
Analysing Constraint Grammars with a SAT-solver

Inari Listenmaa, Koen Claessen
University of Gothenburg, Chalmers University of Technology

Gothenburg, Sweden
inari@chalmers.se, koen@chalmers.se

Abstract
We describe a method for analysing Constraint Grammars (CG) that can detect internal conflicts and redundancies in a given grammar,
without the need for a corpus. The aim is for grammar writers to be able to automatically diagnose, and then manually improve their
grammars. Our method works by translating the given grammar into logical constraints that are analysed by a SAT-solver. We have
evaluated our analysis on a number of non-trivial grammars and found inconsistencies.
Keywords: Constraint Grammar, SAT, Grammar Analysis

1. Introduction
Constraint Grammar (CG, Karlsson et al. (1995)) is a
formalism used to disambiguate morphologically analysed
text. A grammar consists of rules that target specific read-
ings for selection or removal, based on contextual tests. For
example, the following rule

REMOVE verb IF (-1 det) ;

removes all verb readings from a word which is preceded
by a determiner. Given the following text,

"<the>"
"the" det def

"<wish>"
"wish" noun sg
"wish" verb pl
"wish" verb inf

the rule will match to the word wish, and remove the read-
ings "wish" verb pl and "wish" verb inf. Note
that if the target word has only one remaining reading, then
the rule will not apply, even if the condition is met.
CGs are valuable resources for rule-based NLP, especially
for lesser resourced languages. They are robust and can be
written without large corpora—only a morphological anal-
yser is needed. The formalism is lightweight and language-
independent, and resources can be shared between related
languages (Bick, 2006; Antonsen et al., 2010). Mature CGs
contain some thousands of rules, but even small CGs are
shown to be effective (Antonsen and Trosterud, 2011).
By design, CG is a shallow and robust formalism. There
is no particular hierarchy between lexical, morphological,
syntactic or even semantic tags: individual rules can be
written to address any property, such as “verb”, “copula
verb in first person singular”, or “the word form sailor, pre-
ceded by drunken anywhere in the sentence”. This makes it
possible to treat very particular edge cases without touching
the more general rule: we would simply write the narrow
rule first (“if noun AND sailor”), and introduce the general
rule (“if noun”) later.
However, this design is not without problems. As CGs
grow larger, it gets harder to keep track of all the rules
and their interaction. Our tool will help grammar writers
and users to find conflicting rules, diagnose problems and

SELECT Inf IF (-1 Para OR De) (0C V) ;
SELECT Inf IF (-1 Prep) (0C V) ;
SELECT Inf IF (-1C Vai) ;
SELECT Inf IF (-1C Vbmod) (0C V) ;
SELECT Inf IF (-1C Ter/de) ;
SELECT Inf IF (-1C Vbmod) (0 Ser) ;

Figure 1: Rules to select infinitive in Portuguese.

improve their grammars. We expect two major use cases:
first, to test the effect of new rules while writing a grammar,
and second, to take a complete grammar and analyse it as a
whole, to find conflicts or dead rules.
Given the rules in figures 1 and 2, a grammar writer may
ask the following questions while writing a grammar.

• Are all the rules distinct? (e.g. Para and De may be
included in Prep)

• Can two or more rules be merged? (e.g. SELECT
Inf IF (-1C Prep OR Vai OR Vbmod))

• Can a messy rule be rewritten in a neater way without
changing the meaning?

• What is the best order for the rules?

• Generate a sentence that triggers a given list of rules
R but not R′

For the second use case, here are examples of conflicts that
our tool will detect.

• If two equivalent rules r and r′ occur in the grammar,
the second occurrence will be disabled by the first

• Rule r selects something in a context, and r′ re-
moves it

• A list of tules R removes something from the context
of a rule r, so r can never apply

• A rule r has an internal conflict, such as non-existent
tag combination, or contradictory requirements for a
context word

699

SELECT V + Prs/Imprt + Act + Neg

IF (*-1C Negv LINK NOT *1 Vfin/PrsPrc/Inf)
(NOT 0 N) (NOT 0 Pron)
(NOT *1 Neg) (NOT *-1 Neg)
(NOT 0 Pass) (NOT *-1 Niin)
(*-1C Negv LINK NOT *1 CLB?)
(*-1C Negv LINK NOT 0 Imprt) ;

IF (NOT *-1 Niin OR Neg)
(*-1C Negv
LINK NOT 0 Imprt
LINK NOT *1 Vfin/PrsPrc/Inf OR CLB?)

(NOT 0 N OR Pron OR Pass)
(NOT *1 Neg) ;

Figure 2: Two versions of a condition in Finnish.

