
A comparison of Named-Entity Disambiguation
and Word Sense Disambiguation

Angel X. Chang†, Valentin I. Spitkovsky†, Christopher D. Manning†, Eneko Agirre‡
†Computer Science Department, Stanford University, Stanford, CA, USA

‡IXA Group, University of the Basque Country, Donostia, Basque Country
{angelx,vals,manning}@cs.stanford.edu, e.agirre@ehu.eus

Abstract
Named Entity Disambiguation (NED) is the task of linking a named-entity mention to an instance in a knowledge-base, typically
Wikipedia-derived resources like DBpedia. This task is closely related to word-sense disambiguation (WSD), where the mention of an
open-class word is linked to a concept in a knowledge-base, typically WordNet. This paper analyzes the relation between two annotated
datasets on NED and WSD, highlighting the commonalities and differences. We detail the methods to construct a NED system following
the WSD word-expert approach, where we need a dictionary and one classifier is built for each target entity mention string. Constructing
a dictionary for NED proved challenging, and although similarity and ambiguity are higher for NED, the results are also higher due to
the larger number of training data, and the more crisp and skewed meaning differences.

Keywords: Word Sense Disambiguation, Named-Entity Disambiguation

1. Introduction
A named-entity mention may refer to multiple entities, and
the process of resolving the appropriate meaning in con-
text is called entity linking (EL) or named entity disam-
biguation (NED). The former terminology stresses the im-
portance of linking a mention to an actual instance in the
given knowledge-base (McNamee and Dang, 2009). We
prefer the latter term (NED), which focuses on the potential
ambiguity among several possible instances. It highlights
the connection to the closely related problem of word-sense
disambiguation (WSD), where the goal is to disambiguate
open-class words with respect to a sense inventory, such as
WordNet (Fellbaum, 1998).
In this paper we compare the closely related worlds of WSD
and NED. In WSD, an exhaustive dictionary is provided,
while in NED, one has to generate all candidate entities for
a target string — a step that has been shown to be critical to
success (Hachey et al., 2012), where it is called “candidate
generation”. In WSD very few occurrences correspond to
senses missing in the dictionary, but in NED this problem
is quite prevalent. We show also that ambiguity is larger for
NED. On the bright side, there is a lot of potential training
data for NED in the form of human-generated anchor-texts,
while hand-annotated data for WSD is a scarce resource.
Section 2 introduces two popular datasets, TAC-KBP and
Senseval-3, which we use to compile statistics on ambigu-
ity and synonymy for WSD and NED in Section 3. Sec-
tion 4 focuses on the performance of the Most Frequent
Sense baseline, a widely used WSD baseline. This section
also introduces the method to build dictionaries for NED,
which is a requirement for collecting the sense frequency
statistics. Section 5 explains how a supervised WSD ar-
chitecture (the so-called word-expert approach) is applied
to NED with good results. A longer version of this paper is
available at http://arxiv.org/abs/1603.04767.

2. Datasets
We selected two of the most popular datasets, TAC-KBP for
NED, and Senseval-3 for WSD, which, being both lexical

sample1, allow for easy comparison of a number of inter-
esting factors.

2.1. WSD dataset
The Senseval-3 lexical sample dataset (Mihalcea et al.,
2004) contains annotated occurrences, for 57 target words.
The examples are split into train and test sets, allowing us
to train supervised classifiers. Our analysis will be based
on the nouns in the train part (S3LS for short), as named-
entities are most similar to nouns. S3LS contains 3,593 ex-
amples for 20 nouns, an average of 180 examples for each
noun. The dataset did not include multiword expressions.
Note that 97.5% of the occurrences have been assigned
a dictionary sense, leaving only 2.5% of the occurrences
without a sense assignment.
The annotations guidelines allowed tagging of an occur-
rence with several mentions. This can occur when the con-
text is not specific enough to constrain the set of possible
senses to a single one. In fact, 8.3% of the examples have
been labeled with more than one sense. The authors re-
ported an Inter Tagger Agreement (ITA) of 62.8%, showing
the difficulty of the task. WSD systems are evaluated on the
test part, using accuracy.

2.2. NED dataset
The TAC-KBP exercise provides an inventory of target
named entities, based on a subset of Wikipedia articles that
had info-boxes in October of 2008. This Knowledge Base
(KB) contains 818,741 entities.
Given a query that consists of a string and a document ID,
the task is to determine the KB entity to which that docu-
ment’s string refers to (or to establish that the entity is not
present in the reference KB). In other words, for each query,
a system must return a KB ID (or NIL when there is no cor-
responding KB-instance). The string in the query can be a

1In WSD lexical-sample datasets refer to datasets where sev-
eral selected target words are annotated in context. In contrast, all-
words datasets comprise continuous text segment where all words
have been annotated.

