
FlexTag: A Highly Flexible PoS Tagging Framework

Torsten Zesch, Tobias Horsmann
Language Technology Lab

Department of Computer Science and Applied Cognitive Science
University of Duisburg-Essen, Germany

{torsten.zesch,tobias.horsmann}@uni-due.de
Abstract

We present FlexTag, a highly flexible PoS tagging framework. In contrast to monolithic implementations that can only be retrained
but not adapted otherwise, FlexTag enables users to modify the feature space and the classification algorithm. We categorize existing
PoS tagger implementations into one of three categories with regards to model-training capabilities and the level of access those
implementations give a researcher to intrinsic details. To this categorization we add a new fourth layer characterizing our FlexTag which
fully exposes the feature space and the machine learning algorithm while sustaining a high usability. With FlexTag, rapid prototyping of
tagger models using different feature spaces can be easily implemented, taking a huge technical burden from the NLP researcher who
is experimenting with new ideas or resources. FlexTag makes it easy to quickly develop custom-made taggers exactly fitting a research
problem. We demonstrate the capabilities of FlexTag by first training a PoS tagger model with state-of-the-art performance on the
common Wall-Street-Journal split using a default feature set. Furthermore, we train a social media model fitted to the Twitter domain
that extends the default feature set by adding domain-specific features and incorporating knowledge from unsupervised data resources.

Keywords: PoS tagging, domain adaptation, feature engineering

1. Motivation
Part-of-speech tagging is an important preprocessing step
in natural language processing. Consequently, there are
many implementations available such as the Stanford tag-
ger (Toutanova et al., 2003), the TreeTagger (Schmid,
1994), or the ClearNLP tagger (Choi and Palmer, 2012).
In order to adapt the behaviour of the tagger to the needs of
the user, most taggers provide configurable models which
are targeted towards different languages or domains. A user
might e.g. switch between a standard English model and a
German social media model depending on the task at hand.
As there rarely is a perfect match between the available tag-
ging models and the documents to be processed, most tag-
gers allow users to train their own models. FlexTag goes
beyond the usual re-training possibilities of established tag-
gers by giving the user flexible control over the feature
extraction and classification step. Users can choose from
different machine learning algorithms or plug-in their own
learning framework. FlexTag already comes with a wide
range of implemented feature extraction modules that can
be enabled when needed. However, users can also write
new feature extraction modules. For example, unsuper-
vised information from Brown clusters (Ritter et al., 2011)
or LDA (Rehbein, 2013) is known to boost performance
quite a bit, but the corresponding features are usually not
supported in standard taggers.
FlexTag is embedded in an evaluation framework (Hors-
mann et al., 2015) that allows for quick comparison of the
newly created taggers with previous versions and other im-
plementations.

2. FlexTag Architecture
In order to better understand in which way FlexTag differs
from existing PoS taggers, we distinguish four commonly
used architectures – see Figure 1 for an overview.

Fixed Model Some taggers cannot be changed at all
(without rewriting the tagger code itself) because model

and features are hard-coded in the implementation. This
is often the case for proof-of-concept implementations that
might directly implement an optimized machine learning
classifier or a domain-specific feature set. Figure 1a shows
how taggers with a fixed model look from the user perspec-
tive. A fixed-model tagger is basically a big black box that
accepts raw text as input and outputs tagged text.

Replaceable Model The next step on the flexibility con-
tinuum are taggers with replaceable models (see Figure 1b).
Here, the user can change the behavior of the tagger by
choosing from a set of provided models, but the tagger it-
self provides no means for creating a model. An example is
the rule-based Hepple tagger (Hepple, 2000), where a rule
set for English is provided. Rulesets for other languages
can be specified, but there is no method provided for creat-
ing new models from training data.

Trainable Model A major step towards really custom-
made taggers is to let users train their own models as shown
in Figure 1c. While the tagger is still a black box, it pro-
vides an additional interface to turn PoS annotated training
data into a custom-made model.
Once the model is trained, the tagger works exactly like
in the replaceable model case. Examples for trainable tag-
gers are Stanford (Toutanova et al., 2003) or TreeTagger
(Schmid, 1994).

Flexibly Trainable Model The hard-coded feature set of
trainable taggers complicates the process of adapting them
to new domains. In our FlexTag architecture (see Fig-
ure 1d), we thus give the user flexible control over which
feature extraction and machine learning should be used.
A similar approach was taken by SVMTool (Giménez and
Màrquez, 2004), but it does not allow to implement own
features, only to parameterize existing features.
The main remaining challenge when exposing more param-
eters of a PoS tagger to the user is how to keep using and
training the tagger usable also for non-experts.