In the above examples, R can be a single rule or a list of
rules: for instance, if one rule removes a verb in context
C, and another in context ¬C, together these rules remove
a verb in all possible cases, disabling any future rule that
targets verbs.
While rule-internal conflicts can be detected by simpler
means, taking care of rule interaction requires a semantic
rather than a syntactic analysis. We must keep track of all
the possible sentences after applying each rule. At each
step, we have two options: either the rule fires, or it does
not fire. In case the rule does not fire, we have two reasons
why not: one or more of its conditions does not hold, or its
target is the only remaining analysis. The result is a com-
plex table of interdependent decisions—some determined
by being the target of a rule, others by being a condition.
We express these constraints as a Boolean satisfiability
problem (SAT). A SAT-problem consists of two compo-
nents: a set of Boolean variables, and a set of clauses on
those variables. For instance, let the set of variables be
{a, b} and the formulas {a ∨ b,¬a}. A program called a
SAT-solver will try to find a solution, where all the variables
are replaced by a Boolean value. For this particular prob-
lem, the unique solution is {a = False, b = True}, but
it is also possible for a SAT-problem to have no solution or
multiple solutions. In the case of CG analysis, the solution
we build (called the model) represents a sentence that starts
as potentially anything, and is being shaped by all the rules
along the way. This is how we can generate possible inputs,
as well as check if the grammar is internally consistent.
The paper is structured as follows. Section 2. relates our
work to previous work. Section 3. discusses the implemen-
tation, and Section 4. presents preliminary results. Sec-
tion 5. discusses future work and concludes the paper.

2. Related work
We combine elements from the following aspects of CG
research:

• Corpus-based methods in manual grammar develop-
ment (Voutilainen, 2004)

• Optimising hand-written CGs (Bick, 2013)

• Encoding CG in logic (Lager, 1998; Lager and Nivre,
2001; Listenmaa and Claessen, 2015)

In addition, there is a large body of research on auto-
matically inducing rules, e.g. Samuelsson et al. (1996),
Eineborg and Lindberg (1998), Lager (2001) and Sfrent
(2014). However, since our work is aimed to aid the pro-
cess of hand-crafting rules, we omit those works from our
discussion.

Corpus-based methods in manual grammar develop-
ment Hand-annotated corpora are commonly used in the
development of CGs, because they give immediate feed-
back whether a new rule increases or decreases accuracy
(Voutilainen, 2004). This helps the grammar writer to ar-
range the rules in appropriate sections, with safest and most
effective rules coming first. However, this method will not
notice a missed opportunity or a grammar-internal conflict,
nor suggest ways to improve.

Automatic optimisation of hand-written grammars
Bick (2013) modifies the grammar automatically, by try-
ing out different rule orders and altering the contexts of the
rules. Bick reports error reduction of 7–15% compared to
the original grammars. As a downside, the grammar writer
will likely not know why exactly does the tuned grammar
perform better.

CG encoded in logic Lager (1998) and Lager and Nivre
(2001) reconstruct the CG formalism in first-order predi-
cate logic. Grammar analysis is a natural use case, due to
some key features of the logical reconstruction. The tra-
ditional CG compiler cannot capture any dependencies be-
tween rules. In contrast, a logic-based CG compiler does
that by default. The rules are modelled as implications and
composed in the order of the rule sequence, such that the
consequent from the ith rule becomes the antecedent of the
i + 1th rule. Given this design, we added on top a way to
ask for solutions with certain properties.

3. Implementation
In this section, we describe the implementation of the tool.
The SAT-encoding we use is similar to the one introduced
in Listenmaa and Claessen (2015), with one key difference:
in this paper, we operate on symbolic sentences instead of
concrete sentences from a corpus. The idea is that the SAT-
solver is going to find the concrete sentence for us.

3.1. Preliminaries
Our analysis operates on a rule r, which is preceded by a
list of rules R, and is concerned with answering the fol-
lowing question: “Does there exist an input sentence S that
can trigger rule r, even after passing all rules R that came
before r?”
Before we can do any analysis any of the rules, we need
to find out what the set of all possible readings of a word
is. We can do this by extracting this information from a
lexicon, but there are other ways too. In our experiments,
the number of readings has ranged from about 300 to about
9000.
Furthermore, when we analyse a rule r, we need to decide
the width w(r) of the rule r: How many different words

700

should there be in a sentence that can trigger r? Most often,
w(r) can be easily determined by looking at how far away
the rule context indexes in the sentence relative to the target.
For example, in the rule mentioned in the introduction, the
width is 2.
If the context contains a * (context word can be anywhere),
we may need to make an approximation of w(r), which
may result in false positives or negatives later on in the anal-
ysis.

