
corpus-tools.org: An Interoperable Generic Software Tool Set for Multi-layer
Linguistic Corpora

Stephan Druskat1,2, Volker Gast1, Thomas Krause2, Florian Zipser2
1Friedrich Schiller University, Dept. of English and American Studies, Ernst-Abbe-Platz 8, D-07743 Jena

2Humboldt-Universität zu Berlin, Dept. of German Studies and Linguistics, Unter den Linden 6, D-10099 Berlin
{stephan.druskat, volker.gast}@uni-jena.de, krauseto@hu-berlin.de, f.zipser@gmx.de

Abstract
This paper introduces an open source, interoperable generic software tool set catering for the entire workflow of creation, migration,
annotation, query and analysis of multi-layer linguistic corpora. It consists of four components: Salt, a graph-based meta model and API
for linguistic data, the common data model for the rest of the tool set; Pepper, a conversion tool and platform for linguistic data that can
be used to convert many different linguistic formats into each other; Atomic, an extensible, platform-independent multi-layer desktop
annotation software for linguistic corpora; ANNIS, a search and visualization architecture for multi-layer linguistic corpora with many
different visualizations and a powerful native query language. The set was designed to solve the following issues in a multi-layer corpus
workflow: Lossless data transition between tools through a common data model generic enough to allow for a potentially unlimited
number of different types of annotation, conversion capabilities for different linguistic formats to cater for the processing of data from
different sources and/or with existing annotations, a high level of extensibility to enhance the sustainability of the whole tool set, analysis
capabilities encompassing corpus and annotation query alongside multi-faceted visualizations of all annotation layers.

Keywords: corpus tools, multi-layer corpora, interoperability

1. Introduction
This paper introduces an interoperable generic software
tool set1 which caters for the entire workflow of creation,
migration, annotation, query and analysis of multi-layer
linguistic corpora. The tool set consists of four major com-
ponents:

1. Salt (Zipser and Romary, 2010) (Humboldt-
Universität zu Berlin, 2016b), a meta model and
API for linguistic data, working on a generic graph
structure and functioning as a common data model for
the other tools;

2. Pepper (Zipser et al., 2011) (Humboldt-Universität zu
Berlin, 2016a), a conversion tool and platform for lin-
guistic data that can be used to convert a large number
of different linguistic formats into each other;

3. Atomic (Druskat et al., 2014) (Friedrich Schiller
University Jena, 2015), an extensible, platform-
independent multi-layer desktop annotation software
for linguistic corpora;

4. ANNIS (Krause and Zeldes, 2014) (Humboldt-
Universität zu Berlin, 2015), a search and visual-
ization architecture for multi-layer linguistic corpora
with many different visualizations and a powerful na-
tive query language.

All components are open source under the permissive
Apache License, Version 2.02.
We define the corpus-tools.org tools as a software set rather
than a stack or a toolchain, as they are designed for close

1http://corpus-tools.org, (corpus-tools.org Develop-
ment Team, 2015).

2www.apache.org/licenses/LICENSE-2.0.html.

integration, but can be used independently of each other
and must be differentiated by their target functions: Salt
and Pepper are primarily infrastructure tools, i.e., they pro-
vide infrastructural foundations for computer-based corpus
research; Atomic and ANNIS are primarily workflow tools,
i.e., they contribute to the actual processing of corpora.
The above is reflected in the architecture of corpus-
tools.org (Figure 1): Salt serves as a common data model
for Atomic, ANNIS and Pepper. The main function of Pep-
per is that of a “communication bus” between different cor-
pus tools, both infrastructurally and within a concrete work-
flow. The tools subset of Pepper, Atomic and ANNIS forms
a complete corpus workflow toolchain in itself, which is
based on Salt.

 ANNIS

Analysis

 Atomic

Multi-layer
annotation

 Salt-based

 Pepper
Migration

 Annotation

(TreeTagger,
EXMARaLDA, UAM,
WebAnno, MMAX2,

RST, ...)

Infrastructure tool

Workflow tool

Figure 1: Overview of the corpus-tools.org architecture,
with functional grouping.