4259

(a) Fixed model

(b) Replaceable model

(c) Trainable model

(d) Flexibly trainable model

Figure 1: The different levels of flexibility in adapting the behavior of a PoS tagger

4260

3. Keeping it Usable
A key danger when exposing more functionality to the user
is that using and adapting the tagger gets more complicated.
We now explain how we keep both processes as simple as
possible.

Using FlexTag As FlexTag is implemented in Java, it
does not need to be installed but runs wherever a JVM is
available. The user only needs to download the library,
while existing FlexTag models are automatically down-
loaded upon first usage without any additional user inter-
vention. For using a model, users need to specify a target
language and the model type, e.g. trained on newswire vs.
social media or slow but accurate vs. fast classifier.
In order to make this simplicity possible, FlexTag relies on
DKPro Core1 (Eckart de Castilho and Gurevych, 2014) for
preprocessing and model loading, and DKPro TC (Daxen-
berger et al., 2014) for feature extraction and classification.
FlexTag can be used standalone or as an Apache UIMA
component (Ferrucci and Lally, 2004) within a more com-
plex processing pipeline.

Training FlexTag Most other trainable taggers only sup-
port one input format and users are supposed to transform
their data in the required format. In contrast, FlexTag
makes no assumptions about the input format and relies on
the UIMA reader concept supporting all readers that are
compatible with the DKPro type system. For most com-
mon data formats, DKPro Core already provides the neces-
sary readers for converting the corpus format in the correct
internal representation. Supported formats include BNC,
Brown, IMS-CWB, Negra, PTB, and TEI.2

Adding Features FlexTag already comes with a wide
range of implemented feature extraction modules that can
be enabled when needed. However, as it is impossible to
foresee all future uses, we also let users add their own fea-
tures. For example, when processing Twitter data it might
be useful to detect user mentions (like @TorstenZesch)
in order to reliably assign a specific tag (Ritter et al., 2011).
Technically, users need to provide a self-contained Java
class that implements the FlexTag interface for feature ex-
tractors. In case of PoS tagging, this is a unit or sequence
classification interface (see Daxenberger et al. (2014) for
the different classification modes) where features are ex-
tracted for each token separately. The extractor interface
exposes the UIMA CAS (Götz and Suhre, 2004), an in-
memory representation of the whole text from which all
pre-processing results are easily accessible as stand-off an-
notations. Listing 1 shows the full source code of a feature
extractor that detects user mentions in tweets. In this case,
we simply request the text of the current token and check
whether it starts with an @ sign. However, more compli-
cated actions like accessing neighbouring tokens are easily
possible.
Being able to modify the feature extraction step makes it
necessary to store a representation of the utilised feature
extractors with the model, while for taggers with a fixed

1https://dkpro.github.io/dkpro-core
2https://dkpro.github.io/dkpro-core/

releases/1.7.0/formats/

Context Features

current word (wi)
previous word
next word
wi length in character

Boolean Features (∀ characters)

wi contains only capital letters
wi contains only special characters
wi contains only numbers

Boolean Features (∃ character(s))

wi starts with a capital letter
wi contains one or more numbers
wi contains one or more hyphens
wi contains one or more periods

Ngram Feature

1000 most frequent character ngrams (n=2-4) of wi

Table 1: Default feature set

feature-set the model is usually simply a persisted version
of the machine learning classifier.

Switching Classifiers As FlexTag relies on DKPro TC,
we can easily switch between all the provided classifiers by
changing the configuration without having to change any
code. Besides the well-known Weka framework (Hall et al.,
2009), DKPro TC currently includes two sequence classifi-
cation libraries that are of special interest for PoS tagging:
CRFsuite (Okazaki, 2007) and SVMhmm (Joachims et al.,
2009).