860



Corpora Dictionaries
WSD NED WSD LNRM HEUR

Words 20 1,162 20 1,162 1,162
NILs 0 462 0 111 94
Monosemous 0 488 0 286 331
Polysemous 20 112 20 765 737
Ambiguity 5.05 2.34 5.80 86.1 22.3

Table 1: Ambiguity rate for polysemous targets measured
in the annotated corpora (left) and dictionaries (right).
LNRM and HEUR refer to two NED dictionaries (cf. Sec-
tion 4.1.).

single word or a multi-word. The document provides con-
text which may be useful in disambiguating the string. All
of the queries had been tagged by a team of annotators.
TAC-KBP has been running and releasing development and
test data each year since 2009. We use the development and
test data available in the 2010 task (TAC10 for short), which
includes examples from news and the web. The develop-
ment dataset has 1,162 query strings (which we call target
words for comparability with WSD, even if they are multi-
token) and 5,404 examples, with an average of around 5 ex-
amples for each target word. We will see (Section 3) that in
many cases the queries refer to the same entity, even if us-
ing a different string mention. Note that, contrary to WSD
the development data cannot be used to train a supervised
WSD system, only to tune hyper-parameters. Supervised
NED systems are trained using external data Section 5.
Since the inventory of entities used in TAC-KBP is incom-
plete, it is common for target words to be annotated as NIL
(49% of total examples), in contrast to WSD (less than 3%).
In all examples there is a single ID per target word, that is,
there are no cases where multiple entities are referred to,
in contrast to WSD (8% of cases). ITA was reported sepa-
rately for each entity type. It was higher than for WSD in all
cases: organizations (92.98%), people (91.53%), and loca-
tions (87.5%). NED systems are evaluated using accuracy.
In our case, we will focus our results on the examples which
do have a referent in the KB (so-called non-NIL cases).

3. Ambiguity and Synonymy
Ambiguity refers to the number of referents (instances for
NED, concepts for WSD) that a target word has. In the
case of WSD, this is also known as the polysemy rate. Syn-
onymy rate, or synonymy for short, refers to the number of
lexicalizations (strings) that each instance or concept (NED
or WSD, respectively) can have. Estimating ambiguity and
synonymy rate is not trivial, as it assumes that a complete
inventory of lexicalizations and referents (concepts and in-
stances) exists, as well as a complete relation between lexi-
calizations and referents. Unfortunately no such inventories
exist. In the case of WSD, the dictionary provided by Word-
Net is fairly complete, as attested in S3LS, where the anno-
tators missed a sense in only 2.5% of the examples. In the
case of NED both constructing an inventory of all relevant
instances and collecting the possible realizations for those
instances is an open-ended problem (Hachey et al., 2012).
Even for the limited subset of instances listed in Wikipedia,

there is no standard dictionary of entities which lists all pos-
sible lexicalizations and their respective instances.
Given those limitations, we present two main estimations
of ambiguity and synonymy rate: one based on tagged cor-
pora, where we record the ambiguity and synonymy rate at-
tested in the annotated corpora only, and another one based
on dictionaries. For the latter, we will use WordNet for
WSD, and several versions of Wikipedia-derived dictionar-
ies (cf. Section 4.1) for NED.

3.1. Ambiguity and synonymy in corpora
For each target word in a dataset, we estimate ambigu-
ity as the number of different instances or concepts (NED
and WSD, respectively) associated to it by human anno-
tators. The left columns of Table 1 report the number of
target words, how many of them have no example with a
KB instance or concept attested in the corpus (NIL row),
how many are monosemous (single KB instance or con-
cept), how many are polysemous, and the mean ambiguity
for polysemous targets.
In NED, many target strings tend to be highly skewed, in
the sense that they usually refer to one specific entity. This
fact is reflected by the large number of strings which refer
to a single entity in the annotated corpus. We will show
that actual polysemy is much higher (e.g., according to our
dictionaries — see Section 3.2), since many of the possible
entities do not appear in annotated dataset.
Another quantity that sheds light on the complexity of a
disambiguation task, in a manner that is complementary to
ambiguity, is the number of different lexicalizations (words
or multi-words) that can be used to name a particular en-
tity or concept: its synonymy rate, in WSD terms. The
left columns in Table 2 tabulate the synonymy rate attested
in the annotated datasets, together with the breakdown, for
each concept or entity in the dataset, of how many of those
are not lexicalized, have a single lexicalization or multiple
lexicalizations. The synonymy rate is computed for those
referents having multiple lexicalizations.
The 101 referents present in the WSD dataset get an av-
erage of 3.34 lexicalizations. In the case of NED, most
entities are associated with only a single string (85%), and
the synonymy rate is lower, 2.49. This could be an artifact
of how the organizers constructed the dataset, since their
procedure was to first choose ambiguous strings and then
find documents containing different meanings (entities) for
these mentions — as opposed to first choosing entities and
then querying string variants of names. The annotators thus
did not search for alternative lexicalizations (synonyms) to
be used as query strings. As was the case with ambiguity,
the actual synonymy rate in dictionaries for NED is much
higher (see Section 3.2).

