wrong number .
TM Match: you gave me right number.
Translation: আপিন আমােক িঠক নǙর িদেয়েছন .
Translation gloss: Apni amake thik nombor
diyechen.
POS tag sequence for input sentence: you/PRP
gave/VBD me/PRP wrong/JJ number/NN ./.
POS tag sequence for suggestion: you/PRP
gave/VBD me/PRP right/JJ number/NN ./.

Here the unmatched word in the input sentence is:
‘wrong’. The unigram dictionary entry for ‘wrong’ is:
wrong: JJ|ভুল (vul) ; JJ|গƀেগাল (gondogol)
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The system looks up in the dictionary the translation
of ‘wrong’ with POS tag JJ and finds the two transla-
tions as shown above. The system can choose anyone
since it has no other knowledge to resolve the ambigu-
ity. Let us consider that the system chooses the first
translation, i.e.,JJ|ভুল.
The three trigram POS sequences considered for
matching are: ‘gave/VBD me/PRP wrong/JJ’;
‘me/PRP wrong/JJ number/NN’; ‘wrong/JJ num-
ber/NN ./.’
Two bigram POS sequences: ‘me/PRP wrong/JJ’;
‘wrong/JJ number/NN’
Unigram POS sequence: ‘wrong/JJ’
The system gets a matching POS sequence in the TM
suggestion sentence for all the three trigram sequences
involving the unmatched word ‘wrong/JJ’. So, it uses
the parse tree information to resolve this ambiguity.
The parse tree of the input sentence is shown in Figure
1.

Figure 1: Parse tree of “ you gave me wrong number.”

ROOT is at depth 0. Here the lowest common an-
cestor (LCA) for POS sequence “gave/VBD me/PRP
wrong/JJ” is VP which is at depth 2. LCA for POS
sequence “me/PRP wrong/JJ number/NN” is also at
depth 2. LCA for POS sequence “wrong/JJ num-
ber/NN ./.” is at depth 1 (e.g., in figure 1, the LCS
of NP3 and ‘.’ is S, which is depth 1). Therefore, the
third POS sequence can be ignored and we can choose
anyone from the first two.
If we consider the bigram sequence ‘me/PRP
wrong/JJ’, then the lowest common ancestor is at
depth 2, but for the sequence ‘wrong/JJ number/NN’
the lowest common ancestor is at depth 3. Therefore,
we should choose the second bigram sequence for bet-
ter output. However, for this particular input sentence
the system will not go for a bigram match as it already
found a trigram match.
The GIZA++ alignment between the TM match and
the corresponding translation (cf. Example 4) is as
given below.

1-1, 2-5, 3-2, 4-3, 5-4, 6-6

Thus, the translation of ‘right’ is at position 3 of
target translation. Therefore, at position 3 of the

target translation the system puts the translation
(‘ভুল’) of the unmatched word and produces the
following translation.

আপিন আমােক ভুল নǙর িদেয়েছন .

Let us consider another example.

Example 4.
Input sentence: i would prefer something in a middle
price range .
TM suggestion: i would prefer to sit in the back part
of the plane .
TER alignment: MMMDSMDDSSSSM
TM suggestion translation: আিম িবমােনর িপছেনর
অংেশ বসেত পছń করব .

POS sequence for the input sentence: i/FW
would/MD prefer/VB something/NN in/IN a/DT
middle/JJ price/NN range/NN ./.
POS sequence for TM suggestion : i/FW
would/MD prefer/VB to/TO sit/VB in/IN the/DT
back/JJ part/NN of/IN the/DT plane/NN ./.

Table 1 shows the TER alignment between the TM
source suggestion and the input sentence along with
the edit operations required to turn the TM source sug-
gestion into the input sentence. Table 1 also shows the
word alignment information between the source and
target sides of the TM suggestion.
The unmatched words in the input sentence in this
case are ‘something’, ‘a’, ‘middle’, ‘price’, and ‘range’
Unigram dictionary entries for the unmatched words
are :

something: NN|একটা িকছু; NN|িকছু; NN|Ȳকান িকছু;
NN|িকছু একটা

a: DT|একটা; DT|Ȳকান; DT|এক

middle: JJ|মাঝাির আকােরর; JJ|মােঝর

price: NN|দাম; NN|দামটা; NN|মূলâ

range: VBP|Ȳদড়'শ এর মেধâ বদলােত থােক|

The CATaLog system searches for matching trans-
lation examples for those unmatched words in the
same context as they appear in the input sentence.
Here that sequence is ‘something, ‘a’, ‘middle’, ‘price’,
and ‘range’. For the word ‘something/NN’, the 3
trigram sequences used for search are: ‘would/MD
prefer/VB something/NN’; ‘prefer/VB something/NN
in/IN’; ‘something/NN in/IN a/DT’. The system
found a match with the third trigram sequence in TM
suggestion. The match sequence is ‘part/NN of/IN
the/DT’ where the word ‘part/NN’ does not match
with any word of input sentence. So system does not
go for bigram or unigram matching search.
Now the system goes for searching the position where
the translation of ‘part’ is located in TM translation.
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TM Target
Suggestion

TM Source
Suggestion

Input
Sentence

Edit
Operation

আিম i i M
- would would M
পছń করব prefer prefer M
- to - D
বসেত sit something S
- in in M
- the - D
িপছেনর back - D
অংেশ part a S
- of middle S
- the price S
িবমােনর plane range S
. . . M

Table 1: TM source–target Alignment and TM source–
Input sentence Alignment

For that it uses GIZA++ alignment. Below is the
GIZA++ alignment for the TM suggestion.
1-1, 3-6, 3-7, 5-5, 8-3, 9-4, 12-2, 13-8
Here the position index before the hyphen (-) is the
word position in the TM source suggestion and the
position index after hyphen (-) is the word position
in the TM suggestion translation. ‘part’ is the 9th

word in the TM source suggestion and according
to the GIZA++ alignment its translation is the 4th

word in the translation, i.e., ‘অংেশ (angse)’. The
target language word ‘অংেশ’ is replaced by ‘একটা িকছু
(ekta kichu)’, the translation of the unmatched input
sentence word ‘something’. Therefore the suggestion
translation is modified as follows.

আিম িবমােনর িপছেনর একটা িকছু বসেত পছń করব .