3.2. Symbolic sentences
We start each analysis by creating a so-called symbolic sen-
tence, which is our representation of the sentence S we are
looking for. A symbolic sentence is a sequence of symbolic
words; a symbolic word is a table of all possible readings
that a word can have, where each reading is paired up with
a SAT-variable.
The number of words in the symbolic sentence we create
when we analyse a rule r is w(r). For the rule in the intro-
duction, we have w(r) = 2 and a symbolic sentence may
look as follows:

word1 word2 reading
v1 w1 det def
v2 w2 noun sg
v3 w3 noun pl
v4 w4 verb sg
v5 w5 verb pl

Here, vi and wj are SAT-variables belonging to word1 and
word2, respectively. We can also see that the possible num-
ber of readings here was 5.
The SAT-solver contains extra constraints about the vari-
ables. Input sentences should have at least one reading per
word, so we add the following two constraints:

v1 ∨ v2 ∨ v3 ∨ v4 ∨ v5,
w1 ∨ w2 ∨ w3 ∨ w4 ∨ w5

Any solution to the constraints found by the SAT-solver can
be interpreted as a concrete sentence with w(r) words that
each have a set of readings.

3.3. Applying a rule
Next, we need to be able to apply any given rule r′ to a
symbolic sentence, resulting in a new symbolic sentence.
For example, if we apply the rule from the introduction
to the symbolic sentence above, the result is the following
symbolic sentence:

word1 word2 reading
v1 w1 det def
v2 w2 noun sg
v3 w3 noun pl
v4 w′

4 verb sg
v5 w′

5 verb pl

The example rule can only affect readings of word2 that
have a “verb” tag, so we create only two new variables w′

4

and w′
5 for the result, and reuse the other variables. We

must also add the following constraint for w′
4:

w′
4 ⇔ [w4 ∧ ¬(v1 ∧ (w1 ∨ w2 ∨ w3))]

In other words, after applying the rule, the reading “verb
sg” (represented by the variable w′

4) can only be in the re-
sulting sentence exactly when (1) “verb sg” was a reading
of the input sentence (so w4 is true) and (2) the rule has not
been triggered (the rule triggers when v1 is true and at least
one of the non-verb readings w1 . . . w3 is true). We add a
similar constraint for the new variable w′

5:

w′
5 ⇔ [w5 ∧ ¬(v1 ∧ (w1 ∨ w2 ∨ w3))]

3.4. Putting it all together
Once we know how to apply any rule r′ to a symbolic sen-
tence, resulting in a new symbolic sentence, we can apply
all rules preceding the rule r that is under analysis. We sim-
ply apply each rule to the result of applying the previous
rule. In this way, we end up with a symbolic sentence that
represents all sentences that could be the result of applying
all those rules.
Finally, we can take a look at the rule r we want to analyse.
Here is an example:

REMOVE det IF (1 verb) ;

If we take the symbolic sentence above as input, we want
to ask whether or not it can trigger the rule r. We do this by
adding some more constraints to the SAT-solver.
First, the context of the rule should be applicable, meaning
that the second word should have a reading with a “verb”
tag:

w′
4 ∨ w′

5

Second, the rule should be able to remove the “det” tag,
meaning that the first word should have a reading with a
“det” tag, and there should be at least one other reading:

v1 ∧ (v2 ∨ v3 ∨ v4 ∨ v5)

If the SAT-solver can find a solution to all constraints gener-
ated so far, we have found a concrete sentence that satisfies
our goal. If the SAT-solver cannot find a solution, it means
that there are no sentences that can ever trigger rule r. (This
means that there is something wrong with the grammar.)

3.5. Creating realistic readings
Earlier we have shown an example with 5 readings (“det
def”, “noun sg”, ...). In a realistic case, we operate be-
tween hundreds and thousands of possible readings. In or-
der to find the set of readings, we expand a morphological
lexicon1, ignore the word forms and lemmas, and take all
distinct analyses. However, many grammar rules target a
specific lemma or word form. A simple solution is to retain
the lemmas and word forms only for those entries where
it is specified in the grammar, and otherwise leave them
out. For example, the Dutch grammar contains the follow-
ing rule:

REMOVE ("zijn" vbser) IF (-1 Prep)
(1 Noun) ;

1We used the lexica from Apertium, found in https://
svn.code.sf.net/p/apertium/svn/languages/.

701

https://svn.code.sf.net/p/apertium/svn/languages/
https://svn.code.sf.net/p/apertium/svn/languages/

This hints that there is something special about the verb
zijn, compared to the other verbs. Looking at the lexicon,
we find zijn in the following entries:

zijn:zijn<det><pos><mfn><pl>
zijn:zijn<det><pos><mfn><sg>
zijn:zijn<vbser><inf>
zijn:zijn<vbser><pres><pl>