3.2. Ambiguity and Synonymy in Dictionaries
The right columns in Table 1 reports ambiguity figures for
two of the dictionaries we constructed for NED, LNRM
and HEUR, to be introduced in Section 4.1, as well as
the WSD dictionary, WordNet. HEUR covers more strings
than LNRM and has fewer monosemous entries yet lower
polysemy. HEUR retains more references from Wikipedia
and, simultaneously, substantially reduces ambiguity.

861



Corpora Dictionaries
WSD NED WSD EXCT HEUR

Referent 101 1,239 114 1,239 1,239
No Lex. 0 0 0 279 296
Single Lex. 30 1,053 34 0 0
Multiple Lex. 71 186 80 960 943
Synonymy 3.34 2.49 3.35 210.38 46.37

Table 2: Synonymy rate of referents (instances or con-
cepts), measured in the annotated corpora (left) and dic-
tionaries (right). EXCT and HEUR refer to two NED dic-
tionaries (cf. Section 4.1).

In contrast to WSD, where the ambiguity figures attested
in the corpora and dictionaries are similar, the ambiguity
figures for NED in dictionaries are much higher than those
attested in the annotated corpus (compare to Table 1). This
comes as no surprise, since the gold standard severely un-
derestimates true ambiguity by focusing exclusively on en-
tities that are mentioned in a target dataset. In contrast
to WSD, NED’s true ambiguity usually remains unknown,
as its determination would require a manual inspection of
all strings and entities, and an exhaustive search for exam-
ples of usage in actual text. Although the NED dictionaries
have good quality and come close to covering all entities in
the gold standard for known target words (cf. Section 4.2)
a manual inspection showed that they also contain incor-
rect entries. Therefore, we suspect that actual ambiguity
maybe be slightly lower than our estimate obtained with
the HEUR dictionary.
Table 2 shows synonymy figures for both the EXCT and
HEUR dictionaries, as well as the WSD dictionary, Word-
Net2. In the case of NED, entities corresponding to NILs
were not covered by the dictionary (tallied under the No
Lex. heading), and all of the remaining entities were lex-
icalized by a large number of strings (none by just one),
in contrast to the situation in WSD. The EXCT dictionary
had, on average, 210 strings per entity, which is reduced to
46 with heuristics.
Although the high estimates reflect the comprehensive cov-
erage afforded by our dictionaries, they do not reveal true
levels of synonymy, which would require hand-checking all
entries, as before. Nevertheless, these figures illustrate, at a
high level, another important difference between NED and
WSD: the synonymy rate is much lower for WSD, and find-
ing all lexicalizations for an instance in NED is an open-
ended problem.

4. Most Frequent Sense
The most frequent sense (MFS) is a high performing base-
line widely used in WSD. A MFS system returns the sense
with the highest frequency, as attested in training data. It
presupposes that, for a given target word, all possible refer-
ents are known, and then it estimates their frequency from
annotated data. This is straightforward for WSD, as ev-
ery target word has a canonical entry in the dictionary (e.g.

2The WSD column for dictionaries includes all concepts of tar-
get strings, while the NED column for dictionaries only includes
entities in the corpora.

WordNet). In the case of our dataset, MFS statistics for
WSD are directly gathered from the training data made
available.
In the case of NED the work is complicated by the lack
of a dictionary listing canonical entries. In fact, there are
several ways to construct such a dictionary, as we will see
next. In any case, we take the opportunity to also gather
sense frequency data from anchors in Wikipedia and the
web.

4.1. Constructing dictionaries for NED
Generating the set of entities that a specific string could re-
fer to is a critical module in many NED systems. It can
range from using Wikipedia titles as lexicalizations, to us-
ing all anchor texts, and several other related techniques
(Hachey et al., 2012). All of these techniques can introduce
incorrect lexicalizations, e.g. “dinner” being used in an an-
chor to refer to a specific dish like Ceviche. In addition,
the dictionary also gathers the counts of anchors, which are
used to estimate the most frequent sense.
The dictionary is represented as a set of weighted pairs
— an exhaustive enumeration of all possible string-entity
combinations, with corresponding strengths of association.
We constructed this resource from all English Wikipedia
pages (as of the March 6th, 2009 data dump) and many
references to Wikipedia from the greater web (based on a
subset of a 2011 Google crawl). Individual string-entity co-
occurrences were mined from several sources:
• Article titles that name entities, e.g., “Robert

Redford” from http://en.wikipedia.org/
wiki/Robert_Redford.6 Many title strings had
to be processed, e.g., separating trailing parenthet-
icals, like “(athlete)” in Jonathan_Edwards_
(Athlete), and underscores, from names proper.

