
UIMA-based JCORE 2.0 Goes GITHUB and MAVEN CENTRAL —
State-of-the-Art Software Resource Engineering and

Distribution of NLP Pipelines

Udo Hahn1 Franz Matthies1 Erik Faessler1 Johannes Hellrich1 2

1 Jena University Language & Information Engineering (JULIE) Lab
2 Research Training Group “The Romantic Model. Variation - Scope - Relevance”

Friedrich-Schiller-Universität Jena
Jena, Germany

http://www.julielab.de

Abstract
We introduce JCORE 2.0, the relaunch of a UIMA-based open software repository for full-scale natural language processing originating
from the Jena University Language & Information Engineering (JULIE) Lab. In an attempt to put the new release of JCORE on firm
software engineering ground, we uploaded it to GITHUB, a social coding platform, with an underlying source code versioning system
and various means to support collaboration for software development and code modification management. In order to automate the
builds of complex NLP pipelines and properly represent and track dependencies of the underlying JAVA code, we incorporated MAVEN

as part of our software configuration management efforts. In the meantime, we have deployed our artifacts on MAVEN CENTRAL, as
well. JCORE 2.0 offers a broad range of text analytics functionality (mostly) for English-language scientific abstracts and full-text
articles, especially from the life sciences domain.

Keywords: natural language processing pipelines, open software repository, software engineering, software configuration man-
agement, collaborative code management, JCORE, UIMA, GITHUB, MAVEN CENTRAL

1. Introduction
A true sign of the growing maturity of natural language
processing is the continuous production of reusable code
(e.g., for POS tagging, parsing, WSD, reference resolution,
etc.) and language data resources (e.g., annotated corpora
or computational lexicons). For a long time, a common
way to share such artifacts has been to create a publically
accessible space on one’s own site, list available resources,
and, after acknowledgment of licencing conditions, allow
download of either source code or binaries.
We have been following this passive directory model for
many years with our own NLP tool suite, the JULIE
Lab UIMA Component Repository (JCORE; Hahn et al.
(2008)), as well. JCORE – based on the UIMA middleware
framework1 – assembled (following UIMA speak) several
collection readers (for document input), analysis engines
(for NLP core tasks, e.g., document and sentence segmen-
tation, named entity tagging or acronym resolution) and
CAS consumers (e.g., for storing analysis results in an in-
dex structure). These resources were hosted and made pub-
lically accessible via http://www.julielab.de/
Resources/JCoRe+NLP+Tools.html.
This service for the NLP community, despite the positive
feedback we got from our users, increasingly also generated
several problems which can be summarized as follows:

• Some modules maintained on an irregular basis be-
came outdated (e.g., the MEDLINE2 reader needs

1https://uima.apache.org/
2MEDLINE is a bibliographical database for life sciences doc-

uments which currently comprises more than 25M references;
for more details, cf. https://www.nlm.nih.gov/bsd/
pmresources.html

adaptation to the yearly updated MEDLINE XML
schema),

• Bug fixes from external users or functional extensions
they asked for were hard to integrate in the daily work-
flow. This is mainly due to the change patterns of the
personnel working in academic software labs (e.g., the
original developers of a piece of software leave after
having completed their Master or Doctoral thesis, new
staff entering usually focuses on novel goals rather
than caring much about legacy software from former
students). Hence, responding adequately to such feed-
back was not always easy to manage,

• Due to the lack of an automated build and release pro-
cess, the tools on our web page had to be updated
manually. This could lead to large discrepancies be-
tween the latest state of the source code in our private
version control systems and the version published on
JULIE Lab’s web site. Hence, the integration of exter-
nal feedback was even more impeded by the fact that
suggestions from external users could refer to obsolete
versions of our code,

• A communication bottleneck occurred on our lab’s
side since a growing number of users contacted us for
support (e.g., concerning installation problems),

• The UIMA framework on which JCORE is based of-
ten posed problems for users of our resources not so
(well) acquainted with this environment. Hence, some
UIMA tutoring and consulting was necessary for run-
ning JCORE tools outside the JULIE Lab,

• Assembling a pipeline of JCORE components re-
quired downloading the PEAR packages, installing

2502



them locally using the UIMA PEAR installer and then
creating a UIMA pipeline descriptor. Since PEAR
packages are installed in local directories, including
library dependencies, such a pipeline could not eas-
ily be shared, e.g., by collaborators within the same
group.