Next, tries to find a match for ‘a/DT’. The cor-
responding POS trigrams are ‘something/NN in/IN
a/DT’, ‘in/IN a/DT middle/JJ’ and ‘a/DT mid-
dle/JJ price/NN’. Here the ‘part/NN of/IN the/DT’
sequence starting with part/NN has already matched
with ‘something’; therefore, this match is not con-
sidered again. However, the system gets a match for
the other two trigrams - ‘in/IN the/DT back/JJ’ and
‘the/DT back/JJ part/NN’ where ‘the/DT’ has not
matched with any word of the input sentence. To
resolve the ambiguity we consider the parse tree of the
input sentence. The parse tree of the input sentence
is shown in Figure 2.
The trigram ‘In/IN a/DT middle/JJ’ has the lowest
common ancestor at depth 4 whereas ‘a/DT mid-
dle/JJ price/NN’ has the lowest common ancestor
at depth 5. We consider the trigram which has
the lowest common ancestor at a higher depth (i.e.,
lower level). Therefore, in this case, the trigram
‘a/DT middle/JJ price/NN’ is considered and the
corresponding matched sequence is ‘the/DT back/JJ
part/NN’. Subsequently the system looks for the
translation of the 7th word ‘the’ of the TM suggestion.
However, since there is no alignment corresponding to

Figure 2: Parse tree of “i would prefer something in a
middle price range.”

the 7th source word in the GIZA++ alignment, the
translation of ‘a’ is not placed in the TM suggestion
translation. Afterwards the system searches for
‘middle/JJ’. The corresponding POS trigrams are
‘in/IN a/DT middle/JJ’, ‘a/DT middle/JJ price/NN’
and ‘middle/JJ price/NN range/NN’. The first two
trigrams match with ‘in/IN the/DT back/JJ’ and
‘the/DT back/JJ part/NN’ where ‘back/JJ’ does not
match with any word of the input sentence. The third
trigram does not match with any POS sequence in the
TM suggestion. To resolve the ambiguity we need to
consult the parse tree again. The POS trigram ‘in/IN
a/DT middle/JJ’ has the lowest common ancestor
at depth 4 while the POS trigram ‘a/DT middle/JJ
price/NN’ has the lowest common ancestor at depth
5. Therefore, the latter trigram is considered and
the corresponding word for ‘middle/JJ’ is ‘back/JJ’.
‘back/JJ’ is located at position 8 of the TM suggestion
and its translation is ‘িপছেনর’ which is located at posi-
tion 3 of the TM suggestion translation. Therefore the
translation of ‘middle/JJ’, ‘মাঝাির আকােরর’, is replaced
by the word ‘িপছেনর’ in the TM suggestion translation.
Thus the modified translation is formed as follows.

আিম িবমােনর মাঝাির আকােরর একটা িকছু বসেত পছń করব .

The system next searches for ‘price/NN’ whose trans-
lation to be used here is ‘দাম’. The three POS trigrams
to be considered are ‘a/DT middle/JJ price/NN’,
‘middle/JJ price/NN range/NN’, and ‘price/NN
range/NN ./.’. Here ‘a/DT middle/JJ price/NN’
gets a match with ‘the/DT back/JJ part/NN’, where
‘part/NN’ is the corresponding word for ‘price/NN’.
However, ‘part/NN’ has already been used earlier;
therefore, the system ignores this match. The other
two trigrams do not match with any POS trigram
of the TM suggestion. Two POS bigrams consid-
ered for ‘price/NN’ are ‘middle/JJ price/NN’ and
‘price/NN range/NN’. ‘middle/JJ price/NN’ matches
with ‘back/JJ part/NN’; however, it is ignored since
the translation position of ‘part/NN’ has already
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been replaced. The other bigram does not match
either. Therefore the system falls back to the unigram
match for ‘price/NN’. It matches with ‘part/NN’ and
‘plane/NN’. Since ‘part/NN’ has already been used,
the system considers ‘plane/NN’ which is at position
12 of the TM suggestion and its translation, ‘িবমােনর’,
is at position 2 of the suggestion translation. There-
fore, ‘িবমােনর’ is replaced by ‘দাম’ and the suggestion
translation is modified as given below.

আিম দাম মাঝাির আকােরর একটা িকছু বসেত পছń করব .

The system tries to find a match for ‘range/NN’ later
on. However, its trigram, bigram, and unigram POS
sequences are either being used already or do not
match. Therefore, its translation is not put in the
suggested translation. Finally the word ‘বসেত’ which
is the translation of ‘sit’ is deleted since ‘sit’ does not
match with any word of the input sentence. Thus,
the final translation suggestion is produces as given
below.

আিম দাম মাঝাির আকােরর একটা িকছু পছń করব .

Since the translations of ‘a/DT’ and ‘range/NN’ are
not placed in the translation suggestion, their trans-
lations ‘একটা’ and `Ȳদড়'শ এর মেধâ বদলােত থােক’, respec-
tively, are added to a list and are shown to the post-
editor as suggestions. The post-editor can directly use
those translations without typing them and can put
them in the proper place. In this way the system mod-
ifies the TM translation suggestion to generate more
appropriate translation candidates. These translation
candidates can be post-edited with less post-editing
effort.

3.7. Length Based Pruning
The POS tag and parse tree based process of fill-
ing up of the translation of the unmatched word in
the TM translation suggestion to make it more suit-
able for post-editing works well when the input sen-
tence and the suggestion translations are of similar
lengths. In case of the input sentence and sugges-
tion sentence have completely different length, their
parse tree will be completely different. In such cases
looking for a POS sequence match involving the un-
matched word in the suggestion sentence can give us
wrong results, which will eventually lead to loss of flu-
ency in the target translation. Therefore, we consider
only those sentences for translation suggestion whose
lengths are within a specified limit of the length of the
input sentence. The pruning strategy deals with sen-
tence length. TM retrieved sentences that are either
too short or too long with respect to the input sen-
tence are discarded. The system considers only those
sentences whose lengths lie in a certain range which is
calculated based on the length of the input sentence.
Users can set the range as per his choice. This reduces
the time to generate initial translation suggestion.

3.8. Re-ranking of TM Suggestions
After producing the translations corresponding to the
TM suggestions, the first option chosen by the TM
module might not remain the best translation option
anymore. This is also evident from the experimen-
tal results obtained (cf. ‘first’ vs. ‘best’ in Table 2,
Section 4.). This motivated us to perform re-ranking
of the produced translation suggestions to bring the
most suitable translation in the top suggestion. Re-
ranking deals with various features including language
model probability, length of the input sentence, length
of source side TM suggestions, number of unmatched
words for which translations are successfully inserted
into the corresponding TM translation suggestion, and
the original similarity score produced by the CATaLog
system.