• Titles of pages that redirect to other Wikipedia
pages, e.g., “Stanford” for the article Stanford_
University, redirected from the page Stanford.

• Titles of disambiguation pages that fan out to many
similarly-named articles, e.g., linking “Stanford” to
Stanford_University, Aaron_Stanford or
Stanford,_Bedfordshire, among other possi-
bilities, via Stanford_(disambiguation).

• Anchor text, e.g, we interpret the fact that Wikipedia
editors linked the two strings “Charles Robert Red-
ford” and “Robert Redford Jr.” to the article
Robert_Redford as a strong indication that both

3I.e., either (a) the string is an acronym for the title; or (b) the
title is an acronym for the string.

4I.e., either (a) the strings are the same; or (b) both strings have
length less than or equal to six, with an edit distance exactly equal
to one; or (c) the ratio between edit distance and string length is
less than or equal to 0.1.

5I.e., if (a) the number of total links to the page (both inside
Wikipedia and from the external web) is no more than ten; or
(b) the number of times the string links to the page is no more
than one; or (c) the score is no more than 0.001.

6In the remainder of this article, we will use the following con-
ventions: “string” for a string that can be used to name an entity
(e.g., “Robert Redford”) and suffixes of English Wikipedia URLs,
without the prefix http://en.wikipedia.org/wiki/, as
short-hand for corresponding articles (e.g., Robert_Redford).

862



0.9976 Hank_Williams w:756/758 W:936/938
0.0012 Your_Cheatin’_Heart W: 2/938
0.0006 Hank_Williams_(Clickradio_CEO) w: 1/758
0.0006 Hank_Williams_(basketball) w: 1/758
0 Hank_Williams,_Jr.
0 Hank_Williams_(disambiguation)
0 Hank_Williams_First_Nation
0 Hank_Williams_III

Figure 1: Sample from the EXCT dictionary, listing all articles and scores for the string “Hank Williams”.
Final column(s) report counts from Wikipedia (w:x/y) and the web crawl (W:u/v), where available.

0.9524 Hank_Williams W:20/21
0.0476 I’m_So_Lonesome_I_Could_Cry W: 1/21
0 Hank_Williams_(Clickradio_CEO)
0 Hank_Williams_(basketball)
0 Hank_Williams_(disambiguation)

Figure 2: Sample from the LNRM dictionary (note that contributions already in EXCT are excluded), for strings with
forms like l(Hank Williams) = hankwilliams = l(HANK WILLIAMS) = l(hank williams), etc.

0.6316 Tank_Williams w:12/12
0.3158 Hank_Williams W:6/7
0.0526 Your_Cheatin’_Heart W:1/7

Figure 3: Sample from the FUZZ dictionary for strings one byte way from “Hank Williams”, including “Tank Williams”,
“Hanks Williams”, “hankwilliam”, etc. (note that contributions already in EXCT or LNRM are excluded).

could refer to “Robert Redford.” We use the number
of links connecting a particular string with a specific
entity as a measure of the strength of association.

Note that our dictionary spans not just named entities but
also many general topics for which there are Wikipedia ar-
ticles. Further, it transcends Wikipedia by including an-
chors (i) from the greater web; and (ii) to Wikipedia pages
that may not (yet) exist. For the purposes of NED, it could
make sense to discard all but the articles that correspond to
named entities. We keep everything, however, since not all
articles have a known entity type, and because we would
like to construct a resource that is generally useful for dis-
ambiguating concepts. Our dictionary can disambiguate
mentions directly, simply by returning the highest-scoring
entry for a given string. The construction of this dictionary
is explained with more details in (Spitkovsky and Chang,
2012).
We developed several variants of the dictionary: EXCT,
LNRM, FUZZ and HEUR. For a given string-article pair,
where the string has been observed as the anchor-text of a
total of y inter-Wikipedia and v external links, of which
x (and, respectively, u) pointed to a page that is repre-
sented by the article in the pair, we set the pair’s score to
be a ratio (x + u)/(y + v). We call this dictionary exact
(EXCT), as it matches precisely the raw strings found using
the methods outlined above. For example, Figure 1 shows
all eight articles that have been referred to by the string
“Hank Williams.” Note that this dictionary does no filter-
ing: removal of undesired target Wikipedia pages (such as
disambiguations) will be done at a later stage (see below).
Regarding LNRM, we form the lower-cased normalized
variant l(s) of a string s by canonicalizing Unicode char-
acters, eliminating diacritics, lower-casing and discarding