Other well-known representatives in the NLP domain who
also adhere to the passive model for software distribution
outlined above are, for instance

• LINGPIPE: http://alias-i.com/lingpipe

• GATE:3https://gate.ac.uk/

Despite the progress revealed by such repositories, from a
software development perspective some fundamental short-
comings are evident. First, the interaction between produc-
ers and consumers of software housed in such repositories
is fundamentally asymmetric and non-interactive. When
the modules of choice have been downloaded from such
sites they can be used on an ‘as is’ basis. But if bug fixes
or reasonable extensions have been carried out at external
sites, they have to be reported back informally, usually via
email, to the original developers in a ‘private’ exchange
mode. Also the channels for such software change commu-
nication are entirely decoupled from the platforms on which
software development takes place. Furthermore, often no
routine software engineering support (for version tracking,
code merging, testing of modified code, etc.) is provided
for professionally administering the proposed changes of
the sources at the origin. So, embedded collaboration sup-
port is a clear desideratum.
Within the field of software engineering, team support for
software developers has increasingly become a major con-
cern (Mistrı́k et al., 2010). The growing relevance of social
media for team building and collaborative, communication-
intense group work has further fueled the emergence of so-
called social coding platforms (for a survey of major play-
ers, cf. Begel et al. (2013)). One of the most prominent
exemplars of this breed of software development frame-
works is GITHUB4 (Dabbish et al., 2012). With GITHUB,
users are in command of a large-scale workspace where
they place their software in repositories which are man-
aged by a powerful version management system. Differ-
ent change management policies and collaboration meth-
ods for the communication, notification (activity awareness
and tracing) and visualization of source code changes on
the basis of opted-in social roles (followers, watchers, etc.)
are at the heart of GITHUB, thus adapting the social net-
work metaphor to software development.
The enhanced opportunities and increased productivity
gained by this and other comparable novel software devel-
opment frameworks created entirely new communities of
practice. This development had also a strong appeal for
the NLP community. Many groups who once adhered to
the passive directory model changed their rules of the game
and subscribed to this collaborative social coding model in
the NLP domain, for instance

3The developers of GATE, in the meantime, provide their com-
ponents via MAVEN CENTRAL.

4https://github.com/

• STANFORD TOOLS: https://github.com/
stanfordnlp/CoreNLP, the primary site sits on
GITHUB

• DKPRO CORE: https://github.com/dkpro/
dkpro-core, the primary site sits on GITHUB

• NLTK: https://github.com/nltk/nltk,
the primary site sits on GITHUB

• OPENNLP: https://github.com/apache/
opennlp, GITHUB repository is a mirror of an
SVN repository – their source code is located at
https://svn.apache.org/repos/asf/
opennlp/trunk/

• UIMA: https://github.com/apache/
uima-uimaj, GITHUB repository is a mirror of
an SVN repository – their source code is located
at http://svn.apache.org/repos/asf/
uima/addons/trunk/

As some application fields pose highly specific challenges
for NLP pipelines (e.g., anonymization in the medical
arena, gene or chemical name recognition in the fields of
biology and chemistry, respectively), even for such special-
ized areas comprehensive NLP portals have been created—
originally under the passive directory model, now increas-
ingly moving to GITHUB as well, such as

• CTAKES (for medicine): https://github.
com/apache/ctakes; (currently) seems incom-
plete on GITHUB, compared with the mirror at
the project’s web site under http://ctakes/
apache.org/

• JCORE (for biology): http://julielab.
github.io; the older version of JCORE main-
tained under http://www.julielab.de/
Resources/JCoRe+NLP+Tools.html has
become obsolete with the current publication of
JCORE 2.0 on GITHUB.

Social interaction offers lots of unprecedented opportuni-
ties for efficient and effective coding. But keeping track
of intrinsic inter-module dependencies and not losing con-
trol of versatile changes in complex software architectures
introduces yet another orthogonal dimension of organiza-
tional complexities into distributed coding processes.
To properly document and lucidly track dependencies be-
tween pieces of code and even allow to automate the build-
ing of large-scale software projects, MAVEN5 has turned
out as a convenient build management and comprehen-
sion tool centered around the concept of a project object
model (POM). To fully exploit the usage of MAVEN for
JCORE, the deployment of our software to MAVEN CEN-
TRAL has become the second software engineering corner-
stone of the release of JCORE 2.0. Interestingly, with
the exception of LINGPIPE and NLTK,6 all other major

5https://maven.apache.org/
6NLTK is a PYTHON project incompatible with MAVEN’s de-

pendence on JAVA. Yet NLTK has managed to integrate their
framework in a software management tool similar to MAVEN.

2503



NLP tool suites (i.e., STANFORD TOOLS, DKPRO CORE,
OPENNLP, UIMA) have also been moving to deploy their
software to MAVEN CENTRAL.

