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Abstract
We propose a comparison between various supervised machine learning methods to predict and detect humor in dialogues. We retrieve
our humorous dialogues from a very popular TV sitcom: “The Big Bang Theory”. We build a corpus where punchlines are annotated
using the canned laughter embedded in the audio track. Our comparative study involves a linear-chain Conditional Random Field over
a Recurrent Neural Network and a Convolutional Neural Network. Using a combination of word-level and audio frame-level features,
the CNN outperforms the other methods, obtaining the best F-score of 68.5% over 66.5% by CRF and 52.9% by RNN. Our work is
a starting point to developing more effective machine learning and neural network models on the humor prediction task, as well as
developing machines capable in understanding humor in general.
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1. Introduction
The term “humor” refers to various kinds of stimuli, includ-
ing acoustic, verbal, visual and situational, that are able to
trigger a laughter reaction in the recipient. It is an important
aspect of our everyday life, and is supposed to give benefits
to physical and psychological health (Sumners, 1988; Mar-
tineau, 1972; La Fave et al., 1976; Anderson and Arnoult,
1989; Lefcourt et al., 1997; Lefcourt and Martin, 2012).
There has recently been many attempts in detecting humor
from canned jokes (Yang et al., 2015), customer reviews
(Reyes and Rosso, 2012) and Twitter (Reyes et al., 2013;
Barbieri and Saggion, 2014; Riloff et al., 2013; Joshi et al.,
2015). All these analyses are only on isolated textual data.
Fewer work took into consideration other elements, such as
the surrounding context (Bamman and Smith, 2015; Karoui
et al., 2015) or acoustic and prosodic features (Rakov and
Rosenberg, 2013).
We propose to predict when people would laugh in a dialog
with a supervised machine learning approach. While most
of the past attempts concentrate on isolated examples, the
response to humor in a conversation depends heavily on the
surrounding context, such as the conversational topic and
the previous utterances. It is quite common that the same
utterance may trigger a different effect on the recipient de-
pending on when it is used. Two distinct moments can be
identified in humor and joke generation: a setup where ap-
propriate inputs are given and the context for the joke is
built, and the “punchline” where the climax is reached and
people are triggered to react with laugh (Hetzron, 1991; At-
tardo, 1997). Our task is to identify these punchlines and
thus predict where laughter occurs in the dialog flow. More-
over the way a spoken dialog utterance is made is another
important element that may trigger a humorous reaction.
Thus we also propose to combine acoustic and language
features.
To meet our objectives we build a corpus with dialogues
taken from a popular TV sitcom: “The Big Bang Theory”.
TV sitcoms are a good source of both acoustic speech data
from the audio tracks, and their transcriptions from the sub-

Figure 1: PENNY: Okay, Sheldon, what can I get you?
SHELDON: Alcohol.
PENNY: Could you be a little more specific?
SHELDON: Ethyl alcohol. LAUGH Forty milliliters.
LAUGH
PENNY: I’m sorry, honey, I don’t know milliliters.
SHELDON: Ah. Blame President James Jimmy Carter.
LAUGH He started America on a path to the metric sys-
tem but then just gave up. LAUGH

title files. They are embedded with canned laughter which
provide pretty good indication of when in the show the au-
dience is expected to laugh.
An example of dialog from this sitcom is shown in Figure
1. Before each punchline, in bold, are the utterances which
build the setup for the joke. It is quite evident that some
punchlines might not trigger any reaction, or are much less
effective, without the proper context (such as the fact the
conversation is held in a bar) and the proper setup.
In order to fully take advantage of the dialog context, we
employ and compare three different classification algo-
rithms: a Conditional Random Field, a Recurrent Neural
Network and a Convolutional Neural Network. We train
the former two with a set of acoustic and language features,
while in the latter we replace some of the features with low
level representations of words and acoustic frames.
Predicting when people would react to humor and laugh is
an important problem with potential great implications in
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Figure 2: RNN structure.

human-machine interaction. A system that predict humor
is a foundational block for future empathetic machines able
to effectively understand and react to humorous stimuli pro-
vided by the user (Fung, 2015).