3.8.1. Similarity Score of CATaLog
CATaLog calculates similarity scores on the basis of
TER alignment. Let us consider, match_reward=0.80,
deletion_cost=0.20, insertion_cost=0.50, substitu-
tion_cost=0.70, and suppose TER alignment be-
tween an input segment and TM source segment is
“MMDIMISMM”. Therefore, the corresponding origi-
nal TM match score (OTMS) is calculated as follows.

OTMS = 0.80× 5− 0.20− 0.50× 2− 0.70 = 2.1

Now, let us consider that CATaLog_TS has success-
fully inserted the translation of two words represented
as ‘I’ in the TER alignment. Therefore, two additional
match_reward scores are added with OTMS to arrive
at the new TM match score (NTMS).

NTMS = OTMS + 2× 0.80 = 3.7

We estimate the fluency score of the translation sugges-
tion on the target side using a language model and the
estimated length of the actual translation of the input
sentence. We used a 5-gram language model trained
on the Bengali side of the TM corpus. We used SRILM
toolkit (Stolcke, 2002) for language modelling with a
back-off model. To generate the language model score
of each translation suggestion we sum up all n-gram
match logarithmic scores in a linear way. The result-
ing sum is a negative value (say, −lm). We take the
absolute value of this score and normalize it with the
length of the translation suggestion (TL), which gives
us a normalized score, P = lm/TL. Then we take the
inverse of it (1/P ) to arrive at the corresponding LM
score (LMS = 1/P ) for this translation.
We also used the concept of brevity penalty to penal-
ize a translation if its length is much smaller or longer
than the estimated reference translation. Since no ref-
erence translation is available for the input sentence,
we estimate the length of the translation of the input
sentence on the basis of its length. Let length of the
input sentence be SL and length of translation sugges-
tion be TL. We assume that the reference translation
length (RefLen) will be in the range between 0.8×SL
and 1.2 × SL. If the candidate translation length lies
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in that range, then we do not penalize it. However,
when the length of the translation is out of that range,
we assign it a length penalty based on Algorithm 1.

Algorithm 1 Length Based Penalty
1: procedure Calculate_Penalty((SL, TL)
2: LP ← 0
3: minRefLen← 0.8× SL
4: maxRefLen← 1.2× SL
5: diff ← 0
6: if TL ≥ minRefLen AND TL ≤

maxRefLen then
7: LP = 1.0
8: return LP
9: end if

10: if TL ≤ minRefLen then
11: diff = minRefLen− TL
12: end if
13: if TL ≥ maxRefLen then
14: diff = TL−maxRefLen
15: end if
16: LP = e(

−diff
SL )

17: return LP
18: end procedure

We calculate a fluency score (cf. Equation 1) using the
language model score LMS and length based penalty
(LP).

smoothness_score = LMS × LP (1)
Finally, we re-rank the top suggestions based on the
new score in Equation 2.

Final_score = smoothness_score×NTMS (2)

4. Experiments and Results
The effectiveness of the proposed system (CATa-
Log_TS) is demonstrated by comparing it against
CATaLog (Nayek et al., 2015) and the Moses (Koehn
et al., 2007) implementation of the PB-SMT model.
We used an English–Bengali parallel corpus which con-
tains 13,000 sentences. This parallel corpus serves as
our TM on which we train the CATaLog and CAT-
aLog_TS system. The baseline PB-SMT system is
also trained on the same parallel corpus. For build-
ing the PB-SMT system, we set the maximum phrase
length to 7 and a 5-gram language model is trained
using KenLM (Heafield, 2011). Parameter tuning
was carried out using Minimum Error Rate Training
(MERT) (Och, 2003) on a held-out development set
containing 500 sentences. Two different testsets were
used for evaluation: Testset1 contained 100 sentences
and Testset2 contained 500 sentences. We evalu-
ated our system using two well known automatic MT
evaluation metrics: BLEU (Papineni et al., 2002) and
TER (Snover et al., 2006).
CATaLog_TS provides five translation suggestions
based on the top five close matches retrieved from the
TM by CATaLog. The term ‘First’ in Table 2 repre-
sents the first (i.e. the top ranked) translation sug-
gestion provided by the CATaLog or CATaLog_TS

system. The ‘Best’ translation suggestion among the
five translation suggestions is chosen according to S-
BLEU.
Table 2 shows that, as far as the ‘First’ translation sug-
gestion is concerned, CATaLog_TS provides 2.13 and
2.03 BLEU points absolute (22.4% and 19.2% relative)
improvements over CATaLog for testset1 and testset2
respectively. The respective improvements are 8.21
and 9.64 points (12.8% and 14.6% relative) for TER.
Similarly, for the ‘Best’ translation suggestion, the im-
provements provided by CATaLog_TS over CATaLog
for testset1 and testset2 are 3.59 and 1.91 BLEU points
(29.8% and 14.5% relative) and 10.99 and 6.24 TER
points (17.1% and 10.3% relative) respectively.
More importantly, for testset1, CATaLog_TS ‘Best’
performs better than the state-of-the-art PB-SMT sys-
tem in both BLEU and TER. However, in case of test-
set2, CATaLog_TS ‘Best’ performs better according
to TER while Moses fares better according to BLEU.
This is probably due to the fact that the Moses system
was tuned with the BLEU evaluation metric.
From Table 2, we can conclude that CATaLog_TS al-
ways performs better than CATaLog. The TER score
for CATaLog_TS is much lower than CATaLog for
both ‘First’ and ‘Best’ translation suggestions. BLEU
scores also reflect the same trend. Comparison with
Moses system reveals that CATaLog_TS provides the
lowest TER scores for both the testsets, even if we
just consider the ‘first’ translation suggestion. How-
ever, Moses is ahead on testset2 while CATaLog_TS
fares better on testset1 according to BLEU.
Table 2 also shows that after re-ranking the top sugges-
tions, CATaLog_TS_ReRank system provides much
higher BLEU score and lower TER score compared to
Moses for testset1. Although, in case of testset2, the
BLEU score of the CATaLog_TS_ReRank system is
better than the best option of the CATaLog_TS sys-
tem, but lower than that of Moses. However, for ei-
ther case (i.e, testset1 and testset2), the TER score
of CATaLog_TS_ReRank system is considerably bet-
ter than the other systems. It is to be noted that the
CATaLog_TS ‘Best’ system was decided on the ba-
sis of S-BLEU score, while for the actual evaluation
purpose we use BLEU. BLEU being a system level
score does not perform well at sentence level evalu-
ation; hence the BLEU and TER scores provided by
CATaLog_TS_ReRank system are better than those
provided by CATaLog_TS ‘Best’ system.