Note that although all tools in the set can be used indepen-
dently, their interoperability by design lets the user benefit
most from corpus-tools.org when using all tools together.
Additionally, all tools have been built to be able to integrate
existing solutions: Pepper together with Salt facilitates not
only the integration of existing corpus tools with corpus-

4492

tools.org software, it also assists collaboration among dif-
ferent third-party tools; both Atomic and ANNIS have been
built to be extensible via plugins. Thus, tried and tested an-
notation editor types or NLP components can be added to
Atomic, established visualization types to ANNIS.
Let us take a step back now and look at the necessity of
introducing yet more tools to the world of multi-layer cor-
pora: While there already exist a number of corpus tools3

– some of them equipped to deal with multiple layers of
annotation, or different annotation types –, not all of them
interoperate well with other software, due to a lack of com-
mon standards mostly on the part of data models and for-
mats.
More generally, some key workflow problems have not
been addressed comprehensively as of now:

1. To assure general interoperability, the tools in a cor-
pus creation and analysis workflow should be able to
transfer data losslessly between each other, ideally via
a common data model.

2. Such a data model should avoid constraints on the
types of annotation it can process. It must be suffi-
ciently generic to be able to process diverse types of
annotations, thus allowing for its utilization in a max-
imum number of use cases.

3. As corpora and annotations exist in many different
formats, migration/conversion capabilities are a key
requirement for tools when creating and annotating
corpora, especially when they come from different
sources and/or have existing annotations.

4. User-facing tools should be extensible, as new for-
mats will be introduced in the future, and new research
questions will require specific annotation types, which
in turn will require specific tooling (e.g., annotation
editors, visualizations, NLP components).

5. Comprehensive analysis of multi-layer annotated cor-
pora – which complements any corpus workflow – re-
quires an analysis tool that is able to both query the
corpus and its annotations, and present the user with
a multi-faceted view on her data, incorporating the as-
pects of all annotation layers.

With the corpus-tools.org tool set we try to address these
challenges. In the following, we will present the single
parts of the tool set in more detail, loosely following a hy-
pothetical workflow.

2. A common generic data model
As mentioned above, the tools in a corpus creation and anal-
ysis workflow should ideally share a common data model,
moreover one that is sufficiently generic to maximize the

3For example EXMARaLDA (Schmidt, 2004), WebAnno (Yi-
mam et al., 2013), ELAN (Brugman and Russel, 2004),
@nnotate (Plaehn, 1998), Synpathy (http://www.mpi.nl/
tools/synpathy.html), MMAX2 (Müller and Strube,
2006), Arborator (http://arborator.ilpga.fr/), or
Praat (Boersma and Weenink, 2013) .

tool set’s use cases, and thus its sustainability. The corpus-
tools.org tool set’s common data model is Salt (Zipser and
Romary, 2010).
Salt is a generic, graph-based meta model for linguistic
data, implemented as an open source Java API for storing,
manipulating and representing data. Due to its high level
of abstraction, it remains independent of linguistic theo-
ries, annotation schemes and tagsets. Salt is text-based,
but also allows for the modeling of audio and video cor-
pora. Its core structure is a graph, which allows for almost
any conceivable annotation type, as long as it fits a graph
structure4. This structure also helps to keep the model sim-
ple, with only a small set of model elements, given by
G = (V,E, L, labela, . . . labelb) with

• V being a set of nodes with v = (labelc, . . . labeld) ∈
V

• E being a set of directed edges with e = (v1 ∈ V, v2 ∈
V, labele, . . . labelf) ∈ E

• L being a set of layers with l = (V ′ ⊂ V,E′ ⊂
E,L′ ⊂ L, labelg, . . . labelh) ∈ L

• and a set of labels labela, . . . labelb the graph is la-
beled with. A label l is given by a triple l = (ns, n, v)
with a namespace ns, a name n and a value v. A
namespace is optional and the combination of ns and
n form a unique identifier for a label.

To illustrate the model of Salt, imagine a text which is syn-
tactically annotated as given in Figure 2. In the Salt model,

Figure 2: A syntactically annotated sentence modeled in
Salt.

nodes and edges are placeholders for an abstract structure.
They are initially free of semantics, but are subsequently

4We have yet to encounter an annotation model which cannot be
mapped onto a graph structure.