2. Methodology
We propose a supervised classification approach based on
the combined contribution of acoustic and language fea-
tures. Furthermore we are interested in comparing the
performances of different classifiers such as a Conditional
Random Field (Lafferty et al., 2001; Bertero and Fung,
2016), a Recurrent Neural Network (Elman, 1990) and a
Convolutional Neural Network (Collobert et al., 2011). We
also train a simple Logistic Regression baseline.

2.1. Acoustic features
In a multimodal dialog variations in pitch, loudness and in-
tonation often indicate whether the intent of the speaker
is serious or humorous. To model this aspect we retrieve
a set of around 2500 acoustic features from the openS-
MILE software (Eyben et al., 2013) using the emobase
and emobase2010 packages provided (made of the feature
set from the INTERSPEECH 2010 paralinguistic challenge
(Schuller et al., 2010)). These features include MFCC,
pitch, intensity, loudness, probability of voicing, F0 en-
velope, Line Spectral Frequencies, Zero-Crossing rate and
their variations (delta coefficients).
Another element that is associated with humor is the speed
at which an utterance is said. Talking deliberately too
slowly may make fun of the recipient, while a deliberate
fast pace may prevent the listener to catch all the informa-
tion and trigger violation of Gricean Maxim of manner (At-
tardo, 1993). We therefore include the speaking rate of the
utterance (time duration divided by the number of words)
to our feature set.

2.2. Language features
We also retrieve a set of language features from the utter-
ance transcriptions. They represent multiple aspects, rang-
ing from syntax to semantic and sentiment. The features
we use are:

• Lexical: unigrams, bigrams ans trigrams that appear 5
times or more.

• Syntactic and structural (Barbieri and Saggion, 2014):
proportion of nouns, verbs, adjectives and adverbs,
sentence length, length difference with the previous
utterance and average word length.

• Sentiment (Barbieri and Saggion, 2014): average
of positive sentiment scores and negative sentiment
scores from SentiWordNet, average of all scores and
difference between the positive and negative averages.

• Antonyms: presence of noun, verb, adjective and
adverb antonyms in the previous utterance, obtained
from WordNet (Miller, 1995).

• Speaker turns: speaker identity and position within the
speaker turn (beginning, middle, end, isolated). Vari-
ous speakers are more or less likely to generate humor
(as shown in figure 4).

2.3. Conditional random field (CRF)
The CRF is a popular sequence tagging algorithm for mod-
eling time sequences. It gives good performance when
dealing with similar time-variant data, in tasks such as dis-
fluency detection (Liu et al., 2006) and text summarization
(Zhang and Fung, 2012). We use a standard linear chain
CRF to model our dialog, which can be summarized with
the following equation:

p(y|x) =
1

Z(x)

∏
A

exp

{∑
k

θAkfAk(xA,yA)

}
(1)

where A represents the graph nodes, k is the feature index,
x is the total observation, θAk are the model parameters to
be trained, fAk are the feature functions and Z(x) a nor-
malization function.

2.4. Recurrent Neural Network (RNN)
The RNN is a neural network layout that provides a mem-
ory component to the classifier, in the form of a recurrent
layer that is fed back as input at every time instant. It has
been used with great success in tasks such as language mod-
eling (Bengio et al., 2003), where the recurrent layer keeps
track of the past context in order to effectively predict the
following tokens.
A diagram of our network layout is shown in figure 2. The
language and acoustic feature sets are first fed into separate
embedding layers of the form:

xemb
t = tanh(Wembxt + bemb) (2)

where W and b are the parameters to train. The embedding
layer is used to rerange the two feature vector and reduce
their dimensionalities, in order to balance their contribu-
tions.
The two vectors obtained are concatenated together and
given as input to the recurrent layer, which has the form:

ht = tanh(Whht−1 + Wxx + brnn) (3)

where x is the input and ht−1 the hidden layer at the pre-
vious time instant. This kind of backpropagation has the
ability of retaining information about the past utterances.
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Figure 3: CNN structure. wi are the Word2Vec input vec-
tors, ai the audio frames feature input vectors. wf is the
output of the sentence encoding CNN, af the output of the
audio encoding CNN, lf the other features vector.

