
Interoperability of Annotation Schemes: Using the Pepper framework to
display AWA documents in the ANNIS interface

Talvany Carlotto∗, Zuhaitz Beloki†, Xabier Artola†, Aitor Soroa†
∗Center for Language and Cognition Groningen, University of Groningen, Groningen, Netherlands,

†IXA NLP Group, University of the Basque Country, Donostia, Basque Country
∗talvanynet@gmail.com, †xabier.artola, zuhaitz.beloki, a.soroa@ehu.es

Abstract
Natural language processing applications are frequently integrated to solve complex linguistic problems, but the lack of interoperability
between these tools tends to be one of the main issues found in that process. That is often caused by the different linguistic formats
used across the applications, which leads to attempts to both establish standard formats to represent linguistic information and to create
conversion tools to facilitate this integration. Pepper is an example of the latter, as a framework that helps the conversion between
different linguistic annotation formats. In this paper, we describe the use of Pepper to convert a corpus linguistically annotated by the
annotation scheme AWA into the relANNIS format, with the ultimate goal of interacting with AWA documents through the ANNIS
interface. The experiment converted 40 megabytes of AWA documents, allowed their use on the ANNIS interface, and involved making
architectural decisions during the mapping from AWA into relANNIS using Pepper. The main issues faced during this process were due
to technical issues mainly caused by the integration of the different systems and projects, namely AWA, Pepper and ANNIS.

Keywords: Interoperability, AWA, Pepper, relANNIS, ANNIS

1. Introduction
Natural language processing (NLP) applications demand
the integration of many basic linguistic processing mod-
ules (Tokenization, POS tagging, Named Entity Recogni-
tion and Classification, Syntactic Parsing, Coreference Res-
olution, etc.) that perform linguistic analysis at several
levels. Sophisticated applications such as event extraction
systems, for example, are built upon those basic modules,
which are typically combined to build complex process-
ing workflows. However, application developers face many
challenges when combining NLP modules, which are often
tailored to the particular needs of the task at hand and, thus,
difficult to integrate. Arguably, one of the main problems
encountered when combining NLP modules is the lack of
interoperability among them, as each module uses different
mechanisms and formats to represent their output, i.e., their
annotations.
Nowadays, there exist many linguistic annotation schemes
that define logical levels of annotation independent of the
annotation’s physical format, and are thus able to represent
linguistic annotations on many levels. For instance, GATE
(Cunningham et al., 1996), AWA (Artola et al., 2009),
PAULA (Dipper and Götze, 2005) or NAF (Fokkens et al.,
2014) are some of the most relevant projects where stand-
off annotation is used to deal with the combination of mul-
tiple overlapping hierarchies characteristic of the multidi-
mensional nature of linguistic information.
There have been also attempts to establish standards for
representing linguistic information with the aim of facilitat-
ing effective resource management and integration of NLP
tools (Ide and Romary, 2004). However, as desirable as it
might be, expecting such a unique representation standard
to be adopted by the NLP community is unrealistic. The
reasons for this are numerous, including, among others, the
following:

• Linguistic standards are developed following diverse

goals, often contradictory ones. A linguistic standard
has to be able to represent a great variety of linguistic
phenomena, yet it has to do so in a rigid, unambigu-
ous way, so that users know how to map their internal
representation to the standard representation.

• NLP is a very active area of research, where new tech-
niques and applications are constantly developed. De-
vising a uniform representation scheme that is able to
cover all the linguistic levels required today is very
difficult, if not impossible.

• There exist many representation schemes which lack
proper toolsets, libraries and APIs upon which to
effectively build applications. For instance, the
ISO/TC37/SC 4 standard on language resource man-
agement lacks, as far as we know, any library or API
that allows its use. Likewise, tools for visualizing an-
notations, or tools for aiding corpus manual annotation
are missing.

• Many representation schemes have been designed
with a particular language (or language family) in
mind, which hinders its adoption for languages with
different morphosyntactic structures.