2. JCORE 2.0 —
JULIE Component Repository

With JCORE 2.0, we relaunch the JULIE Component
Repository in conformance with contemporary software de-
velopment and engineering standards. This step is intended
to not only simplify the accessibility and usability of our
tools, but also implies that we commit ourselves to more
rigid and frequent release cycles. JCORE 2.0 features, at
the time of this writing (March 2016), 25 components (see
Table 1), all written in JAVA. They are either self-developed
JULIE Lab software or wrappers for third-party tools which
we made compatible with UIMA and, more specific, with
our type system (Buyko and Hahn, 2008). NLP pipelines
within the UIMA framework we subscribed to can be con-
figured from the following types of components:

• groups of several collection readers (CR) which en-
able users to access annotation information from other
projects and corpora,

• several analysis engines (AE) which constitute the
main part of an NLP pipeline ranging from low-level
tasks such as tokenization to high-end functionality
(e.g., dependency parsing, relation extraction, etc.),

• a couple of CAS consumers (CC) which export the an-
notations to different formats, and

• last but not least, the JULIE Lab type system (TS)
which forms a comprehensive annotation type defini-
tion scheme.

Table 1 lists all components with a short description of their
functionality and, if applicable, a reference to the descrip-
tion of the underlying module. Further information will
be accessible from their respective GITHUB entry or their
POM file. Compared with our initial JCORE repository
(Hahn et al., 2008), some components are missing. These
are either obsolete (e.g., the CAS2DB Consumer) or ob-
tainable from other sources, as in the case of the LUCENE
INDEXER which is now featured in the UIMA SANDBOX7

(Faessler et al., 2009). For the majority of our AEs, we de-
rived special packages consisting of the base component, a
pre-trained model and a fitting UIMA component descrip-
tor for ‘out of the box’ use.8 These packages are bundled as
JCORE Projects and also available on MAVEN CENTRAL
and GITHUB. In Section 5., we will provide a short docu-
mentation on how to best use our newly packaged reposi-
tory.
As already mentioned, we decided to tackle the problems
of lacking visibility, collaboration, reuse and availability of
JCORE by moving the tool suite to an open development
framework. We committed ourselves to GITHUB in order

7https://uima.apache.org/sandbox.html#
lucas.consumer

8AEs for which such a package exists are marked accordingly
with ‘*’ in Table 1.

to provide a platform for an unobstructed and interactive
software exchange and MAVEN CENTRAL9 for giving users
of JCORE 2.0 the capability to access all of its components
without much impediments. In this manner, we pave the
way to easily plug together NLP pipelines without the need
to worry much about UIMA technicalities.
Thus, the goal of making JCORE 2.0 tools public was, and
still is, not only to provide a comfortable setting for our
own work, but, first and foremost, to offer the scientific
community easy to follow workflows to partake of results
of cutting-edge research conducted in our lab. For instance,
the newly added JULIE Lab part-of-speech tagger (JPOS)
outperformed both the OPENNLP and the Stanford POS
Tagger with regard to POS tagging in the German medical
and newspaper domain (Hellrich et al., 2015).
As this paper describes the relaunch of an already ac-
knowledged component repository with focus on its new
paradigm, in the following, we will only give a concise re-
cap of the different categories our components are divided
into, with some general remarks about the workings of the
latter. If needed, a more precise description can be found in
Hahn et al. (2008) or the respective GITHUB page.

2.1. Type System
The data structure backbone of JCORE is still our compre-
hensive annotation type system (Buyko and Hahn, 2008).
It offers a broad range of types to use in the context of
various text analytics task—on a basic annotation level lin-
guistic types like sentence, token, abbreviation, part-of-
speech types, etc., or on a formal document structure level
types such as title, abstract, paragraph, etc. Moreover the
type system supports a substantial semantic layer for the
biomedical domain including entities (such as gene, or-
ganism, cell), relations and events (e.g., various forms of
protein-protein interactions). As this type system was al-
ready very elaborate and covered a large variety of morpho-
syntactic and semantic features, there was not much to add
except for some restructuring and minor extensions.

2.2. Collection Readers
JCORE 2.0 features six different collection readers which
can be thought of as preprocessors for the actual text
analysis tasks. Four of them (the ACE, BIONLP ST,
IEXML/MANTRA and MUC7 Reader) comply with spe-
cific task-dependent file formats to feed the UIMA pipeline
with semantically annotated text from the respective shared
task—from the biomedical domain (BIONLP ST and
MANTRA) and the newswire domain (ACE and MUC7).10

The other two (XML and FILE Reader) are more general in
nature and read XML files or plain text files, respectively.
The former reader is extensible by a mapping file to con-
form to specific formats (e.g. MEDLINE or PUBMED; cf.
Footnote 2).