4. Use Case: Default Tagger
Even if FlexTag is all about defining your own features,
there is a set of standard features that usually work well
and are thus activated by default. Default features include
the preceding and following word, the top 1000 most fre-
quent 2-4 character ngrams, and boolean features testing
if a word uses capitalized letters, hyphenation, periods, or
is numeric. Table 1 gives an overview of the default set.
Users are however free to not use these features, i.e. the full
feature space is fully customizable and if other features def-
inition for the task at hand seem more suited FlexTag does
not prevent the user from building an own feature space.
When configuring the default tagger to use CRFSuite in
standard configuration and using sections 0-18 of the Wall
Street Journal (WSJ) corpus (Marcus et al., 1993) for train-
ing, we yield an accuracy of 96.3%. The state of the art3

ranges from 96.5% (Brants, 2000) to 97.6% (Huang et al.,
2015) accuracy. As we did not tune any parameters, we
consider this result to be on par with the state of the art.

5. Use Case: Social Media Tagger
In order to create a social media tagger, we can simply
train our default tagger on manually annotated Twitter data.
However, tagging social media is harder than tagging news,

3http://aclweb.org/aclwiki/index.php?
title=POS_Tagging_(State_of_the_art)

4261

/**
* Detects user mentions in tweets

*/
public class IsUserMentionFeatureExtractor

extends FeatureExtractorResource_ImplBase
implements ClassificationUnitFeatureExtractor

{
public Set<Feature> extract(JCas jcas, TextClassificationUnit unit)
{
return new Feature(

"isMention",
unit.getCoveredText.startsWith("@") ? 1 : 0

).asSet();
}

}

Listing 1: Example of a FlexTag feature extractor that detects user mentions in tweets

as there is usually only a small amount of PoS annotated
data available and at the same time there is higher vari-
ability in spelling (Horsmann and Zesch, 2015). A typi-
cal dataset is provided by Ritter et al. (2011), containing
15k tokens compared to 1200k in the WSJ corpus. When
evaluating the default tagger trained on this dataset using
10-fold cross validation, we reach an accuracy of 78.5%. A
massive, but expected, drop compared to the 96.3% on the
newswire WSJ corpus.
As FlexTag allows user-defined features, we can try to in-
crease results by making the tagger fit the domain better.
We add features for detecting user-mentions, hashtags, mail
addresses, and URLs as those are easily recognizable based
on regular expressions and frequently used in Twitter. This
increases performance to 79.1%.
Due to the high variability in spelling, we cannot expect
the training data to cover all surface forms and should bet-
ter add some unsupervised knowledge. FlexTags already
ships with a selection of feature extractors based on unsu-
pervised methods (Brown clusters, LDA, and PoS dictio-
naries), but users are of course free (and invited) to exper-
iment with other methods. Selecting Brown clusters, that
are especially easy to use as Owoputi et al. (2013) provide
precomputed clusters, we improve accuracy by 7.3 percent
points to 86.4%.
To summarize: By adding few domain specific features and
one resource, we implemented a domain fitted PoS tag-
ger that improved tagging accuracy by 7.9 percent points
over our default tagger. This shows that experimenting
with (new) resources and ideas of feature engineering is no
longer limited by the fixed feature sets that were dictated
by previous PoS tagger implementations.

6. FlexTag Project
We present FlexTag, a highly flexible PoS tagging frame-
work. The project is hosted on GitHub under the URL
https://github.com/Horsmann/FlexTag. The
website contains tutorials on how to train domain-specific
models, how to define and configure special features, how
to integrate FlexTag into existing experimental setups, and

how to deploy FlexTag with an own model as standalone
component.
While we see FlexTag mainly as a framework for re-
searchers to build custom-made models exactly fitting their
task, we nevertheless provide a rich set of pre-trained mod-
els for many languages and domains. FlexTag is publicly
available under the Apache License 2.0.

Acknowledgments
We thank Johannes Daxenberger and Richard Eckart de
Castilho for their constant support and advice.
This work was supported by the Deutsche Forschungsge-
meinschaft (DFG) under grant No. GRK 2167, Research
Training Group “User-Centred Social Media”.

7. Bibliographical References
Brants, T. (2000). Tnt: A statistical part-of-speech tagger.

In Proceedings of the Sixth Conference on Applied Nat-
ural Language Processing, ANLC ’00, pages 224–231,
Stroudsburg, PA, USA. Association for Computational
Linguistics.

Choi, J. D. and Palmer, M. (2012). Fast and robust part-of-
speech tagging using dynamic model selection. In Pro-
ceedings of the 50th Annual Meeting of the Association
for Computational Linguistics: Short Papers – Volume 2,
ACL ’12, pages 363–367, Stroudsburg, PA, USA. Asso-
ciation for Computational Linguistics.

