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Abstract
Part-of-speech (POS) induction is one of the most popular tasks in research on unsupervised NLP. Various unsupervised and semi-
supervised methods have been proposed to tag an unseen language. However, many of them require some partial understanding of the
target language because they rely on dictionaries or parallel corpora such as the Bible. In this paper, we propose a different method
named delexicalized tagging, for which we only need a raw corpus of the target language. We transfer tagging models trained on
annotated corpora of one or more resource-rich languages. We employ language-independent features such as word length, frequency,
neighborhood entropy, character classes (alphabetic vs. numeric vs. punctuation) etc. We demonstrate that such features can, to certain
extent, serve as predictors of the part of speech, represented by the universal POS tag (Das and Petrov, 2011).
Keywords: delexicalized tagging, HamdleDT 2.0, features expansion, classifier

1. Introduction
Part-of-speech (POS) tagging is sometimes considered

an almost solved problem in NLP. Standard supervised ap-
proaches often reach accuracy above 95% if sufficiently
large hand-labeled training data are available (typically sev-
eral hundred thousand tokens or more). However, we still
believe that it makes sense to study semi-supervised and
unsupervised approaches because of the following reasons:

• It is hardly realistic to expect that manual annotation
efforts will be ever invested into all 7,000 languages.

• Even if it might be very efficient to start at least with
some small annotated data, we believe that adding
new features independent of hand-tagged text might
be helpful in a combination of supervised and unsu-
pervised methods, e.g., for better handling of out-of-
vocabulary words.

• We should keep in mind that the “standard” POS
distinctions—although broadly used—are not mani-
fested in languages directly. They result from certain
linguistic tradition whose current dominance can be
attributed to geopolitical reasons rather than its lin-
guistic “obviousness”. Thus, for instance, if we say
that something is an adverb in language X, we should
be able to support such a claim by some measurable
evidence rather than just by saying that it becomes an
adverb if translated to English.

• For some multilingual NLP tasks, such as unsuper-
vised dependency parsing (or parser transfer), it might
be more important to preprocess all languages un-
der study as similarly as possible (including POS tag-
ging), rather than to maximize accuracy with respect
to highly different gold-standard data in individual
languages.

We propose “delexicalized tagging”, a new method
for under-resourced languages. In analogy to delexical-
ized parsing (Zeman and Resnik, 2008), we transfer a
tagging model from a resource-rich language (or a set of

languages); the model is independent of individual word
forms. In delexicalized parsing, word form sequences are
substituted by sequences of POS tags, which—of course—
is not extendable to tagging. Instead, we substitute word
forms by vectors of numerical features that can be com-
puted using only unannotated monolingual texts. The back-
ground intuition is that the individual POS categories will
tend to manifest similar statistical properties across lan-
guages (e.g., prepositions tend to be short, relatively fre-
quent, showing different patterns of conditional entropy to
the left versus to the right, as well as certain asymmetry of
occurrences along sentence length). Thus, unlike most POS
tagging methods for resource-poor languages, we do not
transfer the tagging knowledge using dictionaries or paral-
lel data, but exclusively via the Rn space.1

In addition, we present a new publicly available re-
source containing POS-labeled texts for 107 languages, au-
tomatically tagged by the presented approach.

2. Related Work
There is a body of literature about POS tagging of

under-resourced languages. Most approaches rely on the
existence of some form of parallel (or comparable) data.
We will discuss only those approaches that attempt at us-
ing the same tagset across languages, and not those aiming
at unsupervised induction, such as the well-known Brown
clusters induced in a fully unsupervised fashion (Brown
et al., 1992). An overview of such truly unsupervised
approaches can be found in (Christodouloupoulos et al.,
2010).2

1However, we do not say that our method is completely
language-independent. For instance, we rely on the existence of a
meaningful tokenization in the target language.