Thus we add special entries for these: in addition to the
anonymous “det pos mfn pl” reading, we add “zijn det pos
mfn pl”. The lemma is treated as just another tag.
However, for languages with more readings, this may not be
feasible. For instance, Spanish has a high number of read-
ings, not only because of many inflectional forms, but be-
cause it is possible to add 1–2 clitics to the verb forms. The
number of verb readings without clitics is 213, and with
clitics 1572. With the previously mentioned approach, we
would have to duplicate 1572 entries for each verb lemma.
Even ignoring the clitics, each verb lemma still adds 213
new readings.
The readings in a grammar can be underspecified: for ex-
ample, the rule REMOVE (verb sg) IF (-1 det)
gives us “verb sg” and “det”. In contrast, the lexicon only
gives us fully specified readings, such as “verb pres p2 sg”.
We implemented a version where we took the tag combina-
tions specified in the grammar directly as our readings, and
we could insert them into the symbolic sentences as well.
The shortcut works most of the time, but if we only take
the readings from the grammar and ignore the lexicon, it is
possible to miss some cases: e.g. the rule SELECT Pron
+ Rel IF (0 Nom) may require “pron rel nom” in one
reading, but this method only gives “pron rel” and “nom”
separately.
In addition, we found that the tag lists in the grammars
sometimes contain errors, such as using a nonexistent tag
or using a wrong level in a subreading. If we accept those
lists as readings, we will generate symbolic sentences that
are impossible, and not discover the bug in the grammar.
However, if we are primarily interested in rule interaction,
then using the underspecified readings from the grammar
may be an adequate solution.

3.6. Creating realistic ambiguities
In the previous section, we have created realistic readings,
by simply hardcoding legal tag combinations into variables.
The next step in creating realistic ambiguities is to constrain
which readings can go together. For instance, the case of
zijn shows us that “determiner or verb” is a possible ambi-
guity. In contrast, there is no word form in the lexicon that
would be ambiguous between an adjective and a comma,
hence we do not want to generate such ambiguity in our
symbolic sentences.

n nt sg n f pl vblex sep inf det pos mfn
uitgaven 0 1 1 0

toespraken 0 1 1 0
haar 1 0 0 1

We solve the problem by creating ambiguity classes:
groups of readings that can be ambiguous with each other.

We represent the expanded morphological lexicon as a ma-
trix, as seen above: word forms on the rows and analy-
ses on the columns. Each distinct row forms an ambiguity
class. For example, one class may contain words that are
ambiguous between plural feminine nouns and separable
verb infinitives; another contains masculine plural adjec-
tives and masculine plural past participles. Then we form
SAT-clauses that allow or prohibit certain combinations.
These clauses will interact with the constraints created from
the rules, and the end result will be closer to real-life sen-
tences.
Our approach is similar to Cutting et al. (1992), who use
ambiguity classes instead of distinct word forms, in order
to reduce the number of parameters in a Hidden Markov
Model. They take advantage of the fact that they don’t have
to model “bear” and “wish” as separate entries, but they can
just reduce it to “word that can be ambiguous between noun
and verb”, and use that as a parameter in their HMM.
There are two advantages of restricting the ambiguity
within words. Firstly, we can create more realistic exam-
ple sentences, which should help the grammar writer. Sec-
ondly, we can possibly detect some more conflicts. Assume
that the grammar contains the following rules:

REMOVE adj IF (-1 aux) ;
REMOVE pp IF (-1 aux) ;

With our symbolic sentence, these rules will be no prob-
lem; to apply the latter, we only need to construct a target
that has a realistic ambiguity with a past participle; the ad-
jective will be gone already. However, it could be that past
participles (pp) only ever get confused with adjectives—in
that case, the above rules would contradict each other. By
removing the adjective reading, the first rule selects the past
participle reading, making it an instance of “r selects some-
thing in a context, r′ removes it”. The additional constraints
will prevent the SAT-solver from creating an ambiguity out-
side the allowed classes, and such a case would be caught
as a conflict.

4. Evaluation
We tested three grammars to find conflicting rules: Dutch2,
with 59 rules; Spanish3, with 279 rules; and Finnish4, with
1185 rules. We left out ADD, MAP and other rule types in-
troduced in CG-3, and only tested REMOVE and SELECT
rules. The results for Dutch and Spanish are shown in Ta-
ble 1, and the results for Finnish in Table 2.
A natural follow-up evaluation would be to compare the
performance of the grammar in the original state, and after
removing the conflicts found by our tool. Unfortunately,
we did not have time to perform such evaluation, and in
addition, we only have gold standard corpus (20 000 words)
for Spanish.

2
https://svn.code.sf.net/p/apertium/svn/languages/

apertium-nld/apertium-nld.nld.rlx
3
https://svn.code.sf.net/p/apertium/svn/languages/

apertium-spa/apertium-spa.spa.rlx
4
https://github.com/flammie/apertium-fin/raw/master/

apertium-fin.fin.rlx

702

https://svn.code.sf.net/p/apertium/svn/languages/apertium-nld/apertium-nld.nld.rlx
https://svn.code.sf.net/p/apertium/svn/languages/apertium-nld/apertium-nld.nld.rlx
https://svn.code.sf.net/p/apertium/svn/languages/apertium-spa/apertium-spa.spa.rlx
https://svn.code.sf.net/p/apertium/svn/languages/apertium-spa/apertium-spa.spa.rlx
https://github.com/flammie/apertium-fin/raw/master/apertium-fin.fin.rlx
https://github.com/flammie/apertium-fin/raw/master/apertium-fin.fin.rlx

NLD SPA SPA sep. lem.

rules 59 279 279
readings 336 3905 1735
true positives AC 7 45 44
(internal + interaction) (6 + 1) (21 + 24) (20 + 24)
true positives no AC 7 43 42
(internal + interaction) (6 + 1) (18 + 25) (17 + 25)
false positives 0 0 1
� with amb. classes 7 s 1h 46m 23 min
� no amb. classes 3 s 44 min 16 min

Table 1: Results for Dutch and Spanish grammars.