2.3. Analysis Engines
The analysis engines are at the heart of every UIMA
pipeline and are (in the case of JCORE) responsible for

9http://search.maven.org/
10However, the BIONLP ST corpora are the only ones that are

freely available.

2504



Component Type Functional Description, Including Specification of Sources and References

JULIE Type System TS Annotation type system with an extensive semantic layer (Buyko and Hahn, 2008)
ACE Reader CR Reader which converts the ACE (Automatic Content Extraction) corpus (https:

//www.ldc.upenn.edu/collaborations/past-projects/ace) (Dod-
dington et al., 2004) to CAS objects

MUC7 Reader CR Reader which converts MUC-7 (Message Understanding Conference) files (https:
//catalog.ldc.upenn.edu/LDC2001T02) (Chinchor, 1998) to CAS objects

BIONLP ST Reader CR Reader which converts BIONLP Shared Task formatted files (http://www.
nactem.ac.uk/tsujii/GENIA/SharedTask/index.shtml\#data)
(Kim et al., 2009) to CAS objects

IEXML / MANTRA Reader CR Reader for IEXML files as used in the MANTRA Challenge (https://sites.
google.com/site/mantraeu/clef-er-challenge) (Hellrich et al., 2014)

*XML Reader CR Reader which employs a mapping file for reading, e.g., PUBMED & MEDLINE files
(http://www.ncbi.nlm.nih.gov/pubmed)

FILE Reader CR Reader which takes plain text files as input
*JULIE Lab Sentence Splitter AE A CRF-based sentence splitter (Tomanek et al., 2007)
*OPENNLP Sentence Splitter AE Wrapper for OPENNLP’s sentence splitter (https://github.com/apache/

opennlp)
*JULIE Lab Tokenizer AE A CRF-based tokenizer (Tomanek et al., 2007)
*OPENNLP Tokenizer AE Wrapper for OPENNLP’s tokenizer (https://github.com/apache/

opennlp)
STANFORD Lemmatizer AE Wrapper for the Stanford Lemmatizer which yields morphological normalization, i.e.

a mapping from inflected word forms to the associated lemma (https://github.
com/stanfordnlp/CoreNLP)

*JULIE Lab POS Tagger AE Tagger for the annotation of part-of-speech tags from an arbitrarily chosen tag set (Hell-
rich et al., 2015)

*OPENNLP POS Tagger AE Wrapper for OPENNLP’s POS tagger (https://github.com/apache/
opennlp)

*OPENNLP Chunker AE Wrapper for OPENNLP’s text chunker (https://github.com/apache/
opennlp)

*MST Dependency Parser AE Wrapper for the MST dependency parser (McDonald et al., 2005)
*OPENNLP Constituency Parser AE Wrapper for OPENNLP’s shift-reduce parser (https://github.com/apache/

opennlp)
Acronym Resolver AE System for the resolution of acronyms (short form → long form) (Schwartz and Hearst,

2003)
LINGPIPE Gazetteer AE Wrapper for LINGPIPE’s gazetteer (http://alias-i.com/lingpipe/)
*JULIE Lab Named Entity Tagger AE JNET, a tagger for the automatic detection and classification of named entity mentions

in running text (Hahn et al., 2008)
JULIE Lab Coordination Resolver AE Tagger for the recognition and resolution of coordinated elliptical entity expressions

(Buyko et al., 2007)
*BIOSEM Relation Extractor AE Wrapper for the BIOSEM Event Extraction System (Bui and Sloot, 2012)
BIONLP ST Consumer CC Consumer which writes CAS annotations into the BIONLP Shared Task format
CAS2IOB Consumer CC Consumer which generates IOB-formatted files for specified annotations
XMI Writer CC Wrapper for UIMA’s XMI writer, with some additional options
IEXML / MANTRA Consumer CC Consumer which generates stand-off IEXML files as used in the MANTRA Challenge

(https://sites.google.com/site/mantraeu/clef-er-challenge)
(Hellrich et al., 2014)

Table 1: Overview of the JCORE 2.0 Component Repository

the actual text processing. JCORE 2.0 contains at the time
of this writing 15 AEs which deal with either morpho-
syntactic or semantic processing.