any resulting ASCII-range characters that are not alpha-
numeric. If what remains is the empty string, then s maps
to no keys; otherwise, s matches all keys k such that
l(s) = l(k), with the exception of k = s, to exclude the
original key (which is already covered by EXCT). Figure
2 shows a subset of the LNRM dictionary, with combined
contributions from strings k that are similar to (but different
from) s.
We define the FUZZ dictionary via a metric, d(s, s′):
the byte-level UTF-8 Levenshtein edit-distance between
strings s and s′. If l(s) is empty, then s maps to no keys
once again; otherwise, s matches all keys k, whose l(k)
is also not empty, that minimize d(l(s), l(k)) > 0. This
approach excludes not only k = s but also l(k) = l(s), al-
ready covered by LNRM. For example, for the string Hank
Williams, there exist keys whose signature is exactly one
byte away, including Tank Williams, Hanks Williams, han-
kwilliam, and so forth. Figure 3 shows the three articles —
two of them already discovered by both EXCT and LNRM
dictionaries — found via this fuzzy match.
For disambiguating a target word with the MFS, we just use
the dictionary to select a highest-scoring entity, using the
ratios introduced above. We prepared several extensions to
the EXCT dictionary, using two strategies. The first one is
the dictionary cascade as follows:
• The LNRM cascade first checks the EXCT dictionary,

returning its associated entities and scores if the string
has an entry there, and defaulting to LNRM dictio-
nary’s results if not;
• The FUZZ cascade also first checks the EXCT dic-

tionary, backs off to the LNRM dictionary in case of a
miss, but then finally defaults to the contents from the
FUZZ dictionary.

863



Rule Example
1 Discard disambiguation pages. Discard: * → Hank Williams (disambiguation)

2 Discard date pages. Discard: * → 2000

3 Discard list-of pages. Discard: * → List of cheeses

4 Discard pages only suggested by FUZZ,
unless:

Discard: MND → MNW

· string and title could be an acronym pair;3 Keep: NDMC → National Defense Medical Center

· string is a substring of the title; Keep: DeLorean Motor → DeLorean Motor Company

· string is very similar to the title.4 Keep: Chunghua Telecom → Chunghwa Telecom

5 Discard articles supported by few
links,5unless:

Discard: Washington → Tacoma, Washington

· article may disambiguate the string; Keep: CNS → Szekler National Council

· string is the title of the page. Keep: Chunghwa Telecom → Chunghwa Telecom

Table 3: Rules of the heuristic combination dictionary (HEUR).

For the sake of simplicity, we will use LNRM and FUZZ
to refer to the respective cascades in the rest of the paper.
Our second strategy is a heuristic combination (HEUR):
it combines suggestions from the original (EXCT, LNRM,
and FUZZ) dictionaries while also filtering out some of the
noise. Its goal is to retain good suggestions without drown-
ing in obviously bad choices: since many titles suggested
by the FUZZ dictionary are noisy, we only include those
for which there is additional evidence of relevance (for in-
stance, if the suggestion is an acronym for the string). Sim-
ilarly, if a string has been used to link to an article only a
few times, the connection between them may not be reli-
able, calling for more evidence before the entity could be
accepted as a possible referent for the string. Naturally, we
also discard articles that are clearly not real entities — such
as disambiguation pages, “list of” pages, and pages of dates
— using additional features collected with the core dictio-
nary. Table 3 summarizes our complete list of heuristics,
which was finalized by consulting a development dataset.
Heuristic combinations can yield dictionaries that are con-
siderably smaller than full cascades. For example, for the
string ABC, the EXCT dictionary offers 191 options, the
LNRM cascade 253, and the FUZZ cascade 3,527. But
with the above-mentioned filters, the number of candidate
Wikipedia titles can be reduced to just 110. We already
mentioned in Section 3 Tables 1 and 2 several key statistics
for some of the dictionaries.

4.2. Developing MFS for NED
Table 4 shows development results of MFS for several
NED dictionaries (News subset of development data). The
best results are for the heuristic dictionary. We measured
the performance of the HEUR dictionary when using only
Wikipedia counts and only the web crawl, with perfor-
mance drops in both cases, 0.651 and 0.676. The table also
includes GOOG, the result of querying Google with the tar-
get word and returning the Wikipedia article with highest
rank, which performs slightly worse than our dictionaries.
If the dictionary fails to recognize that a given string could
refer to a particular entity, then, the disambiguation system
(MFS or otherwise) will not be able to return that entity.
Thus, the dictionary introduces a performance bottleneck
in WSD and NED.

Accuracy Oracle
EXCT 0.694
LNRM 0.695 91.6
FUZZ 0.713 94.1
HEUR 0.721 91.9
GOOG 0.696

Table 4: Development results for MFS dictionaries for
NED, including oracle results.