2There is a certain terminological confusion in this area: some-
times the word “unsupervised” is used also for situations in which
there are no hand-tagged data available for the target language,
but some manual annotation of the source language exists and is
projected across parallel data like in (Das and Petrov, 2011). We
prefer to avoid the term “unsupervised” when manual annotation
is used in any language.
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(Yarowsky and Ngai, 2001) project POS tags from En-
glish to French and Chinese via both automatic and gold
alignment, and report substantial growth of accuracy af-
ter using de-noising postprocessing. (Fossum and Abney,
2005) extend this approach by projecting multiple source
languages onto a target language.

(Das and Petrov, 2011) use graph-based label propa-
gation for cross-lingual knowledge transfer, and estimate
emission distributions in the target language using a log-
linear model. (Duong et al., 2013) choose only automati-
cally recognized “good” sentences from the parallel data,
and further apply self-training.

(Agić et al., 2015) learn taggers for 100 languages
using aligned Bible verses from The Bible Corpus
(Christodouloupoulos et al., 2010).

Besides approaches based on parallel data, there are
also experiments showing that reasonable POS tagging ac-
curacy (close to 90 %) can be reached using quick and
efficient prototyping techniques, such as (Cucerzan and
Yarowsky, 2002). However, such approaches rely on at
least partial understanding of the target language grammar,
and on the availability of a dictionary, hence they do not
scale well when it comes to tens or hundreds of languages
(Cucerzan and Yarowsky experiment with two languages
only).

3. Delexicalized Tagging
We propose a statistical method to predict the POS tags

in a previously unseen language. The method is quite dif-
ferent from those described above. Our system needs just a
raw corpus of the target language—something that can be
easily obtained for a large number of world’s languages.

3.1. Overview
We proceed as follows:

1. we identify the sets of source languages (those for
which we have POS labeled data) and target languages
(those for which we have sufficiently big monolingual
data and which we want to label by our method),

2. for each word type in the source and target languages,
we extract a feature vector that describes its statistical
properties in the corresponding monolingual corpus,

3. for all source languages, each word feature vector and
its POS tag are used as a training instance for a classi-
fier, and the resulting classifier is used to assign POS
tags to all words’ feature vectors in the target lan-
guages,

4. we evaluate our approach on the target languages for
which there are labeled data available, and assume that
reasonably similar accuracies are reached also for the
other target languages.

3.2. Tagset
A prerequisite to our approach is a common tagset for

both the source and the target languages. We use the same
tagset as (Das and Petrov, 2011), the Google Universal POS
tag set (Petrov et al., 2012). With just 12 tags it is fairly

coarse-grained, which is advantageous for a resource-poor
method such as ours; nevertheless it has proved useful in
downstream applications such as parsing. The 12 tags are
NOUN, VERB, ADJ (adjective), ADV (adverb), PRON (pro-
noun), DET (determiner), NUM (numeral), ADP (adposi-
tion), CONJ (conjunction), PRT (particle), PUNC (punctua-
tion) and X (unknown).

This tagset was recently extended in the Universal De-
pendencies project3 (Nivre et al., 2016): five categories
were split to finer subclasses. Using this larger tagset in
our experiments is likely to reduce reliability of the results.

3.3. Features
The list below describes the features that we use for

the POS prediction. Let us define our notation first. Let
C be a corpus and ci the i-th token in the corpus. N =
|C| = the number of tokens in the corpus C. f(w) = |{i :
ci = w}| = the absolute word frequency, i.e. number of
instances of the word type w in the corpus C. Similarly,
f(x, y) is the absolute frequency of the word bigram xy.
Pre(w) = {x : ∃i (ci = w) ∧ (ci−1 = x)} is the set of
word types that occur at least once in a position preceding
an instance of w. Analogously, Next(w) denotes the set
of word types following w in the corpus. Context(w) =
{x, y : ∃i (ci−1 = x) ∧ (ci = w) ∧ (ci+1 = y)} denotes
the set of contexts surrounding w, and Subst(w) = {y :
Context(y) ∩ Context(w) 6= ∅} is the set of words that
share a context with w.