4493

specified by adding labels. Reading the example bottom
up, we start with the base node text1 representing the pri-
mary text. Its label contains a representation of the text.
The nodes t1 . . . t9 represent a tokenization of the primary
text. Each token node is related to the text node, and the
relation between them determines the text sequence that
the token overlaps, via an offset. The remaining nodes
s1 . . . s9 in combination with the relations between them
define the syntax tree. Each node in the syntax tree has a
label cat = X , which adds semantics5 to that node, such as
representing an NP , a V P , etc.
In a multi-layer corpus, the number of nodes and edges is
prone to become very large. Layers alleviate this issue by
representing a grouping mechanism for bundling nodes and
edges into smaller subgraphs. For instance, all nodes and
edges belonging to morphological annotation, syntax anno-
tation, information structure annotation, etc., can be bun-
dled in seperate layers.
The Salt meta model differentiates between corpora and
documents. A document contains one or more primary
texts, and corresponding annotations. A corpus is an ag-
gregation of documents and/or other corpora, i.e., subcor-
pora. The split of an entire corpus into non-overlapping
documents – partitions – allows for processing each docu-
ment independently. Salt is a main memory data structure,
and its scalability is determined by the availability of main
memory and the size of the largest document in a given
corpus which will be required to reside in memory. Docu-
ments can be partitioned along logical definitions, such as
volumes, chapters, sections, etc., which will be spanned by
discrete annotation graphs, or according to technical def-
initions. Syntactic annotations, for example, will usually
affect only one sentence. Therefore, each sentence can be
a discrete partition. Thus we can build small documents
along sentence boundaries. At the same time, unneeded
documents can be serialized to disk and de-serialized for
processing on demand. Hence, an intelligent distribution of
document sizes can increase the potential size of corpora
that can be represented in Salt models.

3. Creating/migrating corpus resources for
annotation

Corpora and annotations exist in a multitude of different
formats. In order to prepare them for further annotation,
it is necessary to convert – and sometimes merge – them
into a format the annotation software can process. This
can be done via Pepper (Zipser et al., 2011), a platform-
independent, modular framework for converting and pro-
cessing linguistic data.
Pepper utilises an intermediate-model approach, with Salt
as its intermediate model: Instead of implementing a di-
rect conversion solution from format X to format Y, X is
mapped onto Salt, manipulated where necessary, and sub-
sequently mapped onto format Y. Thus, the number of map-
pings to convert n into m formats is reduced to 2n, as com-
pared to n2−n mappings for direct conversion routes. Pep-
per supplies three types of modules: importers, manipula-
tors, and exporters, an unrestricted number of which can be

5“Semantics” not in its strict linguistic meaning.

combined into one single conversion workflow.

Figure 3: Intermediate model approach to convert linguistic
formats.

The loose coupling of modules and the partitioning of
data into documents in Salt enable the processing of data
in isolation from preceding or following modules in the
workflow. Let c be a corpus consisting of the documents
d1, . . . , dn, let w be a workflow consisting of the mod-
ules w = (m1,mo). For all 1 ≥ i, j ≥ n with (i 6=
j) and 1 ≥ k ≥ o: The process mk(di), mk+1(di),
mk(dj), mk+1(dj) is equal to the process mk(dj), mk(di),
mk+1(di), mk+1(dj). Thus we can randomize the order of
documents. Furthermore, documents can be processed in
parallel, as long as each document passes each module in
the workflow in the correct order. Therefore, Pepper has
implemented multithreading in order to greatly reduce con-
version times. The size of a corpus which can be processed
with Pepper is not limited, as long as each single document
fits into main memory.
The possibility to plug any manipulator module between
an importer and an exporter allows for manipulation, en-
hancement or reduction of data in every possible sense. It
is possible, for instance, to merge data. Often a research
question demands several annotation types on the same cor-
pus. Unfortunately, many tools and formats were created
for just a single kind of annotation, for instance the Tiger-
XML format (Lezius et al., 2002), which was created exclu-
sively for constituents, or the MMAX2 format (Müller and
Strube, 2006), which was created exclusively for corefer-
ences. However, in order to build multi-layer corpora we
need to combine different kinds of annotation. Due to the
fact that Salt is a graph-based model, the task of merging
different Salt models is reducible to a graph merging task
based on an identical primary text or primary texts. With
the process based on the primary text, it is possible in a
first step to merge the tokens. Since Salt allows for multi-
ple tokenizations, even alternative tokenizations can be pro-
cessed. Additionally, higher-level structures such as spans
or hierarchies can be compared with each other and merged
(Zipser et al., 2014). Furthermore, the isolation of mod-
ules in the workflow allows for a combination of each set
of importers with the merging step.
In addition to the merging module cited above, there al-
ready are Pepper modules for a large number of different
linguistic formats6, as well as a module for extracting meta-