In this paper we study the interoperability among annota-
tion schemes by using the Pepper architecture (Zipser et
al., 2015). Pepper is a framework for the conversion of lin-
guistic annotations among formats. It uses a data model
named Salt as a lingua franca among linguistic schemes,
and the conversion among formats is achieved by mapping
each one into Salt. Pepper can be used to convert docu-
ments into the relANNIS format, which in turn is supported
by ANNIS (Krause and Zeldes, 2014), a corpus search tool
that supports diverse multilayer corpora with appropriate
search and visualization .
We describe experiments of converting a corpus linguisti-
cally annotated by following the annotation scheme AWA

4049

(described in section 2.) into the Pepper framework. As a
result, we can benefit from the libraries and visualization
tools offered by ANNIS. Our experiment not only allows
us to visualize and search for AWA annotations in an inter-
face known for its accessibility, performance and scalabil-
ity features (Krause and Zeldes, 2014), but it also reveals
some challenges and practical issues one has to face when
dealing with interoperability aspects on linguistic annota-
tion schemes.

2. AWA
The Annotation Web Architecture (AWA) representation
scheme was presented by Artola et al. (2009), with the aim
of facilitating the communication between linguistic pro-
cessors in a variety of NLP applications. AWA is specifi-
cally designed to represent morphologically-rich languages
such as Basque, and also to represent interpretational am-
biguity at many levels. AWA guarantees that linguistic an-
notations are properly represented, and avoids information
redundancy. The AWA scheme defines a layered annotation
format. If a process is meant to add information that cannot
be described by existing layers, it simply adds a new an-
notation layer. Any previous layers remain intact and can
still be used by other processes. Layers are connected by
references from one layer to items in another (lower-level)
layer.
The design goals and main characteristics of the AWA
scheme enable multi-level interoperability among linguis-
tic processors, and nowadays there exist several NLP tools
that produce and consume AWA documents, such as Mor-
pheus (Alegria et al., 1996), a wide-coverage morphosyn-
tactic analyzer for Basque, and Eustagger (Ezeiza et al.,
1998), a general-purpose tagger/lemmatizer. The represen-
tation schemes corresponding to the annotations of the fol-
lowing processors have also been defined: Ixati (Alegria
et al., 2006), a shallow parser, which includes the NERC
tool Eihera+; Edgk/MaltIxa (Aranzabe et al., 2012), a de-
pendency grammar parser; EusWN (Agirre et al., 2014),
a word-sense disambiguator that uses an algorithm based
on random walks over the Basque WordNet; and a named-
entity disambiguator that links entity names with the cor-
responding Wikipedia pages (Fernandez et al., 2011). In
addition, several tools have been developed to manage an-
notations and corpora represented in the AWA scheme: EU-
LIA (Artola et al., 2009), an environment to manually anno-
tate AWA documents; Armiarma1, a web interface to search
documents in corpora annotated in AWA and to disam-
biguate them at segmentation, morphosyntactic or lemma-
tization level; and Abar-Hitz (Dı́az De Ilarraza et al., 2004),
a graphical and language-independent tool for the creation
and management of the Basque Dependency Treebank.
This extensive application of the model shows that AWA
constitutes a coherent and flexible representation scheme
that serves as the basis for the exchange of information at
different levels of analysis.
All the elements in AWA belong to three basic types (see
Figure 1):

1http://ixa2.si.ehu.es/armiarma

Anchor: these elements represent nuggets of information
to which linguistic information is attached. They can
vary from physical elements found in the input text
(character offsets or XPointer expressions referring to
specific points or ranges within an XML document)
to annotation items resulting from earlier annotation
processes. In particular, AWA allows linguistic anno-
tations produced in a given step to be later used as
anchors in a subsequent linguistic annotation phase.
For instance, in AWA we can create an annotation that
attaches information to a specific analysis of a word,
rather than to the word itself. This is a powerful fea-
ture, which allows an accurate representation of a very
broad range of linguistic phenomena. Structural ambi-
guity is represented by annotations that correspond to
overlapping anchors.

AnnotationItem (links): Links are the annotation out-
comes of linguistic analysis processes, and each link
connects one single linguistic interpretation to an an-
chor. Several links can be connected to one same an-
chor, which allows the representation of interpretation
ambiguity. In this case, the disambiguation is carried
out by marking only one of the links as correct, and
considering the other ones as incorrect.