1. word length – the number of characters in w

2. log frequency – logarithm of the relative frequency of
w in C

log
f(w)

N

3. preceding word entropy

PN =
∑

y∈Pre(w)

f(y)

∑
y∈Pre(w)

−f(y)

PN
log

f(y)

PN

4. following word entropy

NN =
∑

y∈Next(w)

f(y)

∑
y∈Next(w)

−f(y)

NN
log

f(y)

NN

5. substituting word entropy

SN =
∑

y∈Subst(w)

f(y)

∑
y∈Subst(w)

−f(y)

SN
log

f(y)

SN

3http://universaldependencies.org/
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6. is number – binary value is number(w),

7. is punctuation – binary value is punctuation(w),

8. relative frequency after number

log
|i : ci = w ∧ is number(ci−1)|

f(w)

9. relative frequency after punctuation

log
|i : ci = w ∧ is punctuation(ci−1)

f(w)

10. weighted sum of pointwise mutual information (PMI)
of w with the preceding word – collect all words y in
C that precede w, then calculate their PMI values with
w and make summation of PMIs weighted by the joint
probability of the pair∑

y∈Pre(w) f(w, y)× log N×f(w,y)
f(w)×f(y)

N

11. weighted sum of PMI of w with the following word –
fully analogous to the previous feature,

12. entropy of suffixes following the root of w – First we
collect counts of suffixes count(suffix) in C whose
length range from 1 to 4 and counts of respective roots
(words without suffixes) count(root) in C. For each
word, we find the border between root and suffix by
maximization of the product f(root) × f(suffix).
Then, we compute conditional entropy over all suf-
fixes given the root.4

13. how many different words appear before w: |Pre(w)|

14. how many different words appear after w: |Next(w)|

15. how many different words in C share the same context
as w: |Subst(w)|

16. pointwise mutual information between w and the most
frequent preceding word

MaxP = argmax
y∈Pre(w)

f(y)

log
N × f(w,MaxP )

f(w)× f(MaxP )

17. pointwise mutual information between w and the most
frequent following word – fully analogous to the pre-
vious feature.

4The underlying intution is that some POSs tend to partici-
pate in derivation and inflection more intensively than others. Ob-
viously, the root/suffix segmentation is approximated only very
roughly here.

3.4. Data Resources
In our approach, we need two types of data resources:

• raw monolingual texts for both source and target lan-
guages; this data is used for extracting feature vec-
tors for words in individual languages; we use W2C,
a web-based corpus of 120 languages (Majliš and
Žabokrtský, 2012),

• POS-tagged data for source languages; this data is
used for training POS classifiers; we use HamleDT 2.0
(Zeman et al., 2014), a collection of treebanks for 30
languages.

3.5. Training POS Classifiers
We took the first 50,000 tokens from the HamleDT 2.0

training sections of 13 languages (ISO 639-1 codes): bg,
ca, cs, de, el, en, hi, hu, it, pt, ru, sv, tr. Each token was
considered one training instance (i.e., n occurrences of a
word w results in n identical instances). Their word feature
vectors were computed using at most the first 20 million
tokens from the WEB part of the W2C corpus.

We experimented with several types of classifiers:

• Baseline We assign PUNC to all tokens consisting of
non-alphanumerical characters, NUM to all tokens con-
taining a digit, and NOUN to the remaining tokens.

• K-nearest-neighbors (KNN) (Cover and Hart, 1967),
with k = 100.

• Support vector machines (SVM) with radial ker-
nel (Boser et al., 1992).

• Bagging (Breiman, 1996) applied both on KNN and
SVM. We randomly sampled the training instances
with replacement and randomly extracted half of the
whole feature space with replacement.

• Random Forest (Ho, 1995).

• Gradient Tree Boosting (Friedman, 2002).

We trained classifiers for each source language separately
and then for concatenated data of the following 7 lan-
guages: bg, ca, de, el, hi, hu, tr (in our results, we refer
to these combined data as “c7”).

3.6. Evaluation
The first 1000 tokens from the HamleDT 2.0 test sec-

tions of the following languages were used for evaluation:
bg, bn, ca, cs, da, de, el, es, en, et, eu, fa, fi, hi, hu, it, la, nl,
pt, ro, ru, sk, sl, sv, te, tr. Again, feature vectors for individ-
ual words are based on the the WEB component of W2C.
Naturally there will be words in the test data that have not
been observed in W2C. Since we cannot compute the fea-
tures of these out-of-vocabulary words, we predict their tag
as NUM if they contain a digit, and as NOUN otherwise.