Daxenberger, J., Ferschke, O., Gurevych, I., and Zesch, T.
(2014). DKPro TC: A java-based framework for super-
vised learning experiments on textual data. In Proceed-
ings of 52nd Annual Meeting of the Association for Com-
putational Linguistics: System Demonstrations, pages
61–66. Association for Computational Linguistics.

Eckart de Castilho, R. and Gurevych, I. (2014). A broad-
coverage collection of portable NLP components for
building shareable analysis pipelines. In Proceedings
of the Workshop on Open Infrastructures and Analysis
Frameworks for HLT (OIAF4HLT) at COLING 2014,
pages 1–11, Dublin, Ireland, August. Association for
Computational Linguistics and Dublin City University.

4262

Ferrucci, D. and Lally, A. (2004). UIMA: An architectural
approach to unstructured information processing in the
corporate research environment. Nat. Lang. Eng., 10(3-
4):327–348.

Giménez, J. and Màrquez, L. (2004). SVMTool: A general
pos tagger generator based on support vector machines.
In Proceedings of the Fourth International Conference
on Language Resources and Evaluation (LREC-2004),
Lisbon, Portugal, May. European Language Resources
Association (ELRA). ACL Anthology Identifier: L04-
1373.

Götz, T. and Suhre, O. (2004). Design and implementa-
tion of the UIMA common analysis system. IBM Syst.
J., 43(3):476–489, July.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reute-
mann, P., and Witten, I. H. (2009). The WEKA data
mining software: An update. SIGKDD Explor. Newsl.,
11(1):10–18, November.

Hepple, M. (2000). Independence and commitment: As-
sumptions for rapid training and execution of rule-based
POS taggers. In Proceedings of the 38th Annual Meeting
of the Association for Computational Linguistics (ACL-
2000), Hong Kong.

Horsmann, T. and Zesch, T. (2015). Effectiveness of do-
main adaptation approaches for social media pos tagging.
In Proceeding of the Second Italian Conference on Com-
putational Linguistics, pages 166–170, Trento, Italy. Ac-
cademia University Press.

Horsmann, T., Erbs, N., and Zesch, T. (2015). Fast or Ac-
curate ? – A Comparative Evaluation of PoS Tagging
Models. In Proceedings of the International Conference
of the German Society for Computational Linguistics and
Language Technology (GSCL-2015), Essen, Germany.

Huang, Z., Xu, W., and Yu, K. (2015). Bidirec-
tional LSTM-CRF models for sequence tagging. CoRR,
abs/1508.01991.

Joachims, T., Finley, T., and Yu, C.-N. J. (2009).
Cutting-plane training of structural svms. Mach. Learn.,
77(1):27–59, October.

Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A.
(1993). Building a large annotated corpus of english:
The penn treebank. COMPUTATIONAL LINGUISTICS,
19(2):313–330.

Okazaki, N. (2007). CRFsuite: a fast implementation of
Conditional Random Fields (CRFs).

Owoputi, O., Dyer, C., Gimpel, K., Schneider, N., and
Smith, N. A. (2013). Improved part-of-speech tagging
for online conversational text with word clusters. In In
Proceedings of the 2013 Conference of the North Amer-
ican Chapter of the Association for Computational Lin-
guistics: Human Language Technologies.

Rehbein, I. (2013). Fine-Grained POS Tagging of Ger-
man Tweets. In Iryna Gurevych, et al., editors, Language
Processing and Knowledge in the Web, volume 8105 of
Lecture Notes in Computer Science, pages 162–175.

Ritter, A., Clark, S., Mausam, and Etzioni, O. (2011).
Named Entity Recognition in Tweets: An Experimental
Study. In Proceedings of the Conference on Empirical

Methods in Natural Language Processing, EMNLP ’11,
pages 1524–1534, Stroudsburg, PA, USA.

Schmid, H. (1994). Probabilistic part-of-speech tagging
using decision trees. In International Conference on
New Methods in Language Processing, pages 44–49,
Manchester, UK.

Toutanova, K., Klein, D., Manning, C. D., and Singer, Y.
(2003). Feature-rich part-of-speech tagging with a cyclic
dependency network. In Proceedings of the 2003 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics on Human Language
Technology – Volume 1, NAACL ’03, pages 173–180,
Stroudsburg, PA, USA. Association for Computational
Linguistics.

DKPro Organisation. (2014). DKPro Core. DKPro Organ-
isation, NLP resources, 1.7.

4263