6E.g., EXMARaLDA, Tiger-XML, MMAX2, RST, TCF, Tree-

4494

Figure 4: A screenshot of Atomic, showing a section of the pcc2 corpus (Stede and Neumann, 2014), with two annotation
layers visible in the editor, and a number of AtomicAL commands in the console.

data, structural and annotation-related information from ex-
isting corpora7 (Voigt et al., 2016). Due to its plugin-based
architecture, newly-developed modules can easily be added
to Pepper at any time.
Pepper comes in two flavours: as an interactive standalone
command line tool and as an API library, which can be in-
tegrated in other software.
In an hypothetical workflow utilizing the corpus-tools.org
tool set, Pepper is most likely to come in in two places:
Firstly as the primary step, preparing corpora for annota-
tion by merging and converting them into a format con-
sumable by the annotation tool, and secondly in between or
after annotation steps, preparing the resources for analysis
or publication.
Pepper can process several documents in parallel, and only
uses the main memory needed to hold the currently pro-
cessed documents in the conversion workflow. For exam-
ple, converting the syntactically annoted TIGER2 corpus
(Brants et al., 2004), which has 888,578 tokens, 1,262,014
nodes and 1,971 documents, from SaltXML to the ANNIS
format takes about one minute on a modern notebook with
a 2.20GHz Intel i7-4770HQ CPU, using all four processor
cores. In general, the time a conversion takes depends on
the import and export modules used, and whether several
import formats have to be merged, or if there are costly ma-
nipulators in the pipeline.

Tagger format, TEI (subset), ANNIS format, PAULA and many
more.

7For an example of the output this module creates, see https://
corpora.uni-hamburg.de/sfb632/a5hausanews/.

4. Annotation

Most of the above-mentioned general challenges for multi-
layer corpus tools can also be applied more specifically to
annotation software: It should avoid putting constraints on
the types of annotation it can process, it needs to be able to
deal with the multitude of existing linguistic formats, and it
should be extensible for new annotation processes, i.e. new
annotation types, editors, data views, etc. Atomic (Druskat
et al. (2014), cf. Figure 4), a platform-independent soft-
ware for the desktop, addresses these issues through its ar-
chitecture.

One of Atomic’s assets is that it hooks, as it were, into
the Pepper process at its intermediate stage – effectively
as an extended quasi manipulator module – by working di-
rectly on Salt models. It includes the Pepper library and
provides import and export GUI wizards for the different
Pepper modules. Thus, Atomic inherits not only Salt’s spe-
cific advantages – i.e., it is not limited to specific annotation
types, layers, or tagsets – it is also highly compatible with a
large number of linguistic formats via Pepper. Apart from
that, it is also possible to initially create and pre-process,
rather than import, corpora with Atomic (cf. below).