The experiments revealed problems in all grammars. For
the smaller grammars, we were able to verify manually
that nearly all detected conflicts were true positives—we
found one false positive and one false negative, when us-
ing a shortcut for the Spanish grammar. We did not sys-
tematically check for false negatives in any of the gram-
mars, but we kept track of a number of known tricky cases;
mostly rules with negations and complex set operations. As
the tool matures and we add new features, a more in-depth
analysis will be needed.

4.1. Dutch
The Dutch grammar had two kinds of errors: rule-internal
and rule interaction. As for rule-internal conflicts, one was
due to a misspelling in the list definition for personal pro-
nouns, which rendered 5 rules ineffective. The other was
about subreadings: the genitive s is analysed as a subread-
ing in the Apertium morphological lexicon, but it appeared
in one rule as the main reading.
There was one genuine conflict with rule interaction, shown
below:

D1 . REMOVE Adv IF (1 N) ;
REMOVE Adv IF (-1 Det) (0 Adj) (1 N) ;

These two rules share a target: both remove an adverb. The
problem is that the first rule has a broader condition than the
second, hence the second will not have any chance to act.
If the rules were in the opposite order, then there would be
no problem.
We also tested rules individually, in a way that a grammar
writer might use our tool when writing new rules. The fol-
lowing rule was one of them:

D2 . SELECT DetPos IF (-1 (vbser pres p3
sg)) (0 "zijn") (1 Noun);

As per VISL CG-3, the condition (0 "zijn") does not
require zijn to be in the same reading with the target Det-
Pos. It just means that at index 0, there is a reading with any
possessive determiner, and a reading with any zijn. How-
ever, the intended action is to select a “det pos zijn” all
in one reading; this is expressed as SELECT DetPos +
"zijn". In contrast, the 0-condition in example D1 is used
correctly: the adjective and the adverb are supposed to be
in different readings.

Can we catch this imprecise formulation with our tool? The
SAT-solver will not mark it as a conflict (which is the cor-
rect behaviour). But if we ask it to generate an example
sequence, the target word may be either of the following
options. Seeing interpretation a) could then direct the gram-
mar writer to modify the rule.

a) "w2"
w2<det><pos><f><sg>
zijn<vbser><inf>

b) "w2"
zijn<det><pos><mfn><pl>

We found the same kind of definition in many other rules
and grammars. To catch them more systematically, we
could add a feature that alerts in all cases where a condition
with 0 is used. As a possible extension, we could automat-
ically merge the 0-condition into the target reading, then
show the user this new version, along with the original, and
ask which one was intended.

4.2. Spanish
The Spanish grammar had proportionately the highest
number of errors. The grammar we ran is like the one
found in the Apertium repository (linked on the previous
page), apart from two changes: we fixed some typos (capi-
tal O for 0) in order to make it compile, and commented out
two rules that used regular expressions, because we did not
implement the support for them yet. For a full list of found
conflicts, see the annotated log of running our program
in https://github.com/inariksit/cgsat/
blob/master/data/spa/conflicts.log.
We include two versions of the Spanish grammar in Table 1:
in column SPA, we added the lemmas and word forms as
described in Section 3.5., and in column SPAsep. lem., we just
added each word form and lemma as individual readings,
allowed to combine with any other reading. This latter ver-
sion ran much faster, but failed to detect an internal conflict
for one rule, and reported a false positive for another.
When we added ambiguity class constraints, we found three
more internal conflicts. Interestingly, the version with am-
biguity classes fails to detect an interaction conflict, which
the simpler version reports, because one of the rules is first
detected as an internal conflict. We think that neither of
these versions is a false positive or negative; it is just a mat-
ter of priority. Sometimes we prefer to know that the rule
cannot apply, given the current lexicon. However, we may
know that the lexicon is about to be updated, and would
rather learn about all potential interaction conflicts.
As an example of internal conflict, there are two rules that
use SET Cog = (np cog): the problem is that the tag
“cog” does not exist in the lexicon. As another example,
four rules require a context word tagged as NP with ex-
plicit number, but the lexicon does not indicate any number
with NPs. It is likely that this grammar has been written
for an earlier version, where such tags have been in place.
One of the conflicts that was only caught by the ambigu-
ity class constraints had the condition IF (1 Comma)
(..) (1 CnjCoo). The additional constraints cor-
rectly prevent commas from being ambiguous with any-
thing else.