Each target language was evaluated separately for each
source language, and then for the above mentioned mixture
of 7 languages (c7); The results using the Bagging SVM
classifier are summarized in Table 1.
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target source

bg ca cs de el en hi hu it pt ru sv tr avg c7

bg 86.6 43.2 59.0 53.9 54.9 53.9 53.8 46.2 52.2 58.3 43.0 58.9 40.7 51.5 75.2
bn 27.6 34.0 38.7 41.1 26.7 41.5 52.2 36.2 32.3 39.5 23.8 35.7 51.7 37.0 60.8
ca 46.9 84.6 52.5 47.1 50.8 43.6 45.6 51.2 65.9 70.0 37.3 44.3 38.3 49.5 74.6
cs 68.5 45.4 84.3 63.3 56.2 63.3 50.5 58.4 53.2 47.7 54.4 63.7 50.7 56.3 65.6
da 61.7 47.7 52.1 55.1 42.1 66.4 40.1 40.6 50.5 53.0 32.8 75.0 41.0 50.6 57.3
de 55.6 49.5 61.9 91.0 53.7 69.9 46.6 57.7 56.5 59.2 47.4 66.1 53.5 56.5 83.5
el 50.5 58.9 49.7 47.9 87.0 40.1 38.5 55.2 65.0 57.2 42.7 48.3 38.0 49.3 78.5
en 54.5 46.8 57.3 60.8 51.5 86.0 50.9 46.1 52.2 49.5 41.0 66.1 56.1 52.7 62.6
es 58.8 74.6 49.6 47.7 61.6 54.5 51.3 52.1 75.4 79.8 37.3 50.8 38.7 56.3 67.5
et 53.7 39.0 59.3 57.1 45.7 41.9 38.9 54.9 51.0 44.8 39.2 58.3 54.2 49.1 64.1
eu 35.7 41.3 47.0 57.2 34.6 48.4 46.7 46.8 39.5 43.6 22.1 47.1 54.5 43.4 62.0
fa 37.6 41.4 46.9 49.2 33.9 49.7 65.4 25.3 42.5 42.7 37.2 39.5 54.8 43.5 65.9
fi 43.9 27.8 51.4 46.8 41.3 37.4 41.3 45.5 38.5 30.6 37.1 45.3 50.3 41.3 51.4
hi 48.6 63.1 40.3 40.2 31.2 55.0 90.6 31.7 47.8 40.2 46.8 38.8 41.8 43.8 86.5
hu 44.0 54.4 57.6 53.8 54.5 38.7 37.2 81.2 52.1 50.8 35.2 49.7 50.6 48.2 73.5
it 58.2 67.3 59.0 58.2 62.0 61.4 49.1 51.1 88.5 70.8 47.1 54.7 44.1 56.9 70.2
la 30.4 28.0 49.7 43.5 32.4 36.7 39.3 39.6 31.7 26.1 41.9 37.5 49.7 37.4 51.1
nl 53.0 54.0 55.0 66.1 56.8 56.0 40.9 62.0 62.2 59.1 40.4 58.3 41.4 54.2 60.0
pt 61.9 55.1 50.2 51.8 49.7 48.1 47.7 54.9 74.4 84.9 43.0 48.6 41.8 52.3 65.1
ro 50.9 42.3 46.7 50.0 43.1 52.4 57.1 42.9 62.9 59.3 54.8 39.6 41.1 49.5 57.2
ru 45.2 22.9 51.5 40.8 33.7 36.4 44.6 38.1 37.3 30.1 70.8 40.0 37.7 38.2 43.4
sk 60.6 38.2 70.7 54.6 46.6 44.4 41.7 44.8 44.2 46.8 45.8 51.8 41.4 48.6 56.0
sl 59.1 41.0 58.9 55.1 48.4 47.9 35.9 45.8 53.3 49.3 30.1 61.3 44.6 48.5 59.4
sv 63.3 46.8 56.5 62.1 45.0 64.5 39.5 45.0 50.4 50.8 43.3 80.5 41.9 50.8 63.0
te 28.0 26.0 39.5 59.3 26.8 41.0 49.9 41.2 32.0 40.7 33.7 37.0 62.3 39.8 57.0
tr 28.2 26.5 41.8 48.8 24.2 37.4 39.0 44.0 26.9 33.3 26.7 33.4 77.6 34.2 70.9