5. Conclusions and Future Work
The CATaLog tool is specifically targeted towards im-
proving the user experience with TM. It does so by
color coding the TM suggestions. In this paper we
reported the introduction of another important func-
tionality in TM, that of proposing a new translation.
Traditionally, TMs do not generate any translation; so
we present a step beyond traditional TM. Besides, this
improves HCI issues with TM since this new function-
ality generates a new translation based on the transla-
tion template chosen by the user.
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Testset System Performance
TER BLEU

Set1

CATaLog First 64.10 9.49
Best 64.41 12.03

Moses 57.12 14.57

CATaLog_TS First 55.89 11.62
Best 53.42 15.62

CATaLog_TS_ReRank 48.49 18.07

Set2

CATaLog First 65.98 10.58
Best 60.82 13.15

Moses 58.44 18.34

CATaLog_TS First 56.34 12.61
Best 54.58 15.06

CATaLog_TS_ReRank 53.83 15.68

Table 2: Systematic comparison between CATaLog,
CATaLog_TS, CATaLog_TS_ReRank and Moses

In future we will replace the existing bilingual dic-
tionary with a probabilistic bilingual dictionary. We
would like to conduct a user evaluation in real world
experimental settings with human translators to mea-
sure productivity gain yielded by the tool. colorredWe
would also like carry out an evaluation to compare our
system against other CAT systems available.
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Abstract
A translation memory system attempts to retrieve useful suggestions from previous translations to assist a translator in a new translation
task. While assisting the translator with a specific segment, some similarity metric is usually employed to select the best matches from
previously translated segments to present to a translator. Automated methods for evaluating a translation memory system usually use
reference translations and also use some similarity metric. Such evaluation methods might be expected to assist in choosing between
competing systems. No single evaluation method has gained widespread use; additionally the similarity metric used in each of these
methods are not standardised either. This paper investigates the choice of fuzzy threshold during evaluation, and the consequences of
different choices of similarity metric in such an evaluation method. Important considerations for automated evaluation of translation
memory systems are presented.
Keywords: translation memory, evaluation, text similarity

1. Introduction
Evaluation is important in natural language processing.
Amongst others it is essential for measuring progress and to
provide a way to distinguish between competing systems in
a comparison (Mapelli et al., 2008).1

A translation memory (TM) is a database containing records
of associated source and target text. It is common for records
to store mutual translations of sentences, but other granular-
ities are possible, such as paragraphs or terms. In its normal
operation, a TM system is queried for a new source text
to be translated which is compared to all source texts cur-
rently stored in the TM. If an identical source text has been
translated before, it is a trivial lookup procedure to return
this previous record to present it to the user. If this specific
source text has not been translated before, we see the more
interesting, general case where some kind of fuzzy match-
ing is required. The record with the most similar source
text is retrieved according to some measure of similarity be-
tween the new source text to be translated and the previously
translated source text stored in the TM. The record with the
previously translated source text and its associated target
text is returned as a suggestion for the translator to consider.
Translation memory systems are often user configurable
with a similarity threshold f and only provide suggestions
with a similarity higher than or equal to this threshold value
(often expressed as a percentage such as 70% or a fraction
0.7), depending on the content of the translation memory.
Therefore, unlike the usual case in machine translation sys-
tems, a translation memory system does not necessarily
provide suggestion(s) for each input segment. Considering
each translation memory suggestion causes cognitive effort
for the translator (O’Brien, 2007), and the threshold is a
mechanism to limit the number of unhelpful suggestions
that are provided to the translator for consideration.
Evaluation in translation memory systems should ideally
provide a way to evaluate TM systems and their operation,

1Also see http://hlt-evaluation.org

including any parameters, as well as to evaluate datasets, and
to compare their relative performance. We might therefore
look for a way of evaluating the choice of the similarity
threshold f (or whatever mechanism is used to decide if any
suggestion should be presented at all), and some measure
that provides an estimation or proxy for the value of the
suggestions to the translator. It should be noted that the
kind of evaluation as discussed in this paper ignores matters
of system performance such as requirements in run time
or memory use—although these could also be important in
their own right.
No existing method for the evaluation of TM systems has
been widely accepted in scientific literature. Section 2 pro-
vides an overview of existing methods for evaluating trans-
lation memory systems. This paper does not attempt to do a
meta-evaluation to choose the best amongst them, but dis-
cusses the underlying similarity metrics that are employed
by them. These metrics are not unique to the field of TM
systems—many of these are used in other fields such as
machine translation, speech recognition and bio-informatics.
An interesting aspect of automated TM evaluation is that
similarity metrics are employed not only during the normal
operation of the TM system (retrieval), but also often as
part of automated evaluation methods. Section 3 discusses
two classes of these similarity metrics, with implementation
details in section 4. Section 5 contains our core contribution:
we investigate two methodological pitfalls that affect the au-
tomatic evaluation of translation memory evaluation, namely
the fuzzy threshold and the choice of similarity metric dur-
ing evaluation. In section 6 we discuss and contextualise
our results. Section 7 concludes while also suggesting some
further areas for investigation.

2. Existing evaluation methods
Some previous work in evaluating translation memory sys-
tems are discussed in this section.
Manual evaluation with human judges is possible (Blood-
good and Strauss, 2014). In (Gow, 2003) an evaluation
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method was designed that allows a comparison between
systems that use different approaches to search and retrieval,
especially with regards to segmentation (or the absence
thereof). Initial work on evaluation with eye-tracking equip-
ment was reported in (O’Brien, 2007). Since these methods
rely on human judges, they are not usable as automated
methods for the evaluation of translation memories or trans-
lation memory systems.
Contrary to the abovementioned methods, our focus in this
paper is on fully automated evaluation methods. Such meth-
ods have been invaluable in many fields, such as machine
translation (Machácek and Bojar, 2014) where the annual
workshop on statistical machine translation also includes a
shared task devoted to evaluation metrics. Such automated
methods are valuable since they allow repeated experiments
without involving human judges in each experiment.
Next we present a summary of previous efforts in fully
automatic evaluation of TM systems.