We apply another layer before the output softmax layer to
enhance the results (Pascanu et al., 2013).
In our specific task the RNN is intended to model the setup-
punchline structure of conversational humor. The hidden
layer should model the setup of each scene remembering
the previous utterances and keeping track of the context
that leads to each punchline. It should provide an advan-
tage over simpler classifiers such as logistic regression, as
they are only able to deal with each sample in isolation, or
eventually with fixed length context windows.

2.5. Convolutional Neural Network (CNN)
The CNN is another kind of neural network useful to en-
code a linear or multidimensional structure such a sentence
or an image into a fixed-length vector. Previous work has
shown that neural network model is particularly effective
for extracting and selecting features from low-level input
representations (Wang and Manning, 2013). We therefore
are interested to evaluate whether using a CNN to encode
an utterance from word and audio frame-level inputs may
yield higher results than using bag-of-ngram representa-
tions or utterance-level acoustic features (Wang and Man-
ning, 2013; Han et al., 2014).
Our network diagram is shown in figure 3. We use two
different CNNs to replace respectively the n-gram features
and the acoustic features (except the speaking rate) of an
utterance. Our first CNN takes as input a word vector for
each token taken from Word2Vec (Mikolov et al., 2013).
For the second CNN instead we divide the audio track of
each utterance into overlapping frames of 25ms, shifted
10ms each other. Then we extract from each frame a sub-
set of lower-level acoustic features from openSMILE. The
features we use in this stage include MFCC, pitch, energy,
zero-crossing mean, ∆ and ∆∆. Each CNN is made of an
embedding layer that reduces the dimensionality of each in-
put vector. A second layer performs the convolution over a
sliding window of 5 tokens for the text case, and 3 frames
for the audio network. A max-pooling operation is then
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Figure 4: Proportion (percentage) of punchlines for the
most frequent characters. The vertical line represents the
overall average of 42.8%.
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Figure 5: Distribution of intervals between two punchlines.
In The Big Bang Theory, on average, it is equal to 2.2 ut-
terances.

applied to reduce all the vectors obtained from the convo-
lution into a single one, selecting the most salient features.
A last layer is used to rerange the vector obtained from the
max-pooling. To perform the final classification for each
utterance we concatenate the outputs from the two CNNs
together with the other features (speaking rate and other
language features).

3. Experiments
3.1. Corpus
We built a corpus from “The Big Bang Theory” seasons 1
to 6, a very popular humorous TV sitcom. We retrieved the
audio tracks, the subtitle files associated, and the scripts
(from https://bigbangtrans.wordpress.com). Subtitle files
provide the timestamps used to cut the audio tracks into the
individual utterances, while the script files include infor-
mation about the character who speak each utterance and
the speaker turns, as well as the division of the episode into
scenes.
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Classifier and features Accuracy Precision Recall F-score
All positive baseline 42.8 42.8 100.0 59.9
All negative baseline 57.2 0.0 0.0 0.0
Logistic regression: n-grams 57.6 50.5 47.9 49.2
Logistic regression: acoustic + language 72.0 70.3 59.9 64.7
Logistic regression: all features 72.1 69.1 62.9 65.9
CRF n-grams 61.8 56.8 45.1 50.2
CRF acoustic + language 73.4 72.1 61.8 66.5
CRF n-grams + acoustic + language 71.3 68.3 61.3 64.7
RNN n-grams 61.3 57.5 36.5 44.7
RNN acoustic + language 61.3 56.5 41.1 47.6
RNN n-grams + acoustic + language 65.8 64.4 44.9 52.9
CNN lexical 63.8 63.7 35.9 46.0
CNN acoustic only 64.2 59.0 53.6 56.2
CNN lexical + acoustic + language 73.8 70.3 66.7 68.5

Table 1: Results, percentage

To annotate the punchline utterances we retrieved the
canned laughters timestamps from the audio track using
a vocal removal tool followed by a silence/sound detector
tool. The vocal removal tool removes all the voice and gives
as output an audio track consisting only of canned laugh-
ters, whose time intervals are easily detected by the sound
detector. Then we compared the position of the laughters
with the utterance timestamps obtained from the subtitles,
labeling each utterance immediately or within 1s followed
by a laughter as a punchline. We also used the canned
laughter timing information to cut the laughter from the
utterances audio tracks, in order to avoid an eventual bias
of the classifier. Moreover we divided each episode into
scenes and each utterance with the speaking character, ac-
cording to the script files.
Overall the corpus contains 1589 scenes. The episodes
were divided into a training set of around 35865 overall
utterances, and a development set of 3904 and test set of
3903. The corpus consist of 42.8% of the utterances being
punchlines. The average interval between two of them is
2.2 utterances, figure 5 shows the overall interval distribu-
tion. There are 7 recurring characters appearing for more
than 500 utterances. As shown in figure 4 the amount of
punchlines associated to each character is different by over
20%. We grouped all characters other than the seven most
frequent into the “other” label for the speaker identity fea-
ture.