Table 1: POS tagging accuracy using bagging based on SVM. Highlighted results indicate that the same language was
used for training and testing. Bold indicates the best result where the target language was not used in training. The avg
column shows the average accuracy for given language (not counting the highlighted results). The c7 training data stands
for the concatenation of 7 source languages: bg, ca, de, el, hi, hu, and tr.

Table 2 compares the scores of different classifiers. All
the classifiers were trained on c7; the languages included in
c7 were excluded from the testing set. The standard SVM
classifier performs better than KNN, the average tagging
accuracy on c7 is 4.7% higher and it is better on 15 out
of 19 languages. Bagging improves the average accuracy
of KNN by 3%. The SVM’s average accuracy slightly de-
creases when bagging is used, however, 9 out of 19 lan-
guages are tagged better. We observed improvement for
both classifiers also over models trained on individual lan-
guages. The Gradient tree boosting classifier is by 1.4%
worse than SVM.

(Ho, 1998) suggests to expand feature vectors by us-
ing certain functions of the original features (e.g., pair-
wise summation, pairwise differences, pairwise products
and boolean combination for binary and categorical fea-
tures). For the Random forest classifier, we used the same
techniques as bagging (sampled both instances and features

with replacement) and we also expanded the feature space
from 17 to 20 features using feature combination methods.5

Even though the combined features do not contribute new
information, being able to weigh their concurrent appear-
ance actually increases accuracy.

4. Error Analysis
Table 3 shows the confusion matrix of tag prediction.

It is no surprise that punctuation (PUNC) is the easiest cate-
gory to predict. At the other end of the scale, the X category
will intuitively contain words of mixed nature, which is im-
possible to predict.

Certain idiosyncrasies of tokenization schemes nega-
tively affect the results. The underscore (“ ”) token is ex-

5Here we used word frequency + number of distinct preced-
ing words, word frequency + number of distinct following words,
word frequency + number of distinct words sharing the same con-
text
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Bagging Bagging Gradient Random
lang baseline KNN KNN SVM SVM TreeBoost Forest
bn 48.0 54.6 55.0 52.8 60.8 60.3 56.4
cs 54.9 63.6 65.2 68.3 65.6 65.9 67.9
da 37.0 53.7 57.9 62.9 57.3 62.5 60.2
en 45.7 58.7 60.0 67.3 62.6 62.0 59.7
es 36.9 63.3 69.1 68.0 67.5 65.1 66.1
et 53.3 57.3 58.8 61.8 64.1 57.5 57.5
eu 44.7 56.4 50.3 55.2 62.0 51.3 53.8
fa 50.6 59.8 59.8 61.9 65.9 58.8 48.0
fi 51.6 47.4 49.6 50.7 51.4 46.2 46.2
it 43.1 65.7 70.9 74.1 70.2 71.2 70.5
la 47.2 43.7 47.8 50.0 51.1 46.5 50.5
nl 33.2 68.8 66.6 74.2 60.0 70.9 67.7
pt 38.8 63.9 66.6 57.9 65.1 66.0 64.4
ro 40.2 48.6 57.5 61.9 57.2 48.1 52.9
ru 40.0 39.2 43.3 45.0 43.4 44.0 43.3
sk 45.6 50.4 51.8 58.5 56.0 57.1 56.7
sl 40.8 53.7 58.0 58.0 59.4 67.6 64.6
sv 38.0 54.0 60.8 65.0 63.0 60.8 63.4
te 45.6 55.6 57.0 54.4 57.0 59.5 54.6

avg 44.0 55.7 58.7 60.4 60.0 59.0 58.1

Table 2: Results of different classifiers and their average. All classifiers in this table were trained on c7 (combination of bg,
ca, de, el, hi, hu, and tr), and they were evaluated on languages outside of c7.
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Figure 1: Distribution of manually assigned POS tags and
predicted POS tags. The numbers are computed over all the
19 testing corpora (i.e., excluding c7).