LingInfo: these elements represent the different types
of linguistic content resulting from the analysis pro-
cesses. In AWA, linguistic content is represented by
typed, TEI-encoded feature structures. In morpho-
logical segmentation, lemmatization, and other pro-
cesses, the linguistic content is composed of actual
word forms, which allows the use of massive com-
mon libraries that contain them as feature structures.
This saves both processing time and storage space, as
words only need to be analyzed when they first occur.

The previously mentioned classes are the main types of the
AWA representation scheme. However, different special-
izations of the main classes are available in AWA to repre-
sent the following levels of analysis: tokenization, multi-
words, segmentation, morphosyntax, dependency, corefer-
ence, shallow syntax and constituent trees.
Sometimes, an anchor is not a single annotation generated
in a preceding step, but a more complex structure of anno-
tation groups. AWA accepts this kind of anchors in a nat-
ural manner, allowing new anchor classes to inherit from
the main Anchor. This is especially useful when an an-
notation must refer to a group of annotations representing a
semantic interpretation.

3. Integrating AWA into ANNIS
ANNIS (ANNotation of Information Structure) is a
browser-based tool for searching and visualizing complex
and diverse linguistic annotations. Among others, it is able
to draw tree-structured annotations. ANNIS requires data
to be represented in the relANNIS format, so for a specific
format to be used in ANNIS, there must be a conversion
from the format into relANNIS. Our documents were in the
AWA format, so we had to convert them into the relAN-
NIS format, so that they would be supported by the ANNIS
interface.

4050

Figure 1: Abstract view of the Annotation Web Architecture.

Pepper is a framework for converting between different lin-
guistic annotation formats. Pepper supports many formats
by default, such as EXMARalDA, Tiger XML, MMAX2,
RST, TCF, TreeTagger format, relANNIS and PAULA.
Nevertheless, the framework can be extended to support
custom formats by implementing a plugin module that
maps the new format to and from any of the supported for-
mats. As AWA is not one of the formats supported by the
Pepper framework, we had to develop a module in the Pep-
per framework, so we could integrate AWA annotations into
Pepper, and therefore convert AWA documents into relAN-
NIS documents.
The creation of a new module in Pepper has no relation
to the target format of the desired conversion. New mod-
ules perform conversions from the source format (AWA in
our case) to an intermediate format called Salt. Salt is a
graph-based, abstract model, general enough to allow the
representation of almost any linguistic format. The conver-
sion from the Salt format into the target format (relANNIS
in our case) is carried out by Pepper as default. When a
new module is integrated in Pepper, the conversion of doc-
uments in formats supported by the new module can be per-
formed by the Pepper interface. The user provides the Pep-
per interface with a flow document containing instructions
about the source and target formats and folders, and Pepper
performs the conversion.
In AWA, each annotation layer is composed of several TEI-
like files, which represent the annotations corresponding to
one given document2. As traditionally source documents
used in Pepper are composed of one single file per docu-
ment, Pepper tries to convert every file containing the ex-
tension supported by the source format into a new docu-
ment. In our module, we had to filter documents during this

2Although, since 2015, Pepper also supports the conversion of
TEI documents, the conversion provided by Pepper is not enough
to convert a group of interrelated AWA/TEI documents.

documents creation, and only execute it for the first file of
every AWA document. Since all AWA files are compressed
with the .bz2 extension, we defined .bz2 as the supported
file extension for AWA in Pepper.

The organization of corpora and of corpus documents is dif-
ferent between AWA and relANNIS. Take, for instance, the
basic corpora file structure in both formats. In AWA, each
document has a system folder containing all the files that
represent the annotations of that specific document. A cor-
pus in AWA is composed by a variety of these folders. In
relANNIS, however, a corpus is one list of files correspond-
ing to the different layers of the corpus. Every file contains
information about a specific layer regarding all the docu-
ments in the corpus. One of the outcomes of that differ-
ence is that one corpus in AWA has many more files than
a corpus in relANNIS, but files in relANNIS can become
considerably large, while in AWA they tend to maintain a
size limit. Figure 2 shows a diagram depicting a simplified
version of the conversion process from an AWA corpus into
a relANNIS corpus.