2.1. Methods based on information retrieval
evaluation

Some evaluation methods for the evaluation of translation
memory systems have taken their inspiration from the evalu-
ation of information retrieval systems.
In (Whyman and Somers, 1999) the authors considered
a black box evaluation method for a translation memory
system—it only considers the input and output of the system,
not the contents of the TM. Their method offers a way to
determine a good value for the fuzzy match threshold f to
set in a translation memory system. This method defines
both a precision-like and recall-like metric, both of which
are calculated using a keystrokes estimation as similarity
metric. By repeatedly evaluating for these two measures
over a wide range of values of f , it provides an opportunity
to select an optimum value for f (even within a black box
evaluation setup) by optimising for the required combination
of precision and recall.
Another evaluation method was proposed in (Baldwin,
2009). Different similarity metrics were evaluated for use
during retrieval. The method uses 10-fold cross-validation
over the whole test set, each time exhaustively using all
segments from one tenth of the dataset as queries against
the remaining 90% which acts as the TM database. The top
result returned is classified as a hit or a miss, depending
on whether or not it has the most useful target language
suggestion. It therefore uses full knowledge of the target
segments in the translation memory to identify the most
useful target suggestion, regardless of why it would be a
useful suggestion. This is also a slight point of criticism,
since suggestions could be useful for a number of reasons,
including completely unexpected ones (Wolff et al., 2014)—
sometimes an impossible feat for a retrieval method to model.
This method employs two similarity metrics during evalua-
tion to determine the most useful target language suggestion:
the 3-operation edit similarity over bigrams (see section 3.2)
and the WSC metric (Baldwin and Tanaka, 2000).

2.2. Correlation with reference metric
Recent work suggested a method to compare the perfor-
mance of similarity metrics (Vanallemeersch and Vandegh-

inste, 2015). For each segment in the evaluation set it calcu-
lates two quantities: (1) the similarity of the source query to
the source text of the suggestions returned as calculated by
the retrieval metric, and (2) the evaluation score under a met-
ric SimTER (based on TER (Snover et al., 2006)) for the
target suggestion compared to the reference translation from
the evaluation set. The correlation between these two quan-
tities is used to score the performance of different similarity
metrics. In that sense SimTER is used as a reference metric.
In this evaluation, the effect of the similarity threshold is not
considered.
This part of their evaluation method therefore evaluates the
accuracy with which a similarity metric predicts the value
of its suggestions, rather than trying to evaluate the inherent
value of the suggestions themselves.
Additionally the authors investigated the effect on mean
evaluation score with suggestions retrieved for a greater or
lesser number of the test segments. Evaluating the mean
evaluation score for N suggestions entails choosing the N
segments with the best-scoring suggestions according to
the similarity metric used for retrieval. This is similar to
evaluating the effect of the similarity threshold (see sec-
tion 5.1) in the sense that the number of segments in the
test set with the best scoring suggestions is a proxy for the
similarity threshold by which the system determines if a
specific entry in the TM is suggested or not. From this in-
vestigation, the relative increase in mean evaluation score
between similarity metrics is investigated as N is increased.
Since the mean evaluation score is mostly monotonically
increasing, it seems as if such an evaluation might propose
an arbitrarily low similarity threshold to be able to propose
as many suggestions as possible. It therefore seems as if this
does not provide a meaningful way to choose a value for the
similarity threshold f .

2.3. Methods based on machine translation
evaluation

A translation memory system can be evaluated as a machine
translation system (Simard and Fujita, 2012), using well-
known methods such as BLEU, NIST, METEOR, and WER.
Since these evaluation methods rely on the fact that an output
is generated for each segment, such experiments have to
be conducted without filtering with a similarity threshold.
These methods for the evaluation of machine translation
systems are therefore not considered further in this paper, as
they can not evaluate the functioning of a TM system as it is
used in practice—they were simply designed with another
application in mind. However, some findings of this paper
are relevant to our investigation here, and we will return to
it in our discussion in section 6.
Although some of the machine translation evaluation meth-
ods operate on the level of a whole test set, several of
them can be viewed as similarity metrics in themselves
(as was done with TER in (Vanallemeersch and Vandeghin-
ste, 2015)), analogous to the metrics discussed in the next
section.

3. Similarity metrics
When investigating translation memory systems, we see
similarity metrics used in two roles: (1) While retrieving
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suggestions for a translator, a TM system uses a similarity
metric to compare source texts. (2) As seen above, eval-
uation methods use similarity metrics on the suggestions
provided in the target language.
String similarity metrics are often based on some kind of edit
distance, although other formulations are also possible. A
distance function (such as the well-known Levenshtein dis-
tance) measures dissimilarity between two strings. Identical
strings have a distance of 0. The less similar two strings are,
the greater the distance between them. Similarity metrics
provide a similarity score, usually presented as a fraction
between 0.0 and 1.0, or as a percentage between 0% and
100%. Identical strings have a similarity of 1.0 or 100%. To
convert a distance d into a similarity score, some normalisa-
tion constant, say l is used to constrain the distance to the
range [0, 1]. The similarity score is then defined as 1− d/l.
To ensure that the minimum value of the similarity score is
0, the value of l has to be the maximum possible value of d.
Using such a normalised metric allows comparison of the
extent of similarity between different string pairs, regardless
of whether they are short or long. Without such normalisa-
tion, a distance of 6 could indicate two very similar strings,
or two very different strings, depending on their lengths.
During TM evaluation, the similarity metrics are used in
aggregate form (say as an average over a test collection). In
such cases, an unnormalised score could cause the scores
on long strings to overshadow the overall result, possibly
skewing the results and complicating interpretation thereof.
Because the similarity metrics and their normalisation work
differently, there could be a difference between the similarity
scores for a string pair as measured between two different
similarity metrics. The different similarity metrics therefore
not only affect the ranking of suggestions, but also whether
any suggestions are presented at all when constrained with
a particular similarity threshold.
This section describes several metrics operating on a pair
of symbol strings. It is easiest to consider the character as
the lowest atom for consideration. Another possibility is to
operate on word or token level. Another further possibility
is n-grams of characters or indeed of words. These possibil-
ities were considered by (Baldwin, 2009): unigram, bigram
and mixed unigram/bigram combinations of both character
and word based indexing. We perform matching on both
character and word level in the later sections of this paper.
Many other similarity metrics could be discussed. The lim-
ited selection below is chosen based on performance in
previous literature and existing software.
In the descriptions of the similarity metrics below, the fol-
lowing notation will be used: A and B refer to the two
strings being compared (the query and a candidate string, re-
spectively), |A| indicates the length of the string A in terms
of the granularity considered (e.g. character length when
working on character level).