Morpho-Syntactic Processing. Token and sentence seg-
mentation is taken care of by a wrapper for the OPENNLP
tool suite based on Maximum Entropy (ME) mod-
els (Berger et al., 1996) and a self developed tool based on
Conditional Random Fields (CRF) (Lafferty et al., 2001).
In order to deal with morphological variation of words,
we provide the Stanford Lemmatizer. This component
takes at least tokenized and POS-tagged text and returns

a dictionary form of each word. To provide the afore-
mentioned part-of-speech (POS) tags, we supply a wrapper
for OPENNLP’s POS tagger and a self developed compo-
nent (Hellrich et al., 2015). The tool set for syntactic anal-
ysis features a phrase chunker, a constituency parser (both
wrappers for OPENNLP) and a slightly modified version
of the MSTPARSER (McDonald et al., 2005), a parser for
non-projective dependency structures, where we adapted
the source code to UIMA’s workflow so that models are
only loaded once in the course of the initialization phase.

Semantic Processing. Acronym resolution (the task of

2505



finding a full form for a corresponding short form or ab-
breviation, such as for UN → United Nations) is supported
by our reimplementation of the Schwartz-Hearst algorithm
(Schwartz and Hearst, 2003). Named entities are han-
dled by two different tools: one is based on LINGPIPE’s
gazetteer and the other is JNET, a CRF-based entity tag-
ger developed at JULIE Lab that can be used for arbitrary
domains and entity classes given appropriate training mate-
rial (Hahn et al., 2008). Thirdly, for the recognition and
resolution of coordinated elliptical entity expressions we
currently only provide a Lab-made rule-based tagger. A
machine learning-based tagger became nonfunctional as a
result of switching to new versions because of global de-
pendencies in JCORE 2.0 and, thus, needs a major over-
haul.
Finally, as JCORE’s top level analysis component, we in-
tegrated the BIOSEM relation extractor (Bui and Sloot,
2012) into our repository. It not only achieves state-of-
the-art performance in tasks dealing with the extraction of
events and relations in the biomedical domain,11 but also
excels with truly competitive compute-time performance
data when compared to relation extractors which use de-
pendency parsing, as well as with small-sized models.

2.4. CAS Consumers
The CAS consumers are the post-processors of a UIMA
pipeline and deploy the results of the AEs in different for-
mats depending on the actual consumer. These formats
could either be text/XML files, databases or, like in the
case of the LUCENE INDEXER (Faessler et al., 2009), even
more sophisticated outputs. JCORE consists of four differ-
ent consumers, two of which are more specific and accom-
pany the corresponding CRs, namely the BIONLP ST Con-
sumer and the IEXML/MANTRA Consumer which generate
files expected by the appropriate task. The XMI Writer
is a more complex wrapper around the UIMA inherent
XMICASSERIALIZER as it also allows single or multiple
files to be compressed into zip files. The CAS2IOB Writer
produces IOB-formatted text files and can be adjusted to
limit the output to specific annotation types only.
As already mentioned the CAS2DBCONSUMER fell victim
to our updating process, as many dependencies need to be
restructured to fit into the new JCORE scheme. Its revital-
ization is on the agenda for future versions of JCORE.

3. GITHUB
In the past years, GITHUB has become the most popu-
lar Web-based social code sharing service world-wide.12

Based on the GIT distributed version control system,13 it
has emerged as an essential tool in technology areas that re-
quire intense human group collaboration for effective task
completion, such as software development, technical and
business co-authoring, education, etc. (Begel et al., 2013).

11In the BioNLP 2013 Shared Task, the system ranked 3rd and
1st regarding approximate and strict matching, respectively. In the
2011 Shared Task it ranked 1st for full texts and 3rd for abstracts.

12As of March 2016, there are 12M people collaborating across
31M repositories on GITHUB; see https://github.com/
about/press