tensively used in Catalan, Spanish (dropped pronominal
subjects) and in Turkish (representing stages of morpholog-
ical derivation). Hindi has empty NULL nodes (often but
not always representing elided verbs). Several languages
contain multi-word expressions collapsed into one token
(e.g. [es] Tribunal Supremo de Justicia); since these are
not naturally occurring strings, they are out of our vocabu-
lary (they have no footprint in the W2C corpus).

We could remove the “NULL” and “ ” nodes from both
training and testing data to get results that are closer to real-
world application. Note however that we cannot automat-
ically split the multi-word expressions because we do not

NO VB AJ AV PR DT NU AP CJ PT PU X
NO 6811 452 402 96 137 9 29 47 7 10 7
VB 1440 1862 229 107 115 8 195 42 138
AJ 1240 123 1073 37 222 1 46 22 2 6
AV 255 85 84 344 156 6 5 59 37 7
PR 138 83 150 109 684 40 82 120 92 16
DT 1 1 87 3 6 191 14 8
NU 64 17 27 1 34 3 364 6 1
AP 150 40 142 32 21 105 2 1927 40 6 4
CJ 33 10 6 40 106 29 162 816 23 3
PT 19 7 1 18 45 27 49 15 119
PU 72 2760

X 159 7 5 4 7 27 6 24 2

Table 3: Confusion matrix of the best classifier, evaluated
on all target languages (sum). Rows correspond to gold-
standard tags, columns to predicted tags. NO = NOUN; VB =
VERB; AJ = ADJ; AV = ADV; PR = PRON; DT = DET; NU
= NUM; AP = ADP; CJ = CONJ; PT = PRT; PU = PUNC.

have gold tags for the individual words.
The model is quite successful in predicting prepositions

(ADP), conjunctions (CONJ), nouns (NOUN; this is the most
frequent part of speech in most languages, hence our recall
is significantly higher than precision) and numerals (NUM;
numbers expressed by digits, which are as easy as punctua-
tion, help to boost this category).

On the other hand, the model is unsuccessful in predict-
ing adjectives, adverbs, pronouns and particles. For par-
ticles (PRT) the explanation could be that they are poorly
defined, or their definition significantly differs across lan-
guages.

A better definition or even partition of pronouns may
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Figure 2: Learning curves for different sizes of texts, on
which the features for individual test-set words were com-
puted.

also help: personal pronouns do not occur in the same
contexts as possessive or relative pronouns, and languages
also disagree in the pronoun-determiner distinction. Fur-
thermore, pro-drop languages use personal pronouns much
more sparingly than e.g. English or German. Similarly,
many languages lack articles (tagged DET). As is apparent
from the c7 output, articles such as English a and the often
end up tagged as adjectives. That seems a good back-off
decision because articles modify noun phrases similarly to
adjectives.

Obviously, we can improve the results if we know
something about the target language and if one or more re-
lated languages are available in our source data.

Example 1: target Portuguese. When trained on c7,
the tagging accuracy is 58%; when trained on Italian, the
accuracy jumps to 71%, in spite of the training data be-
ing 7 times smaller. One of the c7 languages is Catalan,
supposedly close to Portuguese, but the other languages in-
troduce too much noise. Detailed analysis reveals that the
Italian model dramatically improves recall of adjectives and
prepositions, and precision of numerals. Verbs rise in recall
and drop in precision but the F score is still better than with
c7. On the other hand, the recall of pronouns is seriously
damaged as only 11/72 are correctly identified (while it was
30/72 with c7).