3.1. 4-operation edit similarity
This metric is based on possibly the best known string dis-
tance function, usually called the Levenshtein distance (Lev-
enshtein, 1966). The Levenshtein distance is the number of
insertions, deletions and substitutions required to transform
the one string into the other. It is also called “4-operation

edit distance” with the understanding that the fourth opera-
tion is the identity operation (no change).2

The maximum distance between two strings is the length of
the longest string, and occurs in the case of a comparison
with the empty string, or when the two strings have no
characters in common. The similarity metric is therefore
defined as

sim4ops(A,B) = 1− edit4ops(A,B)

max(|A|, |B|)

Although the implementation details of proprietary tools for
computer assisted translation is hidden, an informal inves-
tigation of some Free and Open Source Software indicates
that this metric is used by some TM system implementations:
OmegaT,3 Okapi Framework,4 Virtaal5 and the Amagama
TM server6. This suggests that this metric enjoys some
respect as a similarity metric in existing tools.
Here are a few examples operating over different granulari-
ties:

• characters: sim4ops(“metaphor”, “metamorphosis”) =
1− 6

13 = 0.538

• words: sim4ops(“metaphor”, “metamorphosis”) = 1 −
1
1 = 0

• characters: sim4ops(“A number”, “A number of tests”) =
1− 9

17 = 0.471

• words: sim4ops(“A number”, “A number of tests”) =
1− 2

4 = 0.5

3.2. 3-operation edit similarity
This metric is similar to the 4-operation edit similarity,
but the underlying distance function does not consider sub-
stitution as one of the basic operations. A substitution is
therefore modelled as an insertion and a deletion (two op-
erations). The identity operation is the third operation. It is
also known as the indel distance (insert and delete distance)
or the longest common subsequence distance.
The maximum distance between two strings is the sum of
the lengths of the two strings, and occurs when the two
strings have no characters in common. The similarity metric
is therefore defined as

sim3ops(A,B) = 1− edit3ops(A,B)

|A|+ |B|

In the method by Baldwin (Baldwin, 2009) this metric was
often the best performing one in his evaluation.
Here are a few examples operating over different granulari-
ties:

• characters: sim3ops(“metaphor”, “metamorphosis”) =
1− 7

21 = 0.667

2This definition assumes unit cost, in other words a distance of
1 for each of the operations except identity. Different weights can
be assigned to different operations, but is not considered further in
this paper.

3http://omegat.org/
4http://okapi.opentag.com/
5http://virtaal.translatehouse.org/
6http://amagama.translatehouse.org/
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• words: sim3ops(“metaphor”, “metamorphosis”) = 1 −
2
2 = 0

• characters: sim3ops(“A number”, “A number of tests”) =
1− 9

25 = 0.64

• words: sim3ops(“A number”, “A number of tests”) =
1− 2

6 = 0.667

4. Implementation details
In this section we provide details on several implementation
aspects that would be required for duplicating our results.
For all the word-based metrics we use the BreakIterator from
the ICU project7 for tokenisation.
Our experiments were conducted using the Open Source
Amagama TM server.8 One particular implementation detail
that is relevant, is the way in which candidate suggestions
are retrieved from the database: a full-text index over the
source segments is kept that allows for selecting an initial
candidate list with at least some minimal token overlap.
Tokens are lowercased, stemmed words with no stopwords
removed. This is a very loose, initial filter that still allows
candidates with very low similarities to be subjected to full
consideration by the similarity metric in use. The similarity
scores given to each candidate is completely determined by
the retrieval metric in the experiment—the full-text engine
has no influence in this regard since it is not used again
after the initial filtering. The use of a full-text index is
merely an optimisation to eliminate the big part of the TM
for consideration within each query, similar in spirit to the
approximate query coverage (AQC) (Vanallemeersch and
Vandeghinste, 2015).

5. Experimental setup
In trying to point out methodological pitfalls, we config-
ure a TM evaluation setup based mostly on the method of
Whyman and Somers (Whyman and Somers, 1999), while
substituting their keystroke estimation metric with another
in each case. Since this method provides both a precision-
like and recall-like measure, it allows us to investigate the
effect on both measures, as well as combining it through the
F1-score. The method was further enhanced with 10-fold
cross-validation as done in (Baldwin, 2009). Since true strat-
ification is not possible in this kind of dataset, we instead
ensure that the distribution of source text lengths over the 10
folds are consistent by checking that the average length in
each fold is close to the average of the whole dataset. This
serves as “semi-stratification” in the same spirit as (Baldwin,
2009).
Within each dataset, each part of the experiment is specified
with a pair of similarity metrics: one used for retrieval, and
one used for evaluation (after results are obtained). The
experiment therefore performs over the Cartesian product of
the following similarity metrics (with shorthand indicated
in brackets):

• 4-operation edit similarity over characters and words
(edit4, edit4word)

7http://site.icu-project.org/
8http://amagama.translatehouse.org/

• 3-operation edit similarity over characters and words
(edit3, edit3word)

When using a metric M during evaluation, we say that the
results are evaluated “under” the similarity metric M .
Two datasets in two linguistically unrelated languages were
used: The 2004_1 subset of the DGT-TM Release 2011
(Steinberger et al., 2012) and the GNOME 3.8 user interface
translations,9 specifically for the language pairs English–
French (en-fr) and English–Hungarian (en-hu).
Whereas the DGT corpus contains legislative texts, the
GNOME corpus contains user interface translations of the
GNOME desktop environment version 3.8. The GNOME
texts are also different in that it can contain XML markup,
placeholders and more non-textual elements as is often
found in software localisation texts. See table 1 for an
overview of the corpus statistics. The standard deviations
for the average character lengths indicate the deviation of
the averages over the 10 folds, not the standard deviation
on segment level. This indicates the very small variance in
average segment length between the 10 folds, and serves to
show that our “semi-stratification” as mentioned above is
reasonably fair.10

Corpus Unique segments Avg. characters
DGT (fr) 71033 126.75± 1.225
DGT (hu) 45964 125.61± 1.186
GNOME (fr) 36493 27.51± 0.357
GNOME (hu) 36008 27.65± 0.431

Table 1: Corpus statistics

For each of the folds in the cross-validation, we try to re-
trieve a TM suggestion for each of the source text segments
in the testing data from the remaining (“training”) data. Only
the highest-ranking suggestion according to the similarity
metric used for retrieval is considered (ties are broken ran-
domly). A result set for each similarity metric is created
this way and submitted to evaluation. One difference in our
evaluation method here is that we compare the target text
of the suggestions with the reference translations from the
testing data, whereas the original method compared source
texts. Indeed, the authors remark (Whyman and Somers,
1999):

For this measure to be strictly accurate, the key-
stroke count should of course be carried out on
the target-language text segments associated with
the matches, as compared to the desired target
translation.