The rightmost column of Table 4 shows the skyline results
that could be attained, for each dictionary, by an oracle,
choosing the best possible entity available to each system.
This skyline is computed, as for the MFS, for non-NIL
cases, that is, for those cases where the gold standard eval-
uation dataset has been annotated with an entity in the KB.
For LNRM and HEUR cascades, gold standard entities are
among the suggestions of the dictionary around 92% of the
time. It is not 100% because the dictionary misses the asso-
ciation between some target words and entities in the KB,
that is, even if the target word is in the dictionary and the
target entity is in the KB, the dictionary entry for the target
word misses to make reference to the target entity. Note
that the skyline for WSD in the dataset we mentioned is
100%, as the dictionary contains all necessary associations
between senses and target words.
A higher bound does not mean necessary a better perfor-
mance. For example, FUZZ yields the overall largest num-
ber of possibilities, but has lower realized performance than
HEUR. Regarding the performance of the supervised clas-
sifier, experiments in development data showed that the best
performance was attained using the HEUR dictionary, per-
haps due to the substantially higher ambiguity in the FUZZ
dictionary.

5. Supervised Disambiguation
We followed a mainstream WSD approach (word-expert),
training supervised classifiers for all target strings. In the
case of WSD, this is straightforward, as we use the training
data provided with the S3LS dataset. For NED, we pro-
ceed as follows: For every string in the HEUR dictionary,
we first identify the entities to which it may refer. We then

864



On February 27, 2004, SuperFerry 14 was bombed by the Abu Sayyaf terrorists
killing 116 people . It was considered as the worst terrorist attack ...

anchor text Abu Sayyaf
lemmas in the span terrorist

kill
...

lemma for N/V/A be
in a 4 token window bomb

around the anchor text kill, people, terrorist
lemma and word for N/V/A noun (lemma) SuperFerry

before the anchor text noun (word) SuperFerry
verb (lemma) bomb
verb (word) bombed

lemma and word for N/V/A adjective (lemma) bad
after the anchor text adjective (word) worst

noun (lemma) terrorist
noun (word) terrorists
verb (lemma) kill
verb (word) killing

bigrams around anchor text lemma before the Abu Sayyaf
lemma after Abu Sayyaf terrorist
POS before DT J
POS after J N2
word before the Abu Sayyaf
word after Abu Sayyaf terrorist

trigrams around anchor text lemma before by the Abu Sayyaf
lemma around the Abu Sayyaf terrorist
lemma after Abu Sayyaf terrorist kill
POS before P-ACP DT J
POS around J N2 VVG
POS after DT J N2
word before by the Abu Sayyaf
word around the Abu Sayyaf terrorists
word after Abu Sayyaf terrorists killing

Figure 4: Example training context and features extracted from Wikipedia’s article for SuperFerry.

gather the context of all anchors where the string occurs in
Wikipedia articles. To ensure that our training data is natu-
ral language (and not, e.g., lists or tables), we only include
text marked as paragraphs (i.e., enclosed between HTML
tags <P> and </P>). The relevant training subset for a
target string then consists of example contexts with anchor
texts containing the string.7 We take spans of up to 100
tokens to the left and another 100 to the right.
Given this training data, we applied standard machine
learning techniques to perform supervised disambiguation
of entities. We trained a maximum entropy multi-class clas-
sifier8 for each target string (Manning and Klein, 2003).
Then, given a mention of the target string in the test data,
we applied its classifier to the context of the mention, and
returned the corresponding article. We did not construct
classifiers for strings whose training data maps to a unique
entity. Instead, in those cases, a default classifier falls back
to LNRM cascade’s output.
From each context, we extracted features (see Figure 4)
commonly used for supervised classification in the WSD

7The target string is a substring of the anchor text after case
normalization.

8`2-regularization

setting (Agirre and Lopez de Lacalle, 2007; Zhong and Ng,
2010):
• the anchor text;
• the unordered set of lemmas in the span;
• lemma for noun/verb/adjective in a four-token window

around the anchor text;
• lemma/word for noun/verb/adjective before and after

the anchor text;
• word/lemma/part-of-speech bigram and trigrams in-

cluding the anchor text.

5.1. Variations
Over the course of developing our system, we tested several
variations of the core algorithm:
Classifier: We tried maximum entropy models (MAX-
ENT) and support vector machines (SVM).
Dictionary: A dictionary influences supervised classifica-
tion in two places. First, when building the training data, to
filter example spans selected for training. And second, as
a backup ranker, for cases when a classifier is not trained,
due to a lack of examples. In both the filtering stage and the
back-off stage, we compared using the HEUR dictionary in
place of the LNRM cascade.
Span: In addition to training with contexts of (up to) 100

865



default 0.7707
SVM 0.7463
LNRM (filtering) 0.7528
HEUR (back-off) 0.7827
SENT 0.7582
PARA 0.7582
SENSE 0.8090

Table 5: Performance of the supervised classifier on the
news subset of development data, in several variants (cf.
Section 5.1).