Example 2: target Slovak. When trained on c7, the
tagging accuracy is 59%; when trained on Czech, the ac-
curacy jumps to 75%. The only Slavic language in c7 is
Bulgarian, and it is an outlier among Slavic languages be-
cause it has lost the case system of nouns. Detailed analysis
reveals that it is extremely difficult (for both models) to dis-
tinguish Slovak adverbs from nouns. On the other hand,
prepositions are moderately difficult with the c7 model
(P=48%, R=75%) but they are practically solved with the

Czech model (P=R=99%). The c7 model mistook many
pronouns and other short closed-class words for preposi-
tions. Pronouns, that are in general quite difficult to pre-
dict, have poor results with the c7 model (F=20%) but they
come quite well with the Czech model (F=79%).

Example 3: target Basque. Basque is an isolated lan-
guage, without known genetic relationship to any other lan-
guage. It is an agglutinating language with a comparatively
rich case system, so one might be tempted to choose Hun-
garian as the source language. But the accuracy (see Ta-
ble 1) would be less than 47%. The best single-source re-
sult is yielded by German (57%), which superficially re-
sembles agglutinating languages with its long compound
words. Nevertheless, the mixed model proves to be the best
source for isolated languages like Basque: the best accu-
racy, 62%, is achieved with the c7 model.

5. Deltacorpus
The configuration that performs best, which is the SVM

classifier trained on the mixture of 7 source languages, was
used to tag texts in 107 languages selected from the W2C
corpus, 1 million tokens per language. This new resource
is called Deltacorpus (a corpus tagged by a DELexicalized
TAgger) and it is available on-line6 under the CC BY-SA
license. Table 4 gives a summary of the languages. We
have excluded languages whose WEB corpus in W2C is
too noisy (especially due to wrong language identification),
as well as a few Asian languages with non-trivial word seg-
mentation (e.g., Chinese, Japanese and Thai).

6. Conclusions and Future Work
This paper presents a new method for cross-language

transfer of POS-tagging models. To the best of our knowl-
edge, this is the first attempt at transferring POS taggers
without any bilingual (parallel or comparable) data. We
experimented with various language-independent features
and several classifiers; the SVM with 17 features, trained
on a mix of 7 languages, outperformed other models on our
evaluation data.

In most cases, the tagging accuracy improved over the
baseline. We thus conclude that human-defined word cate-
gories naturally incline towards properties which may give
them away even in a totally unknown language. The per-
formance is well below results achieved by contemporary
methods based on parallel data, however, it is completely
independent of the existence of any parallel or comparable
corpora or dictionaries.

We released Deltacorpus, a collection of texts in 107
languages tagged by the best classifier, assuming that the
tagging accuracy will be comparable to what we observed
on our evaluation data. For the sake of completeness, we
have also included languages for which better resources ex-
ist. However, there are dozens of languages that are not
even represented in the Bible corpus. We believe that for
these languages Deltacorpus can provide a temporary solu-
tion, until more resources are available.

In the future we plan to implement several natural ex-
tensions of our approach. For instance, we currently disre-
gard that a word form can have multiple readings, we even

6http://hdl.handle.net/11234/1-1662
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Code Name Family BibC
bel Belarusian IE / Slavic
bos Bosnian IE / Slavic

bg, bul Bulgarian IE / Slavic yes
cs, ces Czech IE / Slavic yes

hbs Serbo-Croatian IE / Slavic
hrv Croatian IE / Slavic yes
hsb Upper Sorbian IE / Slavic
mkd Macedonian IE / Slavic

pl, pol Polish IE / Slavic yes
ru, rus Russian IE / Slavic yes
sk, slk Slovak IE / Slavic yes
sl, slv Slovenian IE / Slavic yes

srp Serbian IE / Slavic yes
ukr Ukrainian IE / Slavic yes
lav Latvian IE / Baltic yes
lit Lithuanian IE / Baltic yes
afr Afrikaans IE / Germanic yes

da, dan Danish IE / Germanic yes
de, deu German IE / Germanic yes
en, eng English IE / Germanic yes

fao Faroese IE / Germanic
fry Frisian IE / Germanic
gsw Alemannic IE / Germanic
isl Icelandic IE / Germanic yes
lim Limburgish IE / Germanic
ltz Luxembourgish IE / Germanic
nds Low Saxon IE / Germanic