Atomic is built on top of the Eclipse Rich Client Plat-
form (McAffer et al., 2010) – a mature, standardized plugin
framework written in Java –, which makes it easily exten-
sible. Atomic is basically a set of plugins, adding to the
set of plugins making up the Eclipse RCP. Therefore, new
functionality can be implemented as yet another plugin and
added to Atomic. For this, the latter provides a number of

4495

extension points8 and interfaces for different common com-
ponents: editors for different annotation types, data views,
NLP components, model workflow steps, and annotation
language dialects (see below). To facilitate the creation
of corpora with Atomic, for example, the software does
provide some basic pre-processing tools – a tokenizer and
a partitioning tool –, but more importantly also extension
points for further, custom pre-processing steps. Any cor-
pus processing step, e.g., parsers, taggers, etc., can thus be
implemented as an Eclipse plugin and added to Atomic dy-
namically via the respective extension point. Thus, Atomic
is in principle an annotation platform rather than simply an
annotation tool.
Another advantage of Atomic being implemented as an
Eclipse RCP is that it benefits from the large number of ex-
isting compatible software and resources within the Eclipse
ecosystem.9 Third-party Eclipse RCP plugins, which can
be added to Atomic on the fly, exist for a variety of ap-
plications: Editors for XML, TEX, R, and many others;
version control system interfaces for Git, SVN and others
(using a version control system enables collaborative an-
notation as well as providing change management for cor-
pora); distributed real-time collaboration; tools for seman-
tic web applications; and many more. Additionally, due to
the size and commercial importance of Eclipse, its ecosys-
tem, and the Rich Client Platform, software developers pro-
ficient in Eclipse-based development – and thus able to ex-
tend Atomic, e.g., in the context of service contracts – are
readily available, which increases Atomic’s sustainability.
As a workflow tool, Atomic, in its current iteration, pro-
vides the following features.

• A graphical editor for Salt annotation graphs. The
editor provides a graphical representation of the Salt
subgraph for selected partitions of a corpus document.
The graph can be manipulated via the keyboard, e.g.,
by selecting and editing elements, and through mouse-
driven tools available from a palette similar to those
included in established graphics or desktop publishing
applications.

• A synchronized, integrated command-line interface
for use of the annotation language AtomicAL10 for
rapid creation and annotation of model elements.
AtomicAL uses one-letter commands for common an-
notation tasks on the Salt graph, which are reflected
synchronously in the graphical editor. Commands can
take a number of arguments and flags, specifying the

8Extension points are basically contracts – usually a combination
of a definition in XML markup, and Java interfaces – that exten-
sions must conform to. New Atomic plugins that want to connect
to a specific extension point must implement the specified con-
tract. For an overview of Eclipse’s extension point mechanism
see Clayberg and Rubel (2009, 637–660).

9The best known Eclipse RCP-based product alone, an IDE for
Java, has hundreds of thousands of users from IT and other dis-
ciplines, cf. http://www.eclipse.org/downloads/.

10AtomicAL is based on a data manipulation language for annota-
tion graphs developed for use in the GraphAnno annotation tool
(Gast et al., 2015), but exhibits a different syntax and different
commands.

model elements, annotation layer, annotations, etc., to
work on. AtomicAL is designed to be extensible, so
that different “dialects” can be implemented for differ-
ent annotation types and editors.

• A customizable workbench-like GUI providing core
application functionality (project management, pref-
erences, update management for Atomic and the in-
tegrated Pepper and Salt libraries, help and documen-
tation) and task-specific view combinations, so-called
“perspectives”. For example, the annotation graph ed-
itor is embedded in a perspective which displays it to-
gether with relevant views, such as a view for display-
ing and selecting the corpus partitions to be edited; a
view for displaying, creating, editing and selecting an-
notation layers; a view for displaying partitions with
links to the current selection; the AtomicAL Console.

Further extensions are being developed or planned (cf. 8.).
Alternating with ANNIS (cf. 5.), Atomic would be at the
heart of an hypothetical workflow using our tool set.
As Atomic uses Salt as its data model, any corpus size re-
strictions for Salt are applicable for Atomic as well. Hence,
the available main memory must be able to hold the largest
document in the corpus. However, as Atomic supports cus-
tomized partitioning of corpus documents, and the anno-
tation graph editor can work on a given custom partition
while the others remain serialized, the potential size of cor-
pora Atomic can process depends merely on the strategy of
document size distribution over that corpus.