3.2. Experimental setup
In the CRF experiments we used the CRFsuite implemen-
tation (Okazaki, 2007) with L2 regularization. In the RNN
all the embedding and hidden layers were set to a dimen-
sion of 100, and the sigmoid function was chosen as non-
linearity, as it gave better performance than the hyperbolic
tangent. We trained the network using standard backpropa-
gation with L2 regularization. In the CNN case instead we
fix the dimension to 100 for the language CNN and 50 for
the acoustic CNN. We obtained the best performance us-
ing the hyperbolic tangent non-linearity function in the lan-
guage CNN, and rectified linear units in the audio CNN. All
neural networks were implemented using THEANO toolkit
(Bergstra et al., 2010).

Both in the CRF and in the RNN we fed each scene as a
separate unit, and in the RNN we reset the recurrent layer
after the end of each scene. We used the development set
to tune the hyperparameters, and in the case of the neural
networks to determine the early stopping condition when
the results on it began to get lower.
We made three kinds of experiments with different features:
the first one with only the sparse bag-of-ngrams, the second
with a set of acoustic and language features excluding n-
grams, and the third one combining all the features. For
each utterance, with the exception of acoustic features, we
use a context window of size 3 including the utterance and
the two previous ones. We compare our results with an all
positive/all negative baseline, and with a logistic regression
classifier trained on the same feature sets. In the CNN case,
we evaluated separately the performance in dealing with
lexical features only, and with acoustic features only, and
we then combined them together adding the other features.
Results are shown in table 1.

3.3. Results and discussion
Our results show that the CNN achieves the best overall
performance with an F-score of 68.5%, 2% more than the
best result obtained from the CRF. The CRF is still quite
effective, and it reaches the best overall precision of 72.1%
when trained without the bag-of-ngram features. The CRF
is slightly better than using a simple logistic regression, as
it is able better exploit the sequential structure of the data.
This is due in particular to the fact it models the different
transition probabilities between setup and punchlines.
From the results obtained it seems that the main advantage
of the CNN over the CRF is when dealing with lexical and
acoustic features. The convolution applied by the CNN
over words and audio-frames is more effective in encod-
ing a sentence than simpler bag-of-ngram representations
or high-level acoustic features extracted from the whole ut-
terance. This is particularly evident when the two CNNs are
jointly trained. The CNN instead does not model the dialog
past context, and this is clear from the results obtained from
lexical features only.
The RNN in theory should have been the most suited al-
gorithm to capture the conversational humor structure. We
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were expecting an higher performance than the CRF, but
the results obtained are instead much lower than all the
baselines. The RNN is in general a difficult algorithm to
train effectively and is prone to overfitting easily the train-
ing data (Pascanu et al., 2012), and it generally need more
data to be effectively trained. The input features may also
not have been the most suited for this classifier.
To conclude our discussion, it is worth noting that canned
laughter are a good indication of laughter response, but it
is not perfect. They are primarily intended to solicit reg-
ular laughter response in the audience to keep a constant
amusement level in the show, and often used to enhance
weak jokes.

4. Conclusion
We carried out a comparative study on different supervised
machine learning algorithms to predict when people would
laugh in a funny dialog. We achieved the best result of
73.8% accuracy with a CNN based framework which en-
codes and merges together word-level and acoustic-frame
level features.
We plan in the future to improve the dialog context mod-
eling, in particular for the CNN case. We are interested in
trying other different network structures, such as to replace
the RNN with a Long Short-Term Memory, and using it af-
ter the CNN output to incorporate the dialog context. Our
ultimate goal is to integrate laughter response prediction in
a machine dialog system, to allow it to understand and react
to humor.
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