13https://git-scm.com/

GITHUB’s positive impact on such collaboration processes
(as reported, e.g., by Tsay et al. (2012)) is mainly due to
the awareness and transparency features it provides to team,
project and community members (Dabbish et al., 2012).
The following description, quoted from Zagalsky et
al. (2015), nicely summarizes the main features of
GITHUB (for another brief summary, cf. Dabbish et al.
(2012)[p.1280]). It “offers several unique features to fa-
cilitate user collaboration. Its most important feature is
the Pull Request (PR) mechanism which is a way to ini-
tiate discussion with other users and share or comment on
the various artifacts in a project (typically changes to the
project’s content). The discussion may include code that
is visible to everyone and it shows the exact changes that
would be merged if the PR were accepted. A PR may in-
volve other content (e.g., screenshots) to provide a back-
ground for the discussion, or include changes to other re-
sources in the project.
When a user wishes to contribute to someone else’s project,
they can Clone14 the project to create a full copy of the
project in their local environment, but where committed
changes will still affect the original project. This is called
a Shared Repository Model:15 contributors can either com-
mit changes directly into the shared repository or use PRs
to start code reviews and conversations about proposed
changes before the changes are merged into the master
branch.
Alternatively, a user can Fork16 the entire project to create
a parallel project where committed changes do not directly
affect the original project. This is called a Fork & Pull
Model: PRs provide a way to notify the original project
maintainers about the changes you would like them to con-
sider.
Users can not only follow other users or projects of interest,
but they can also broadcast their activities to their follow-
ers. Furthermore, users can discover new projects by using
the Explore feature, or share snippets using the Gist feature.
GITHUB also supports awareness by broadcasting updates
to the user’s news feed. The combination of these features
facilitates “a culture of spontaneous-but-structured collab-
oration”.”17 (Zagalsky et al., 2015)[p.1907-08].

4. Maven
MAVEN, the widely used JAVA dependency and build man-
agement tool, communicates and interacts by default with
The Central Repository which offers the largest collection
of JAVA components.18 This forms the already mentioned
MAVEN CENTRAL, where we will deploy all JCORE 2.0
components and their dependencies; nearly all of the de-
pendencies that were not developed by us are already

14https://help.github.com/articles/
duplicating-arepository

15https://guides.github.com/introduction/
flow/

16https://help.github.com/articles/
fork-a-repo

17tp://software-carpentry.org/blog/2012/
04/github-for-education.html

18http://central.sonatype.org/pages/about.
html

2506



present there.
To facilitate a uniform build system, each MAVEN project
features as its core a POM file which is the pivotal point in
the format of an XML file that not only specifies project
metadata but also handles configuration, e.g., resolving
dependencies. This might arguably be one of the main
strengths of MAVEN, in general. It empowers the user to
simply declare what other components are needed for a
project and the appropriate libraries are automatically and
dynamically loaded into the project’s building path, either
from the Local or the Remote Repository,19 if they are non-
existent in the former or newer in the latter. This results in
a plethora of well-maintained and up-to-date libraries all of
them accessible in an comprehensible way. For well-known
and frequently used JAVA Integrated Development Environ-
ments (IDEs, such as ECLIPSE, NETBEANS or INTELLI
IDEA), there also exist MAVEN plug-ins that make the
preparation and modification of POMs even more handy.

5. JCORE 2.0—How to
Naturally, with the transition to JCORE 2.0 and the
farewell from a passive model of software development and
distribution, we refrained from providing PEAR packages.
There are now basically two ways of using the components
of our repository to plug together NLP pipelines which we
will describe, in brevity, in the following.20 The JCORE
Pipelines Repository contains projects that exemplify both
strategies. Regardless of which approach is chosen, one
needs to operate with JAVA, MAVEN and UIMA.

DECLARATIVE. On the one hand, there is the declarative
approach where one utilizes a so-called Collection Process-
ing Engine (CPE), an XML file which declares which com-
ponents and respective settings to use. At the time of this
writing, we are working on a reference sheet where the po-
tential user will find the coordinates for each component to
fill out these CPEs and scripts that will provide an easy way
to prepare the pipeline (e.g., checking if all is set up cor-
rectly and downloading the appropriate MAVEN artifacts).
Using, understanding and/or modifying code is not neces-
sary for this method.

PROCEDURAL. On the other hand, a more programmatic
approach is to employ, for instance, UIMA FIT21 in or-
der to simplify the description and instantiation of com-
ponents and write the actual pipeline in JAVA code. This
variant offers its users a conspicuous level of control over
the pipeline. As with the former procedure, MAVEN takes
care of the dependency resolution and loads the necessary
libraries dynamically into the workspace.
This technique leads to an even more proactive mode, if one
is willing to collaborate in further development and/or bug-
fixing of our components by downloading the up-to-date

19Simply speaking, a Remote Repository is, for instance, the
aforementioned Central Repository but can also be set up and
specified to be on a private server. The Local Repository is a cache
of the downloads from the former.

20Some components have a standalone mode, as well. How
to use them in this manner will be explained on their respective
GITHUB page.

21https://uima.apache.org/uimafit.html

GITHUB repository and use its content to directly assess
any change to a component one has made.

To complete this section, we will give a concise overview of
the different relevant repositories into which we have split
up JCORE 2.0 on GITHUB:

JCORE Base. The Base package contains all basic
components—the Type System, all CRs, AEs and
CCs. This repository is highly relevant if one is in-
terested in active development of JCORE. All projects
included come only with a basic descriptor file and are
rarely usable on their own since they lack model files.