tokens to the left and right of a string, we also tried single-
sentence and full-paragraph spans (the 100, SENT and
PARA variants).
Match: When gathering examples for a target string, we
made sure that the anchor text contains this string (the LEX
default). Alternatively, we could allow additional exam-
ples, ignoring anchor text mismatch (the SENSE variant):
given the entities that a dictionary lists for the target string,
we include as training examples all contexts that apply to
these entities, regardless of their anchor text. In this vari-
ant, the target string is simply treated as another feature
by the classifier. If a test example’s string does not match
any of the anchor text seen in training, then features that
include the target string (i.e., its unigram, bigram, and tri-
gram features) will not fire. Classification will then depend
on features describing the rest of the context: a classifier
could still give a high score, but only if surrounding words
of a span carry a strong enough signal for an entity. This
approach may allow us to classify aliases for which there
isn’t exact training data, provided that our filtering dictio-
nary yields a precise list of potential entities corresponding
to a target string.

5.2. Developing the supervised system for NED
Table 5 shows performance on the news subset of develop-
ment data for several variants of our supervised classifier.
The first row corresponds to default parameters; the rest
represent a greedy exploration of the space of alternatives.
Each additional row specifies a setting that differs from the
first row in one parameter (cf. Section 5.1).
Classifier: The second row shows the results of
SVMlight binary classifiers (Joachims, 1999), which per-
forms worse than our default classification algorithm (max-
imum entropy with `2-regularization), MAXENT (Man-
ning and Klein, 2003). We did not tune any of the available
parameters, since we were interested in out-of-the-box per-
formance of all methods (for SVMs, we used a linear kernel
with a cost of 0.01).
Dictionary: The third row shows that the LNRM cascade
generates worse training examples than our default dictio-
nary combination, HEUR. We do not show results for other
dictionaries, which yield too many candidates (without im-
proving precision). The fourth row shows that HEUR also
performs better than LNRM when used as a back-off dic-
tionary, improving over the default.
Span: Rows five and six show that supervised classifica-
tion performs equally well using either sentences or para-

WSD NED
MFS 55.2 74.9

SUPERV. 72.9 84.5

Table 6: Test results for the MFS baseline and supervised
classifiers on WSD and NED.

graphs (but that the best results are obtained using left and
right 100 tokens). One reason for similar performance is
that most paragraphs are not marked correctly. In addition,
in Wikipedia, a paragraph often comprises of a single sen-
tence. A fixed span of tokens to each side of a mention
may extend beyond sentence boundaries, providing more
context to help with disambiguation.
Match: The last row shows that using all examples that
refer to an entity (SENSE) improves over the default ap-
proach, which uses only a subset of examples that contain
the target string (LEX).

6. Test Results
Table 6 reports the results on test data for MFS and the su-
pervised classifiers. In the case of WSD, we report the re-
sults of the best participant in the Senseval task. For NED,
the MFS results corresponds to the HEUR dictionary.
The results for NED are higher than for WSD. Although
absolute error reduction is larger for WSD, the relative error
reduction is very similar, 40% for NED, and 38% for WSD.
Note that the best results in the TAC-KBP competition in
2009 was 80.6 (Lehmann et al., 2010), lower than our word-
expert approach.

7. Discussion
We have shown that it is possible to construct an effec-
tive dictionary for NED, covering between 92% and 98%
of the manually annotated string-entity pairs (for develop-
ment data). Although the ambiguity in such dictionaries
varies, it tends to be higher than for the gold standard in
NED and also for a typical WSD dataset. Since a similar
phenomenon is also observed with synonymy, one might
expect NED to pose a more difficult problem than WSD;
nevertheless, we observed the opposite effect in practice.
Our popularity-based dictionary heuristic performs even
more strongly than the MFS baseline in WSD (75% in our
blind NED evaluation, compared to 55%); supervised sys-
tem variants also score much higher (84% vs. 73%). Of
course, comparing evaluation numbers across tasks requires
extreme caution. Nonetheless, we suspect that qualitatively
large difference in performance here indicates that NED
has larger numbers of training data, compared to WSD, and
also the fact that clarity and definiteness of disambiguating
an entity reference to a particular person/organization con-
trasts with the common difficulty of doing this when there
are overlapping/unclear senses for WSD. The later also ex-
plains the lower inter-annotator agreement rate for WSD
compared to NED.
High ambiguity and synonymy, together with the large vol-
umes of text data, make NED computationally more de-
manding than WSD, both in the scope of regular memory
and disk storage capacities, as well as speed and efficient