5. Query and analysis
Comprehensive analysis of multi-layer annotated corpora
requires a tool which provides extensive search functional-
ity as well as appropriate visual representation of all anno-
tation layers. With ANNIS (Krause and Zeldes, 2014) we
provide a browser-based search and visualization architec-
ture for complex multi-layer corpora.
ANNIS also makes use of Salt as a data model: Salt powers
different visualizations and acts as an interchange format
between front- and backend.
ANNIS furthermore provides the native query language
AQL for complex search queries as well as different visu-
alizations for corpus data, such as KWIC views, dependecy
trees, grids, coreference and RST views, aligned A/V data,
and many more.11

ANNIS can be extended with new visualizations for addi-
tional types of annotations via new plugins. Additionally,
existing visualizations – such as the HTML visualizer – are
highly configurable.
In an hypothetical workflow, ANNIS would most likely
come into play in one of the later steps, being used to
query, visualize and analyze multi-layer annotated corpora.
It could, however, be utilized earlier as well, for example to
identify annotation candidates in a corpus. Additionally, in
interplay with Atomic, it also facilitates iterated annotation,
i.e., repeated iterations of annotation tasks in Atomic and
their subsequent evaluation in ANNIS, the results of which

11corpus-tools.org/annis/visualizations.html
gives an overview of available visualizations.

4496

Figure 5: A screenshot of ANNIS, showing an AQL query over the pcc2 corpus, and example visualizations of the result.

entail another annotation iteration in Atomic, etc. And fi-
nally, ANNIS can also be used as a repository of sorts for a
release of annotated corpora.

ANNIS is optimized to handle corpora with a large num-
ber of parallel annotation layers. Thus, the maximum size
of corpora it can process mainly depends on the number of
nodes and edges in a corpus, not on token figures. However,
since ANNIS uses the PostgreSQL relational database12 it
is key to have a powerful server with sufficient main mem-
ory when querying corpora containing more than 1m nodes.

6. Development and user communities

While the centres of development of the corpus-tools.org
tool set are the Deptartment of English and American Stud-
ies at the Friedrich Schiller University in Jena and the De-
partment of German Studies and Linguistics at Humboldt-
Universität zu Berlin, a host of linguists and developers
from around the world have made and continue to make
valuable contributions to corpus-tools.org tools,13 render-
ing our tool set a true community effort.

Tools from the corpus-tools.org tool set are used by projects
from different research fields, such as spoken language cor-

12Cf. http://www.postgresql.org/.
13See, for example, the list of ANNIS contributors at github.
com/korpling/ANNIS/graphs/contributors.

pora14, historical corpora15, chat corpora16, newspaper cor-
pora17, and many more.

7. Conclusion
The corpus-tools.org software tool set we present here fa-
cilitates a complete workflow for multi-layer corpora, from
creation and annotation to analysis and release. At the same
time it provides answers to some important challenges such
a workflow poses, (a) through its internal interoperability
by relying on a common data model which is also suffi-
ciently generic to not limit the types of annotation it can
model; (b) through its compatibility with a large number
of linguistic formats by means of its integrated conversion
framework; (c) through the extensibility of its components
which contributes to its sustainability and versatility; (d)
through its ability to integrate with third party tools.

14E.g., the Berlin Map Task Corpus (https://www.
linguistik.hu-berlin.de/en/institut-en/
professuren-en/korpuslinguistik/research/
bematac), or the KiezDeutsch-Korpus (http:
//www.kiezdeutschkorpus.de/en/).

15Cf. for example Coptic Scriptorium (http://www.
carrieschroeder.com/scriptorium/), Ridges (Reg-
ister in Diachronic German Science, http://korpling.
german.hu-berlin.de/ridges/index_en.html),
Perseus Latin and Ancient Greek Treebank (http:
//annis.perseus.tufts.edu/).

16Cf. sms4science (http://www.sms4science.ch/
index.html), or What’s up, Switzerland? (http://www.
whatsup-switzerland.ch/index.php/en/). A
comprehensive list of projects that use, for example, ANNIS
can be found at http://corpus-tools.org/annis/
cooperations.html.

17Cf. pcc2 (Stede and Neumann, 2014).