703

 https://github.com/inariksit/cgsat/blob/master/data/spa/conflicts.log
 https://github.com/inariksit/cgsat/blob/master/data/spa/conflicts.log

As for the 25 interaction conflicts, there were only 9 dis-
tinct rules that rendered 25 other rules ineffective. In fact,
we can reduce these 9 rules further into 3 different groups:
4 + 4 + 1, where the groups of 4 rules are variants of other-
wise identical rule, each with different gender and number.
An example of such conflict is below (gender and number
omitted for readability):

S1 . # NOM ADJ ADJ
SELECT A OR PP IF (-2 N)
(-1 Adj_PP) (0 Adj_PP) (NOT 0 Det);

NOM ADJ ADJ ADJ
SELECT A OR PP IF (-3 N) (-2 N)
(-1 Adj_PP) (0 Adj_PP) (NOT 0 Det);

In addition, the grammar contains a number of set defini-
tions that were never used. Since VISL CG-3 already points
out unused sets, we did not add such feature in our tool.
However, we noticed an unexpected benefit when we tried
to use the set definitions from the grammar directly as our
readings: this way, we can discover inconsistencies even in
set definitions that are not used in any rule. For instance, the
following definition requires the word to be all of the listed
parts of speech at the same time—most likely, the grammar
writer meant OR instead of +:

S2 . SET NP Member = N + A + Det + PreAdv
+ Adv + Pron ;

If it was used in any rule, that rule would have
been marked as conflicting. We noticed the error
by accident, when the program offered the reading
w2<n><adj><det><preadv><adv><prn> in an ex-
ample sequence meant for another rule.
As with the Dutch grammar, we ran the tool on individ-
ual rules and examined the sequences that were generated.
None of the following was marked as a conflict, but look-
ing at the output indicated that there are multiple interpre-
tations, such as whether two analyses for a context word
should be in the same reading or different readings. We ob-
served also cases where the grammar writer has specified
desired behaviour in comments, but the rule does not do
what the grammar writer intended.

S3 . REMOVE Sentar IF (0 Sentar) (..) ;

SELECT PP IF (0 "estado") (..) ;

The comments make it clear that the first rule is meant to
disambiguate between sentar and sentir, but the rule does
not mention anything about sentir. Even with the ambiguity
class constraints, the SAT-solver only created an ambigu-
ity where sentar in 1st person plural is ambiguous with an
anonymous 1st person plural reading. This does not reflect
the reality, where the target is only ambiguous with certain
verbs, and in certain conjugated forms.
The second case is potentially more dangerous. The word
form estadoW can be either a noun (estadoL, ‘state’), or
the past participle of the verb estarL. The condition, how-
ever, addresses the lemma of the noun, estadoL, whereas
the lemma of the PP is estarL. This means that, in theory,

there can be a case where the condition to select the PP is
already removed. As for now, the lexicon does not con-
tain other ambiguities with the word form estadoW , but
we could conceive of a scenario where someone adds e.g.
a proper noun EstadoL to the lexicon. Then, if some rule
removes the lemma estadoL, the rule to select PP will not
be able to trigger.
Another question is whether this level of detail is necessary.
After all, the grammar will be used to disambiguate real life
texts, where neither sentar nor estado are likely to have any
other ambiguities. In fact, we are planning to change how
we handle the lexical forms; with those changes, it will be-
come clear whether the imprecision will result in potential
errors, given the current lexicon.

4.3. Finnish
The results for the Finnish grammar are shown separately,
in Table 2. We encountered a number of difficulties and
used a few shortcuts, which we did not need for the
other grammars—most importantly, not using the ambigu-
ity class constraints. Due to these complications, the results
are not directly comparable, but we include Finnish in any
case, to give an idea how our method scales up: both to
more rules, and more complex rules.

Challenges with Finnish The first challenge is the mor-
phological complexity of Finnish. There are more than
20,000 readings, when all possible clitic combinations are
included. After weeding out the most uncommon combina-
tions, we ended up with sets of 4000–8000 readings.
The second challenge comes from the larger size of the
grammar. Whereas the Spanish and Dutch had only tens
of word forms or lemmas, the Finnish grammar specifies
around 900 of them. Due to both of these factors, the pro-
cedure described in Section 3.5. would have exploded the
number of readings, so we simply took the lemmas and
word forms, and added them as single readings. In cases
where they were combined with another tag in the grammar,
we took that reading directly: for instance, we included
both aika and “aika n” from the rule SELECT "aika" +
N, but nothing from the rule SELECT Pron + Sg. This
method gave us 1588 additional readings.
Finally, we were not able to create ambiguity class
constraints—expanding the Finnish morphological lexicon
results in 100s of gigabytes of word forms, which is simply
too big for our method to work. For future development, we
will see if it is possible to manipulate the finite automata di-
rectly, instead of relying on the output in text.