JCORE Projects. The Project package covers pre-built
projects that should be used if one hasn’t the need to
train models on one’s own. The components of this
repository don’t feature actual code but rather con-
sist of a POM file with coordinates to their respective
BASE package, a fully functional descriptor XML and
a model from the biomedical domain. Every BASE
component which needs training is featured at least
once here.

JCORE Pipelines. In the Pipeline package we provide
pre-built pipelines for specific NLP tasks. Each indi-
vidual component comes at least with the scripts men-
tioned beforehand, a CPE and a POM file. At the time
of this writing (March 2016), it contains a named en-
tity detection pipeline that takes simple text files as in-
put and returns IOB-formatted files with annotations
for entities as output; this pipeline uses the CPE ap-
proach. The other component utilizes the BIOSEM re-
lation extractor to read text and protein files from the
BioNLP Shared Task in order to produce appropriate
event annotation files with a model trained on the 2011
Shared Task data.

6. Conclusion
In this paper, we described the transition from the initial
JCORE repository release which relied on a passive model
of software distribution to JCORE 2.0 which features a so-
cial coding model. This move expresses a clear commit-
ment to contemporary standards of an open and collabo-
rative software management model as promoted by an in-
creasing number of leader groups in the NLP community.
As JCORE 2.0 mainly aims to provide tools for the field
of biomedical NLP, we believe to have made a major step
towards reusability, accessibility and collaboration in this
area.
The workflow of initializing adjustments to and modifi-
cations of our components is made even easier and can
now proceed in an interactive manner. Meaningful and
beneficial changes by the community can make it more
swiftly into our tool set, as we envisage more frequent
release cycles. Even if potential users of JCORE 2.0
are only interested in using our components ‘as is’, the
migration to MAVEN CENTRAL supplies better and easier
access paths.

Availability: The most convenient way to get an
overview of and access to the source code of JULIE Lab’s

2507



JCORE components is by following the GITHUB Page
http://julielab.github.io

7. Acknowledgments
This work is partially supported by grants from the
Deutsche Forschungsgemeinschaft (DFG)—Erik Faessler
is funded by a grant within the CRC AQUADIVA (SFB
1076), while Johannes Hellrich is funded by a grant from
the Research Training Group “The Romantic Model. Vari-
ation - Scope - Relevance” (GRK 2041/1).

8. Bibliographical References
Begel, A., Bosch, J., and Storey, M.-A. (2013). Social

networking meets software development: Perspectives
from GITHUB, MSDN, STACK EXCHANGE, and TOP-
CODER. IEEE Software, 30(1):52–66.

Berger, A. L., Della Pietra, S. A., and Della Pietra, V. J.
(1996). A maximum entropy approach to natural lan-
guage processing. Computational Linguistics, 22(1):39–
71.

Bui, Q.-C. and Sloot, P. M. A. (2012). A robust approach to
extract biomedical events from literature. Bioinformat-
ics, 28(20):2654–2661.

Buyko, E. and Hahn, U. (2008). Fully embedded type sys-
tems for the semantic annotation layer. In ICGL 2008
— Proceedings of the 1st International Conference on
Global Interoperability for Language Resources. Hong
Kong, SAR, January 9-11, 2008, pages 26–33.

Buyko, E., Tomanek, K., and Hahn, U. (2007). Resolu-
tion of coordination ellipses in biological named entities
using Conditional Random Fields. In PACLING ’07 —
Proceedings of the 10th Conference of the Pacific Asso-
ciation for Computational Linguistics. Melbourne, Aus-
tralia, September 19-21, 2007, pages 163–171.

Chinchor, N. A. (1998). Overview of MUC-7/MET-2. In
MUC-7 — Proceedings of the 7th Message Understand-
ing Conference. Fairfax, Virginia, USA, April 29 - May
1, 1998.

Dabbish, L., Stuart, C., Tsay, J. T., and Herbsleb, J. (2012).
Social coding in GITHUB: Transparency and collabo-
ration in an open software repository. In CSCW ’12 —
Proceedings of the ACM 2012 Conference on Computer
Supported Cooperative Work. Seattle, WA, USA, Febru-
ary 11-15, 2012, pages 1277–1286.

Doddington, G., Mitchell, A., Przybocki, M., Ramshaw,
L. A., Strassel, S., and Weischedel, R. M. (2004). The
Automatic Content Extraction ACE Program: Tasks, data
& evaluation. In LREC 2004 — Proceedings of the 4th
International Conference on Language Resources and
Evaluation. In Memory of Antonio Zampolli. Lisbon,
Portugal, 24-30 May, 2004, volume 3, pages 837–840.