Their own concern for not doing so is based on a concern for
subjectivity in choosing a reference translation. However,
since their research was published, the use of such reference
translations has become commonly accepted in the machine
translation community, and we therefore proceed in using

9Available from https://l10n.gnome.org/releases/gnome-3-8/
10Although a random division into 10 folds will produce dif-

ferent partitions on each occasion, statistics similar to the ones
reported are always obtained.
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it as such. We believe that the 10-fold cross-validation and
bigger datasets should eliminate major concerns of this na-
ture. It is also worth noting that using the source texts would
simply duplicate the calculation done while retrieving sug-
gestions, and would therefore provide no way of evaluating
the intended function of the TM system—to retrieve a target
text that assists the translator in the current translation task.
In the evaluation of machine translation experiments, multi-
ple reference translations are recommended. It is a luxury
we do not have in this case.
A central aspect of the evaluation is to define a measure of
“usefulness” for each suggestion, according to the similarity
metric used during evaluation. This allows for the computa-
tion of a weighted “hit value” over all suggestions (defined
below), rather than merely counting “hits” and “misses”
among the suggestions.
During evaluation we calculate the weighted precision Pwf
and the weighted true efficiency Fwf as defined in (Why-
man and Somers, 1999), for each of the similarity metrics
in the evaluation method. These two measures represent
precision-like and recall-like quantities respectively. They
are calculated as follows:

Pwf =
hwf
mf

Fwf =
hwf
n

where n is the number of segments evaluated, mf is the
number of these for which a suggestion (match) is retrieved
at similarity threshold f , and hwf is the weighted “hit value”
at similarity threshold f . The weighting is very similar in
form to the generalised similarity score discussed in sec-
tion 3, that is 1 − d/l. The difference is that whereas the
similarity metrics have a range of [0, 1], this weighting for
evaluation has a range of [−1, 1], which gives rise to an im-
portant property namely that an unhelpful suggestion (with
very low similarity to the reference translation) receives a
penalty and therefore contributes a negative score to hwf
rather than merely a small positive score.
A generalisation of the weighting scheme in (Whyman and
Somers, 1999) is presented as follows:

Ŵl = 2× sim(A,B)− 1

with sim(A,B) the similarity metric in use in each case. In
the original paper, only a keystrokes estimation was used.
hwf is then the sum of all these Ŵl weights measured over
individual string pairs. The n−mf segments with no sugges-
tion at f are weighted with neutral “usefulness”, i.e. 0—they
did not contribute any value to the translator nor demanded
any cognitive effort to consider.
This evaluation method allows many types of investigation,
since it models the effect of the similarity threshold f , and
the variables Pwf and Fwf can be studied independently.
Since this is not the main focus of this paper, we consider
the balanced F1-score a sufficient instrument to indicate the
methodological pitfall we will present. For certain applica-
tions, other evaluation outcomes might be more important
and could be used instead.
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Figure 1: Evaluating all retrieval metrics on the DGT
en-fr test set under the edit3 metric.

5.1. The influence of the similarity threshold
It is tempting to perform each of the experiments with a fixed
similarity threshold to simplify the experiment. Although
no specific value is an obvious choice, a choice such as 70%
would probably not raise eyebrows, as this is the default
value in some tools for computer assisted translation. Such
a threshold would appear to simulate the behaviour of such
a translation tool. However, in this section we investigate
the effect of the similarity threshold, and see that it has to
be investigated as a variable in its own right, since the TM
performance of similarity metrics are highly dependent on
the value of the similarity threshold.
To fully see the effect of changes in the similarity threshold,
we filter retrieved suggestions with a very low similarity
threshold (say 40%), but iteratively perform the evaluation
from that value increasing it in increments of 2%, each time
eliminating some suggestions that do not meet the threshold
any more and recalculating our evaluation scores. This
allows us to inspect the change in evaluation outcomes over
a large range of the similarity threshold as if many individual
experiments were performed. This could be used to graph
precision against recall to providing additional insights into
the relationship between precision, recall and the similarity
threshold (not shown here).
In figures 1 and 2 we see the F1-scores graphed against
the similarity threshold f . As expected, with a very high
threshold (f > 90%) the F1-score is much lower for all
metrics which reflects the fact that very few suggestions are
provided that fulfil such a strict requirement for similarity.
This represents a high-precision, low-recall configuration
for the TM system. As the graph is considered leftwards
towards lower values of f , we see how the performance of
different metrics change in relation to changes in f .
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Figure 2: Evaluating all retrieval metrics on the DGT
en-fr test set under the edit3word metric.

We can see the F1-score of 3-operation edit similarity oper-
ating over characters (edit3) reaching its optimum at higher
values of f . On the other hand edit4word’s optimum is
usually at much lower values of f than the other metrics.
This happens consistently and regardless of whether or not
the metric is best performing in that part of the experiment.

Since each similarity metric reaches its optimum at a differ-
ent value of f (sometimes far apart), it is important to note
that choosing any single fixed value for f for comparing
all the similarity metrics would not compare each metric at
its strongest point. If choosing a different (fixed) similarity
threshold for an evaluation experiment could alter the out-
come of an evaluation, it would invalidate the experimental
results. Therefore we need to take that into account for the
design of evaluation methods. However, it remains impor-
tant to evaluate the system with a fixed value of f tuned for
each metric, since this is the way that TM systems work in
practice. The performance of a system at values of f far
away from the optimal configuration is inconsequential to a
system that can be tuned to perform in an optimal configura-
tion (in as much as the tuning is relevant to the task). The
shape of the graph should therefore be irrelevant.

We see therefore that it is crucial to optimise the desired
score (F1-score in our case) separately for every similarity
metric over the range of the variable f by tuning the variable
f on a separate dataset before evaluation proper. In each
of the 10 folds of the final experiment, we use 80% of the
dataset as TM database, 10% for tuning the variable f , and
the remaining 10% for calculating the evaluation score. The
average of these evaluation scores from each of the 10 folds
is the overall score reported in the next section.