Results The results are shown in Table 2. In the first col-
umn, we included only possessive suffixes. In the second
column, we included question clitics as well. Both of these
readings include the 1588 lemmas and word forms from the
grammar. In the third column, we included all the tag com-
binations specified in the grammar, and in the fourth, we
took only those, ignoring the morphological lexicon.
The first two variants reported a high number of internal
conflicts. These are almost all due to nonexisting tags.
The grammar was written in 1995, and updated by Pirinen
(2015); such a high number of internal conflicts indicates
that possibly something has gone wrong in the conversion,

704

1 clitic + lemmas
from grammar

2 clitics + lemmas
from grammar

1 clitic + all read-
ings from grammar

all readings
from grammar

readings 5851
(4263 + 1588)

9494
(7906 + 1588)

6657
(4263 + 2394)

2394

conflicts 214 214 22 22
(internal + interaction) (211 + 3) (211 + 3) (19 + 3) (19 + 3)
� all rules (approx.) ˜4h 30min ˜9h 30min ˜7h 45min ˜2h 30min

Table 2: Results for Finnish (1185 rules).

or in our expansion of the morphological lexicon. As for
accuracy, adding the question clitics did not change any-
thing: they were already included in some of the 1588 sets
with word forms or lemmas, and that was enough for the
SAT-solver to find models with question clitics. We left the
result in the table just to demonstrate the change in the run-
ning time.
The second two variants are playing with the full set of
readings from the grammar. For both of these, the number
of reported conflicts was only 22. Given the preliminary
nature of the results, we did not do a full analysis of all the
214 reported conflicts. Out of the 22, we found 17 of them
as true conflicts, but 5 seemed to be caused by our handling
of rules with *: all of these 5 rules contain a LINK and
multiple *s. On a positive note, our naive handling of the *
seems to cover the simplest cases.
Some examples of true positives are shown in the follow-
ing.

F1. "oma" SELECT Gen IF (..) (0C Nom) ;

SELECT Adv IF (NOT 0 PP) (..) ;

Both of these are internal conflicts, which may not be trivial
to see. The first rule requires the target to be genitive and
unambiguously nominative; however, these two tags cannot
combine in the same reading. As for the second rule, the
definition of PP includes adv among others—with the sets
expanded, this rule becomes SELECT adv IF (NOT 0
pp|adv|adp|po|pr) (...).
The following two examples are interaction conflicts:

F2. REMOVE A (0 Der) ;
REMOVE N (0 Der) ;
REMOVE A/N (0 Der) ;

This is the same pattern we have already seen before, but
with a set of rules as the reason for conflict. The first two
rules together remove the target of the third, leaving no way
for there to be adjective or noun.

F3 . SELECT .. IF (-1 Comma/N/Pron/Q) ;
SELECT .. IF (-2 ..) (-1 Comma) ;

The rules above have been simplified to show only the rel-
evant part. The conflict lies in the fact that Comma is a sub-
set of Comma/N/Pron/Q: there is no way to trigger the
second rule without placing a comma in position -1, and
thereby triggering the first rule.

4.4. Performance
The running time of the grammars ranges from seconds to
hours. Note that the times in the Finnish table are not en-
tirely comparable with each other: we were forced to run
the tests in smaller batches, and it is possible that there
are different overheads, unrelated to the size of the SAT-
problem, from testing 50 or 500 rules at a time. Despite
the inaccuracies, we can see that increasing the number of
readings and adding the ambiguity class constraints slow
the program down significantly.
However, many of the use cases do not require running the
whole grammar. Testing the interaction between 5–10 rules
takes just seconds in all languages, if the ambiguity class
constraints are not included. A downside in the ambigu-
ity classes is that generating them takes a long time, and
while the overhead may be acceptable when checking the
full grammar, it is hardly so when analysing just a handful
of rules. We are working on an option to store and reuse the
ambiguity class constraints.

5. Conclusions and Future Work
We set out to design and implement an automatic analysis
of constraint grammars that can find problematic rules and
rule combinations, without the need for a corpus. Our eval-
uation indicates that the tool indeed finds non-trivial con-
flicts and dead rules from actual grammars.
We did not have a volunteer to test the tool in the process
of grammar writing, so we cannot conclude whether the
constructed examples are useful for getting new insights on
the rules. In any case, there are still a number of features to
improve and add.

Combining morphological and lexical tags Our solu-
tion to hardcode the tag combinations in the readings is fea-
sible for simple morphology, but it can cause problems with
more complex morphology. Currently, if we add one new
lemma to the set of readings, we need to create as many new
variables as there are inflectional forms for that lemma.
We are currently working on adding the concepts of lemmas
and word forms directly to the representation of the possi-
ble readings. A possible solution would be to make each tag
a variable, and ask the question “can this reading be a noun?
singular? conditional?” separately for each tag. Then we
could lift the restriction of tag combinations into the SAT
side: make SAT-clauses that prohibit a comparative to go
with a verb, or conditional with a noun. Alternatively, we
can still hardcode the set of morphological readings, and
only use SAT-clauses to restrict which lexical form can go
with which morphological analysis.