Faessler, E., Landefeld, R., Tomanek, K., and Hahn, U.
(2009). LUCAS: - a LUCENE CAS Indexer. In Christian
Chiarcos, et al., editors, Von der Form zur Bedeutung:
Texte automatisch verarbeiten. From Form to Meaning:
Processing Texts Automatically. Proceedings of the Bien-
nial GSCL Conference 2009, pages 217–224, Tübingen.
Gunter Narr Verlag.

Hahn, U., Buyko, E., Landefeld, R., Mühlhausen, M.,
Poprat, M., Tomanek, K., and Wermter, J. (2008). An
overview of JCORE, the JULIE Lab UIMA Component
Repository. In Proceedings of the LREC ’08 Workshop
“Towards Enhanced Interoperability for Large HLT Sys-
tems: UIMA for NLP”. Marrakech, Morocco, 31 May
2008, pages 1–7.

Hellrich, J., Clematide, S., Hahn, U., and Rebholz-
Schuhmann, D. (2014). Collaboratively annotating mul-
tilingual parallel corpora in the biomedical domain:
Some MANTRAs. In LREC 2014 — Proceedings of the
9th International Conference on Language Resources
and Evaluation. Reykjavik, Iceland, May 26-31, 2014,
pages 4033–4040.

Hellrich, J., Matthies, F., Faessler, E., and Hahn, U. (2015).
Sharing models and tools for processing German clinical
texts. In Ronald Cornet, et al., editors, Digital Health-
care Empowering Europeans. Proceedings of the 26th
Medical Informatics in Europe Conference — MIE 2015.
Madrid, Spain, May 27-29, 2015, number 210 in Studies
in Health Technology and Informatics, pages 734 – 738,
Amsterdam etc. IOS Press.

Kim, J.-D., Ohta, T., Pyysalo, S., Kano, Y., and Tsujii, J.
(2009). Overview of BioNLP ’09 Shared Task on Event
Extraction. In BioNLP 2009 — Proceedings of the Com-
panion Volume: Shared Task on Event Extraction. Boul-
der, CO, USA, June 5, 2009, pages 1–9.

Lafferty, J. D., McCallum, A. K., and Pereira, F. C. N.
(2001). Conditional Random Fields: Probabilistic mod-
els for segmenting and labeling sequence data. In ICML
’01 — Proceedings of the 18th International Conference
on Machine Learning. Williams College, Williamstown,
MA, USA , June 28 - July 1, 2001, pages 282–289.

McDonald, R. T., Pereira, F. C. N., Ribarov, K., and
Hajič, J. (2005). Non-projective dependency parsing
using spanning tree algorithms. In HLT-EMNLP 2005
— Proceedings of the Conference on Human Language
Technology and Empirical Methods in Natural Lan-
guage Processing. Vancouver, B.C., Canada, October 6-
8, 2005, pages 523–530.

Ivan Mistrı́k, et al., editors. (2010). Collaborative Software
Engineering. Springer-Verlag, Berlin, Heidelberg.

Schwartz, A. S. and Hearst, M. H. (2003). A simple algo-
rithm for identifying abbreviation definitions in biomed-
ical text. In Russ B. Altman, et al., editors, PSB 2003
— Proceedings of the Pacific Symposium on Biocomput-
ing 2003. Kauai, Hawaii, USA, January 3-7, 2003, pages
451–462.

Tomanek, K., Wermter, J., and Hahn, U. (2007). Sen-
tence and token splitting based on Conditional Random
Fields. In PACLING ’07 — Proceedings of the 10th Con-
ference of the Pacific Association for Computational Lin-
guistics. Melbourne, Australia, September 19-21, 2007,
pages 49–57.

Tsay, J. T., Dabbish, L., and Herbsleb, J. (2012). So-
cial media and success in Open Source projects. In
CSCW ’12 — Proceedings of the ACM 2012 Conference
on Computer Supported Cooperative Work. Companion
Volume. Seattle, WA, USA, February 11-15, 2012, pages
223–226.

2508



Zagalsky, A., Feliciano, J., Storey, M.-A., Zhao, Y., and
Wang, W. (2015). The emergence of GITHUB as a
collaborative platform for education. In CSCW ’15 —
Proceedings of the 18th ACM Conference on Computer
Supported Cooperative Work & Social Computing. Van-
couver, B.C,. Canada, March 14-18, 2015, pages 1906–
1917.

2509