4497

8. Outlook
The development of all corpus-tools.org tools is ongoing,
i.e., they are constantly being extended, optimized, and it-
eratively released. The below paragraphs give an insight
into some development ideas and goals for the future.
Salt is a mature tool, and currently available in version
3.0, last released in February 2016. Similarly, Pepper is
available in stable release version 3.0, last released in early
2016. New Pepper modules are constantly developed, and
enhance Pepper’s ability to integrate further tools and for-
mats. Ideas for new Pepper modules are abundant. For
example: In corpus linguistics, the comparison of corpora
is a recurrent topic of discussion. For instance, after several
annotation iterations one may want to find the differences
between versions of a corpus. Similarly, when multiple an-
notators have worked on the same corpus one may want
to discover the differences between their respective annota-
tion work. Due to Salt’s graph-based nature these questions
could be broken down into a graph-matching problem, in a
similar fashion as with merging. As of now, Salt includes an
API for graph comparison, but in order to inform annotators
about changes in a well-structured manner, an easily acces-
sible representation of differences of the above-mentioned
natures is necessary. Such a visualization could be imple-
mented as a Pepper module which would in turn offer the
possibility to compare corpora across different formats.
Atomic is available in preview version 0.2.1, and is cur-
rently developed towards stable release version 1.0, due in
2016. After this, development efforts will focus on extend-
ing its core functionalities, thereby providing exemplary
cases for further development, including by third parties.
The exemplary cases are planned to include, for example,
further NLP components to be made available for corpus
building, such as parsers and taggers; support for annota-
tion schemes and tagsets, binding them to editing function-
alities in graphical editors as well as AtomicAL; API for ad-
ditional editor types, and default implementations, such as a
tabular editor for span-based annotation, a graph- and text-
based editor for coreference annotation, and a dedicated
editor for syntax trees; exchangable backends: Currently,
Atomic supports serialization to SaltXML as well as export
into different linguistic formats provided by Pepper. How-
ever, it should be possible for Atomic to persist Salt models
in other ways, for example by storing them in a database or
in the cloud, thus simplifying remote collaboration along
the way; search functionality, and (semi-)automatic anno-
tation of result sets; graphical and possibly TEX export of
annotation graphs and trees.
ANNIS, currently available in stable version 3.3 released
in September 2015, will continue to use a preview-release
model where new features are added to frequent preview
release versions, while more extensively tested regular ver-
sions are released about twice a year. It is planned to have
a better integration of search results from ANNIS in the
corpus-tools.org tool set by allowing the export to different
formats, including SaltXML. It should also be made eas-
ier to update only parts of an already imported corpus, e.g.
when annotation errors were corrected in Atomic. Instead
of converting and re-importing the complete corpus in AN-
NIS, the user should be able to import the changed docu-

ment only. Another substantial, and more long-term, devel-
opment effort is the enhancement of ANNIS’ scalability by
developing a new, graph database-based backend.

9. Acknowledgements
We thank three anonymous reviewers for their valuable
comments. Financial support from the German Science
Foundation (DFG, grant GA-1288/5-1) is gratefully ac-
knowledged.

10. Bibliographical References
Boersma, P. and Weenink, D. (2013). Praat: do-

ing phonetics by computer [computer program].
http://www.praat.org.

Brants, S., Dipper, S., Eisenberg, P., Hansen, S., König,
E., Lezius, W., Rohrer, C., Smith, G., and Uszkoreit,
H. (2004). TIGER: Linguistic Interpretation of a Ger-
man Corpus. Journal of Language and Computation,
(2):597–620.

Brugman, H. and Russel, A. (2004). Annotating multi-
media/multi-modal resources with ELAN. In Proceed-
ings of the 4th International Conference on Language
Resources and Evaluation (LREC 2004). Lisbon, Por-
tugal.

Clayberg, E. and Rubel, D. (2009). Eclipse Plug-ins.
Addison-Wesley Professional, Boston, Mass., 3rd edi-
tion.

Druskat, S., Bierkandt, L., Gast, V., Rzymski, C., and
Zipser, F. (2014). Atomic: an open-source software plat-
form for multi-level corpus annotation. In Josef Ruppert
et al., editors, Proceedings of the 12th Konferenz zur Ver-
arbeitung natürlicher Sprache (KONVENS 2014), pages
228–234.