To give another example of differences between the for-
mats, let us take a look in a simple annotation both in AWA
and relANNIS. The word gaelikoa is an example token in
a document of our corpus. In AWA, the annotation for that
specific word in that specific document is XML-encoded,
as displayed in Figure 3. In relANNIS, however, the word
receives a code (23176, in the example of Figure 4), which
is mapped in a separate document, and the annotations can
be found in the tabulated format depicted in Figure 4.

Tokenization of words in AWA-annotated corpora results
in a file that stores, for each token, its initial position in the
original text and its offset. That approach is not compatible
for converting AWA into Salt. Some special characters that
are present in some AWA documents, as, for instance, the
 (non-breaking space character), are not recognized
by the Pepper engine, and the resultant offset is incorrect.

4051

Figure 2: A diagram representing the conversion from an AWA corpus into a relANNIS corpus.

Figure 3: Example of annotation in AWA. The annotations
for the word gaelikoa (Basque for gaelic) are highlighted
by the blue rectangles.

In our Pepper model, we did not use the offsets stored in
the AWA documents. The tokenization process had to be
reimplemented inside the model with the creation of new
offsets. The new offsets were obtained by looking for each
token in the original document using a starting search point,
initially the beginning of the document. When the token
is found, its last position becomes the new starting search
point for the next token, and so on.

The actual amount of code that had to be written for the
experiment was not considerably large - it consisted of two
Java classes containing around 100 lines. Most of the work
involved taking the architectural decisions described above
while mapping AWA into Pepper and dealing with the setup
and integration of Pepper and ANNIS.

Figure 4: Example of annotation in relANNIS. The anno-
tations for the word gaelikoa are highlighted by the blue
rectangle.

4. Experiments and testing
Three basic steps are required to use an AWA corpus in the
ANNIS interface. First, (1) the new Pepper module we de-
veloped is used to make the conversion from the AWA doc-
uments into the relANNIS format; then (2) the newly con-
verted files have to be imported into the ANNIS database;
and finally (3) we can execute queries in the ANNIS inter-
face. Steps one and two have to be executed only once, i.e.,
it is not necessary to make the conversions every time you
wish to execute queries in the corpus.
We used a corpus of one thousand AWA-annotated docu-
ments to evaluate performance, corresponding to approxi-
mately 40 megabytes of files. Each of the three steps was
executed three times to have an average time, and all ex-
ecutions were processed by a computer equipped with a
2.6 GHz processor and 8GB of RAM memory. The first
step (conversion from AWA into relANNIS) took in aver-
age fourteen minutes to finish for the one thousand docu-
ment corpus. The second step (importing the documents
into the ANNIS database) took in average five minutes to
finish. The performance of the third step will be explained
with an example in the following paragraphs.
Figure 5 shows the result for a query that looks for occur-
rences of an adjective (in red in the image) followed by
a non-adjective word (in purple in the image), followed
by two any words followed by a word with lemma etxe
(Basque for house, in green in the image). The query

4052

Figure 5: Example query in the ANNIS interface.

described here was executed on the ANNIS interface and
looked for results in the one thousand documents of the cor-
pus. It took less than one second for the results start to show
up on the screen. Queries can be simpler or more complex
than this one, but we should mention that, for all queries we
tried in this corpus (less complex than the example or more
complex than the example), it took less than one second for
the first results to appear.

5. Conclusions
This paper addresses the problem of interoperability among
annotation schemes. We describe a practical experiment to
map AWA annotations into the relANNIS format and we
show the feasibility of our approach. As a practical result,
corpora annotated following AWA can be graphically visu-
alized and consulted using ANNIS.
From the experiment, we have learned lessons we believe to
be a valuable contribution for anyone interested in integrat-
ing NLP tools that use heterogeneous annotation formats.
Both Salt and AWA are very general schemes that follow
conceptually sound principles, avoid information duplica-
tion, and properly represent linguistic annotations at many
levels. In our opinion, this is corroborated by the fact that
the conversion has been possible without major problems,
and that no information has been lost in the way.
The main problems faced were due to technical issues such
as the use of different character encoding by the systems,
which complicate practical aspects such as computing the
right offsets of textual anchors.
The lack of technical expertise using the Pepper framework
has been another important obstacle, as well as the fact that
the documentation was not up to date. However, the Pepper
developers have been eager to help and they have offered
us excellent technical support.
Based on our experience, we believe that similar experi-
ments of integrating specific annotation schemes as AWA

into ANNIS would face a similar situation to ours. We con-
sider Pepper a powerful tool in that process, and believe
that other researchers would benefit from its use. However,
the issues that are described in this paper should be taken
into account when trying to replicate the same experiment.