705

Full expressivity of CG-3 As for longer-term goals, we
want to handle the full expressivity of CG-3, with MAP,
ADD, ADDREADING and SUBSTITUTE rules, as well as de-
pendency structure. This also means finding different kinds
of conflicts. In order to implement rules that may add new
readings, or new tags to existing readings, we need to mod-
ify our approach in the SAT-encoding. Even if the lexicon
gives all readings that exist in the lexicon, the user might
give a nonexistent reading, or in the case of MAP, a syntac-
tic tag, which is (by definition) not in the lexicon. We may
need to move to a more scalable solution.

Support for grammar writers As mentioned earlier, we
could support additional checks for common issues, such
as conditions that concern the target word. Another pos-
sible feature is to suggest reformattings for a rule. Recall
Figure 2 from the introduction; in that case, the original
rule was written by the original author, and another gram-
marian thought that the latter form is nicer to read. Doing
the reverse operation could also be possible. If a rule with
long disjunctions conflicts, it may be useful to split it into
smaller conditions, and eliminate one at a time, in order
to find the reason(s) for the conflict. Our next step is to
evaluate our tools together with actual grammar writers, in
comparison with a corpus-based method or machine learn-
ing.

Other grammar formalisms Finally, we would like to
investigate logic-based methods for analysing other gram-
mar formalisms, for example Grammatical Framework
(Ranta, 2010).

Acknowledgments
We thank Eckhard Bick for the idea to apply SAT to CG
analysis, and Francis Tyers for insightful discussions, as
well as our anonymous reviewers for comments and sug-
gestions.

6. Bibliographical References
Antonsen, L. and Trosterud, T. (2011). Next to nothing –

a cheap South Saami disambiguator. In Proceedings of
the Constraint Grammar workshop at NODALIDA.

Antonsen, L., Wiechetek, L., and Trosterud, T. (2010).
Reusing grammatical resources for new languages. In
Proceedings of the International conference on Lan-
guage Resources and Evaluation LREC2010.

Bick, E. (2006). A Constraint Grammar Parser for Span-
ish. In Proceedings of TIL 2006 - 4th Workshop on In-
formation and Human Language Technology.

Bick, E. (2013). ML-Tuned Constraint Grammars. In Pro-
ceedings of the 27th Pacific Asia Conference on Lan-
guage, Information and Computation.

Cutting, D. R., Kupiec, J., Pedersen, J. O., and Sibun,
P. (1992). A practical part-of-speech tagger. In ANLP,
pages 133–140.

Eineborg, M. and Lindberg, N. (1998). Induction of con-
straint grammar-rules using progol. In David Page, edi-
tor, Inductive Logic Programming, volume 1446 of Lec-
ture Notes in Computer Science. Springer Berlin Heidel-
berg.

Karlsson, F., Voutilainen, A., Heikkilä, J., and Anttila, A.
(1995). Constraint Grammar: a language-independent
system for parsing unrestricted text, volume 4. Walter de
Gruyter.

Lager, T. and Nivre, J. (2001). Part of speech tagging from
a logical point of view. In Proceedings of LACL, Logical
Aspects of Computational Linguistics.

Lager, T. (1998). Logic for part of speech tagging and shal-
low parsing. In Proceedings of the 11th Nordic Confer-
ence on Computational Linguistics.

Lager, T. (2001). Transformation-based learning of rules
for constraint grammar tagging. In Proceedings of the
13th Nordic Conference on Computational Linguistics.

Listenmaa, I. and Claessen, K. (2015). Constraint Gram-
mar as a SAT problem. In Proceedings of the Constraint
Grammar workshop at NODALIDA.

Pirinen, T. (2015). Using weighted finite state morphol-
ogy with VISL CG-3—Some experiments with free open
source Finnish resources. In Proceedings of the Con-
straint Grammar workshop at NODALIDA.

Ranta, A. (2010). Grammatical Framework: Program-
ming with Multilingual Grammars. CSLI Publications.

Samuelsson, C., Tapanainen, P., and Voutilainen, A.
(1996). Inducing constraint grammars. In Laurent Mi-
clet et al., editors, Grammatical Interference: Learning
Syntax from Sentences, volume 1147 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg.

Sfrent, A. (2014). Machine Learning of Rules for Part of
Speech Tagging. Master’s thesis, Imperial College Lon-
don, United Kingdom.

Voutilainen, A. (2004). Hand crafted rules. In H. van Hal-
teren, editor, Syntactic Wordclass Tagging, pages 217–
246. Kluwer Academic.

706

	Introduction
	Related work
	Implementation
	Preliminaries
	Symbolic sentences
	Applying a rule
	Putting it all together
	Creating realistic readings
	Creating realistic ambiguities

	Evaluation
	Dutch
	Spanish
	Finnish
	Performance

	Conclusions and Future Work
	Bibliographical References