Gast, V., Bierkandt, L., and Rzymski, C. (2015). Annotat-
ing modals with GraphAnno, a configurable lightweight
tool for multi-level annotation. In M. Nissim et al., edi-
tors, Proceedings of the Workshop on Models for Modal-
ity Annotation, pages 19–28, Stroudsburg, PA. Associa-
tion for Computational Linguistics (ACL).

Krause, T. and Zeldes, A. (2014). ANNIS3: A new archi-
tecture for generic corpus query and visualization. Digi-
tal Scholarship in the Humanities.

Lezius, W., Biesinger, H., and Gerstenberger, C. (2002).
TIGER-XML Quick Reference Guide. Technical report,
IMS, University of Stuttgart.

McAffer, J., Lemieux, J.-M., and Aniszczyk, C. (2010).
Eclipse Rich Client Platform. Addison-Wesley, Boston,
2nd edition.

Müller, C. and Strube, M. (2006). Multi-level annota-
tion of linguistic data with MMAX2. In Sabine Braun,
et al., editors, Corpus Technology and Language Peda-
gogy: New Resources, New Tools, New Methods, pages
197–214. Peter Lang, Frankfurt a.M., Germany.

Plaehn, O., (1998). Annotate Programm-Dokumentation
(NEGRA project report). Universität des Saarlandes,
Saarbrücken.

Schmidt, T. (2004). Transcribing and annotating spoken
language with EXMARaLDA. In Proceedings of the
LREC-Workshop on XML based richly annotated cor-
pora. Lisbon, Portugal.

4498

Stede, M. and Neumann, A. (2014). Potsdam Commentary
Corpus 2.0: Annotation for discourse research. In Pro-
ceedings of the 9th International Language Resources
and Evaluation Conference (LREC 2014). Reykjavik,
Iceland.

Voigt, V., Zipser, F., and Odebrecht, C. (2016). SaltInfo-
Module - the x-ray to your corpus. Poster presented at
38. Jahrestagung der Deutschen Gesellschaft für Sprach-
wissenschaft, 25 February, Konstanz University, Kon-
stanz, Germany.

Yimam, S. M., Gurevych, I., Eckart de Castilho, R., and
Biemann, C. (2013). WebAnno: A flexible, web-based
and visually supported system for distributed annota-
tions. System demonstration presented at ACL 2013, 5
August, Sofia, Bulgaria.

Zipser, F. and Romary, L. (2010). A model oriented ap-
proach to the mapping of annotation formats using stan-
dards. In Proceedings of the Workshop on Language Re-
source and Language Technology Standards. Seventh
International Conference on Language Resources and
Evaluation (LREC 2010), Valletta, Malta.

Zipser, F., Zeldes, A., Ritz, J., Romary, L., and
Leser, U. (2011). Pepper: Handling a multiverse
of formats. Poster presented at 33. Jahrestagung
der Deutschen Gesellschaft für Sprachwissenschaft, 24
February, Göttingen University, Göttingen, Germany.

Zipser, F., Frank, M., and Schmolling, J. (2014). Merg-
ing data, the essence of creation of multi-layer cor-
pora. Poster presented at 36. Jahrestagung der Deutschen
Gesellschaft für Sprachwissenschaft, 6 March, Marburg
University, Marburg, Germany.

11. Language Resource References
corpus-tools.org Development Team. (2015). corpus-

tools.org tool set for multi-layer corpora. Humboldt-
Universität zu Berlin and Friedrich Schiller University
Jena, 1.0, ISLRN pending.

Friedrich Schiller University Jena. (2015). Atomic. Link-
Type, Tools for crosslinguistic multi-level annotation,
0.2.1, ISLRN pending.

Humboldt-Universität zu Berlin. (2015). ANNIS. Son-
derforschungsbereich 632 “Information structure”, 3.3,
ISLRN pending.

Humboldt-Universität zu Berlin. (2016a). Pepper. Son-
derforschungsbereich 632 “Information structure”, 3.0,
ISLRN pending.

Humboldt-Universität zu Berlin. (2016b). Salt. Son-
derforschungsbereich 632 “Information structure”, 3.0,
ISLRN pending.

4499