5.2. Results
In all cases considered here we found the F1-score for each
metric reaching a clear maximum within the given range
of f—the point where the similarity threshold f would be
optimal for the relevant retrieval metric under the evaluation
metric employed. We proceed by considering only this
optimum value for each metric. In the two evaluation sets
of the DGT corpus, each similarity metric selects itself as
the best performing metric.
In the case of the GNOME corpus, we find a similar
situation—in the en-fr dataset each of the metrics se-
lects itself as winner. In the en-hu dataset, two of the four
metrics (edit3word and edit4) do not select themselves, but
the F1-score for these three metrics are very close to the
winning metric. In the light of the consistency of the bias in
the corpora, as well as the very small difference between the
cases where the bias was not outright, we assume that the
four cases mentioned do not invalidate our results. The full
results for the four datasets are shown in tables 2–5. Rows
correspond to the output of the TM system as retrieved with
each of the similarity metrics, and each column indicates
the evaluation using a single similarity metric. Cases where
a metric did not select itself are indicated in italics. The best
performing metric in a column is indicated in bold, and a
bold entry on the diagonal indicates a metric selecting itself.

Evaluation metrics

Retrieval metrics ed
it3

ed
it3

w
or

d

ed
it4

ed
it4

w
or

d

edit3 0.400 0.258 0.312 0.213
edit3word 0.374 0.282 0.290 0.229
edit4 0.397 0.258 0.315 0.216
edit4word 0.374 0.281 0.293 0.237

Table 2: Evaluation results: DGT (en-hu)

Evaluation metrics

Retrieval metrics ed
it3

ed
it3

w
or

d

ed
it4

ed
it4

w
or

d

edit3 0.449 0.324 0.380 0.290
edit3word 0.419 0.349 0.351 0.307
edit4 0.445 0.322 0.383 0.291
edit4word 0.418 0.343 0.354 0.310

Table 3: Evaluation results: DGT (en-fr)

Apart from the self-selection bias, while evaluating under
one of the character-based metrics there is usually a differ-
ence in performance between the word-based metrics and
the character-based metrics. It is interesting to see this dif-
ference being less obvious when evaluating under one of the
word-based metrics. It seems as if there is at least some bias
between the word-based metrics and the character-based
metrics.
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Evaluation metrics

Retrieval metrics ed
it3

ed
it3

w
or

d

ed
it4

ed
it4

w
or

d

edit3 0.332 0.061 0.236 0.035
edit3word 0.239 0.142 0.145 0.102
edit4 0.322 0.057 0.234 0.040
edit4word 0.243 0.144 0.157 0.119

Table 4: Evaluation results: GNOME (en-hu)

Evaluation metrics

Retrieval metrics ed
it3

ed
it3

w
or

d

ed
it4

ed
it4

w
or

d

edit3 0.372 0.084 0.262 0.048
edit3word 0.274 0.172 0.169 0.120
edit4 0.367 0.085 0.266 0.054
edit4word 0.283 0.171 0.189 0.132

Table 5: Evaluation results: GNOME (en-fr)

6. Discussion
Automated evaluation applied through k-fold cross-
validation is supposed to eliminate some sources of bias
in the test data. We also performed our investigation over
two very different datasets, and repeated it for language pairs
with two linguistically unrelated target languages. Although
there is some variance in the results between the datasets,
in all four datasets we see the same result almost without
failure: that each similarity metric has a bias for itself. In
the 2 out of 16 cases where the bias was not outright, the
difference with the winning metric was very small.
The specific values of the F1-scores obtained seem rather
meaningless on their own, since the range of values for the
same system output vary substantially depending on the
similarity metric used during evaluation. It is therefore not
meaningful to read anything in particular into the specific
values, especially when comparing results obtained under
evaluation experiments using different similarity metrics.
Although we used the balanced F1-score in all results dis-
cussed above, we saw the same bias when using Fβ-scores
with β = 0.5 (favouring weighted precision) and β = 2
(favouring weighted true efficiency).
(Baldwin, 2009) mentioned a concern for such a bias briefly,
and opted to use the average accuracy score from separate
evaluations with two similarity metrics (variations on edit3
over bigrams and WSC) in an attempt to remove bias. It
is not clear if there is any scientific basis for believing that
such an average is substantially less biased, or merely con-
tains the bias of the constituents of the average in equal
measure. Keeping the results from our study here in mind,
the good performance of character-based metrics over word-
based metrics in that study raises questions about whether
it was caused by an evaluation method that employed two
character-based similarity metrics.

The results of this paper confirm the suspicions of the au-
thors in a study using an evaluation metric based on TER
that found the metrics based on TER often outperforming
others (Vanallemeersch and Vandeghinste, 2015).
A similar bias was observed when using machine transla-
tion evaluation metrics both for retrieval and evaluation in
a TM system (Simard and Fujita, 2012), although such an
experiment would not be comparable to our work here (see
section 2.3). A related issue was observed when optimis-
ing for different metrics in a machine translation system
during minimum error-rate training (MERT) (Servan and
Schwenk, 2011). While their finding is arguably intuitive, as
the tuning directly affects the evaluated output, a surprising
result in our case is that the bias of the method used during
retrieval is transferred over the language boundary from the
source language to the target language where evaluation is
performed.

7. Conclusion
We proposed an automated TM evaluation method based
on the strong points of two previous approaches (Whyman
and Somers, 1999; Baldwin, 2009). This provides both a
precision-like and recall-like metric, a way of penalising
less useful suggestions, and k-fold cross-validation reduces
problems due to overfitting and local artefacts in the data.
We showed that it is important to model the similarity thresh-
old as part of the evaluation experiment to mimic the way
tools for computer aided translation work. We found that
it is crucial to not use a fixed similarity threshold over the
whole experiment, since this could favour certain metrics
over others—each metric should be evaluated at the point
where its performance is maximised.
Within our evaluation method, we used several similarity
metrics for retrieving suggestions, and used the same sim-
ilarity metrics again during evaluation. We considered all
possible combinations of a set of four similarity metrics.
We considered it over two very different datasets, in two
language pairs. Experiments were conducted at character
and word level. The limited selection of metrics investigated
in this paper should be extended in future work. Amongst
others, non-commutative metrics were not considered here
(where sim(A,B) is not necessarily equal to sim(B,A)).
We exposed the methodological pitfall of TM evaluation
methods employing string similarity metrics to evaluate
the performance of the same string similarity metrics as
techniques for matching and ranking TM suggestions during
retrieval.
Each similarity metric shows a bias during evaluation for
itself. The findings in this paper suggest that no similarity
metric is inherently more fair as part of an evaluation method
without further evidence.
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