6. Bibliographical References
Agirre, E., de Lacalle, O. L., and Soroa, A. (2014). Ran-

dom walks for knowledge-based word sense disambigua-
tion. Computational Linguistics, 40:1. ISSN 0891-2017,
40(1):forthcoming.

Alegria, I., Artola, X., Sarasola, K., and Urkia, M. (1996).
Automatic morphological analysis of Basque. Literary
& Linguistic Computing, 11(4):193–203.

Alegria, I., Arregi, O., Ezeiza, N., and Fernandez, I.
(2006). Lessons from the Development of a Named En-
tity Recognizer. Procesamiento del Lenguaje Natural,
(36):25–37.

Aranzabe, M., Bengoetxea, K., Dı́az de Ilarraza, A., Ezeiza,
N., Goenaga, I., and Gojenola, K. (2012). Combining
rule-based and statistical syntactic analyzers. In ACL
2012 Joint Workshop on Statistical Parsing and Seman-
tic Processing of Morphologically Rich Languages (SP-
Sem-MRL 2012), Association for Computational Lin-
guistics (ACL), USA, ISBN: 978-1-937284-30-5, pages
48–54, Jeju Island, Republic of Korea.

Artola, X., Dı́az de Ilarraza, A., Soroa, A., and Sologais-
toa, A. (2009). Dealing with complex linguistic anno-
tations within a language processing framework. IEEE
Transactions on Audio, Speech and Language Process-
ing, 17(5):904–915.

Cunningham, H., Wilks, Y., and Gaizauskas, R. J. (1996).
GATE: a General Architecture for Text Engineering. In
Proceedings of the 16th conference on Computational
linguistics, pages 1057–1060. Association for Computa-
tional Linguistics.

4053

Dı́az De Ilarraza, A., Garmendia, A., and Oronoz, M.
(2004). Abar-hitz: An annotation tool for the basque de-
pendency treebank. In Proceedings of LREC2004, pages
251–254.

Dipper, S. and Götze, M. (2005). Accessing heterogeneous
linguistic data. generic XML-based representation and
flexible visualization. In V. Saraswat et al., editors, In
Proceedings of the 2nd Language & Technology Confer-
ence: Human Language Technologies as a Challenge for
Computer Science and Linguistics, pages 206–210. MIT
Press, Poznan, Poland.

Ezeiza, N., Aduriz, I., Alegria, I., Arriola, J. M., and
Urizar, R. (1998). Combining stochastic and rule-based
methods for disambiguation in agglutinative languages.
In Proc. of COLING-ACL’98, pages 10–14, Montreal
(Canada).

Fernandez, I., Alegria, I., and Ezeiza, N. (2011). Seman-
tic relatedness for named entity disambiguation using a
small wikipedia. In Text, Speech and Dialog, TSD 2011,
pages 276–283.

Fokkens, A., Soroa, A., Beloki, Z., Ockeloen, N., Rigau,
G., van Hage, W. R., and Vossen, P. (2014). NAF and
GAF: Linking linguistic annotations. In To appear in
Proceedings of 10th Joint ACL/ISO Workshop on Inter-
operable Semantic Annotation (ISA-10).

Ide, N. and Romary, L. (2004). International standard for a
linguistic annotation framework. Natural Language En-
gineering, 10(3-4):211–225.

Krause, T. and Zeldes, A. (2014). Annis3: A new architec-
ture for generic corpus query and visualization. Digital
Scholarship in the Humanities.

Zipser, F., Krause, T., Lüdeling, A., Neumann, A., Stede,
M., and Zeldes, A. (2015). ANNIS, saltnpepper &
PAULA: A multilayer corpus infrastructure. In Final
Conference of the SFB 632 Information Structure: Ad-
vances in Information Structure Research, Berlin, Ger-
many, Mai.

4054