nl, nld Dutch IE / Germanic
nno Nynorsk IE / Germanic
nor Norwegian IE / Germanic yes
sco Scots IE / Germanic

sv, swe Swedish IE / Germanic yes
yid Yiddish IE / Germanic
arg Aragonese IE / Romance / Italic
ast Asturian IE / Romance / Italic

ca, cat Catalan IE / Romance / Italic
fra French IE / Romance / Italic yes
glg Galician IE / Romance / Italic
hat Haitian Creole IE / Romance / Italic yes

it, ita Italian IE / Romance / Italic yes
la, lat Latin IE / Romance / Italic yes
lmo Lombard IE / Romance / Italic
nap Neapolitan IE / Romance / Italic
pms Piedmontese IE / Romance / Italic

pt, por Portuguese IE / Romance / Italic yes
ro, ron Romanian IE / Romance / Italic yes
es, spa Spanish IE / Romance / Italic yes

vec Venetian IE / Romance / Italic
wln Walloon IE / Romance / Italic
bre Breton IE / Celtic
cym Welsh IE / Celtic
gla Scottish Gaelic IE / Celtic yes
gle Irish IE / Celtic

el, ell Greek IE / yes
hye Armenian IE / yes
sqi Albanian IE / yes

Code Name Family BibC
diq Dimli IE / Iranian

fa, fas Persian IE / Iranian yes
glk Gilaki IE / Iranian
kur Kurdish IE / Iranian
tgk Tajik IE / Iranian

bn, ben Bengali IE / Indo-Aryan
bpy Bishnupriya IE / Indo-Aryan
guj Gujarati IE / Indo-Aryan
hif Fiji Hindi IE / Indo-Aryan

hi, hin Hindi IE / Indo-Aryan yes
mar Marathi IE / Indo-Aryan yes
nep Nepali IE / Indo-Aryan yes
urd Urdu IE / Indo-Aryan
amh Amharic AA / Semitic yes

ar, ara Arabic AA / Semitic yes
arz Egyptian Arabic AA / Semitic
heb Hebrew AA / Semitic yes

et, est Estonian Uralic / FinUgric yes
fi, fin Finnish Uralic / FinUgric yes

hu, hun Hungarian Uralic / FinUgric yes
eu, eus Basque yes

kat Georgian Caucasian
chv Chuvash Turkic / Oghur
aze Azerbaijani Turkic / Oghuz

tr, tur Turkish Turkic / Oghuz
uzb Uzbek Turkic / Karluk
kaz Kazakh Turkic / Kipchak
tat Tatar Turkic / Kipchak
sah Yakut Turkic / Siberian
kor Korean Altaic yes
mon Mongol Altaic
te, tel Telugu Dravidian yes
kan Kannada Dravidian yes
mal Malayalam Dravidian yes

ta, tam Tamil Dravidian
new Newar Sino-Tibetan
vie Vietnamese Austroasiatic yes
ind Indonesian Austronesian yes
jav Javanese Austronesian
mlg Malagasy Austronesian yes
mri Maori Austronesian yes
msa Malay Austronesian
pam Pampangan Austronesian
sun Sundanese Austronesian
tgl Tagalog Austronesian yes
war Waray Austronesian
swa Swahili NC / Bantu yes
epo Esperanto constructed yes
ido Ido constructed
ina Interlingua constructed
vol Volapük constructed

Table 4: The 107 languages in Deltacorpus. Languages
from W2C (target languages) are identified by their ISO
639-3 code. Two-letter codes are used to identify languages
in HamleDT (source languages). Language family abbre-
viations: IE = Indo-European, AA = Afro-Asiatic, NC =
Niger-Congo. The BibC column tells whether the language
is present in the Bible Corpus.
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disregard local context in sentences to be tagged, and we do
not do any weighting of languages according to their sim-
ilarity or genealogical relatedness. Above all, we would
like to explore possible combinations of our approach with
the state-of-the-art techniques based on parallel corpora, as
we find them complementary. We also plan on releasing
a new version of Deltacorpus where the classifiers will be
trained on Universal Dependencies treebanks; as a succes-
sor of HamleDT, UD should be better harmonized and more
reliable.
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