866



processing requirements. Our approach in particular could
invoke training of potentially millions of classifiers, requir-
ing significant engineering effort. But since each classifier
can be trained independently, parallelization is easy.
The number of cases where annotators could not assign an
entity (NILs) is significantly higher in NED than in WSD
(around 50% compared to just 1.7%). Ambiguity and syn-
onymy, according to gold standards, are substantially lower
than in WSD (with average ambiguities of around 2 vs. 5,
and average polysemies of 2 vs. 4). These statistics are mis-
leading, however, since actual ambiguity and synonymy in
NED are more extreme, according to our dictionaries (dis-
cussed in Section 3.2). Finally, inter-annotator agreement
for NED is higher — between 87% and 93% — compared
to 72% in WSD.
We can summarize the main differences between WSD and
NED as follows: (1) ambiguity, synonymy and incidence
of dictionary misses (NILs) are all higher for NED than
for WSD; (2) the NED task appears better-defined, as sig-
naled by higher inter-annotator agreement than in WSD;
(3) the skew of frequencies is more extreme for NED, with
MFS consequently presenting an even stronger baseline
there than in WSD; (4) the high number of training in-
stances available to NED enables better supervised training,
allowing comparable systems (same preprocessing, feature
sets, and classifier) to perform better in NED than in WSD;
(5) the relative error reduction between the performance of
a supervised classifier and the MFS baseline is strikingly
similar in both WSD and NED.
In addition we show the following: (6) a dictionary for
NED can provide good coverage and MFS results, where
web crawl counts and Wikipedia counts add up for best re-
sults; (7) the high ambiguity of mentions encountered by
NED makes a typical word expert approach more compu-
tationally expensive, but still feasible.

8. Conclusions and future work
We highlighted many connections between WSD and NED.
In WSD settings, dictionaries are provided, but NED in-
volves constructing possible mappings from strings to en-
tities — a step that (Hachey et al., 2012) showed to be
key to success. The resulting dictionaries exhibit very high
synonymy and ambiguity (polysemy) yet still do not cover
many occurrences that ought to be tagged by a NED sys-
tem, making the task appear more difficult, in theory, com-
pared to WSD. But in practice, the opposite seems to be the
case, due to actual mentions being more heavily skewed to-
wards popular entities than in WSD, a plethora of available
training data in the form of human-entered anchor-texts of
hyperlinks on the web, and higher inter-annotator agree-
ment, which indicates more crisp differences between pos-
sible shades of meanings than in WSD. As a result, both
popularity-based dictionary lookups (MFS heuristics) and
supervised classifiers, which are traditional WSD architec-
tures, perform better for NED than for WSD.
Our study has general considerations, but some statistics
are related to the two datasets under study. In the future,
we would like to extend our study using datasets which in-
clude all mentions in full documents (Snyder and Palmer,
2004; Hoffart et al., 2011). A longer version of this paper is

available at http://arxiv.org/abs/1603.04767.

9. Acknowledgements
We thank Oier Lopez de Lacalle and David Martinez, for
the script to extract features, as well as Daniel Jurafsky and
Eric Yeh, for their contributions to an earlier participation
in TAC-KBP.
Angel X. Chang has been supported by a SAP Stan-
ford Graduate Fellowship; Valentin I. Spitkovsky has been
partially supported by NSF grants IIS-0811974 and IIS-
1216875 and by the Fannie & John Hertz Foundation Fel-
lowship. We gratefully acknowledge the support of De-
fense Advanced Research Projects Agency (DARPA) Ma-
chine Reading Program under Air Force Research Labora-
tory (AFRL) prime contract no. FA8750-09-C-0181. Any
opinions, findings, and conclusion or recommendations ex-
pressed in this material are those of the author(s) and do
not necessarily reflect the view of the DARPA, AFRL, or
the US government.

10. Bibliographical References
Agirre, E. and Lopez de Lacalle, O. (2007). UBC-ALM:

Combining k-NN with SVD for WSD. In SemEval.
Christiane Fellbaum, editor. (1998). WordNet: An Elec-

tronic Database. MIT Press.
Hachey, B., Radford, W., Nothman, J., Honnibal, M.,

and Curran, J. (2012). Evaluating Entity Linking with
Wikipedia. Artificial Intelligence, 194:130–150, Jan-
uary.

Hoffart, J., Yosef, M. A., Bordino, I., Fürstenau, H., Pinkal,
M., Spaniol, M., Taneva, B., Thater, S., and Weikum, G.
(2011). Robust disambiguation of named entities in text.
In EMNLP.

Joachims, T. (1999). Making large-scale SVM learning
practical. In Bernhard Schölkopf, et al., editors, Ad-
vances in Kernel Methods - Support Vector Learning.
MIT Press.

Lehmann, J., Monahan, S., Nezda, L., Jung, A., and Shi, Y.
(2010). LCC approaches to knowledge base population
at TAC 2010. In TAC.

Manning, C. D. and Klein, D. (2003). Optimization, max-
ent models, and conditional estimation without magic.
In HLT-NAACL.

McNamee, P. and Dang, H. (2009). Overview of the TAC
2009 Knowledge Base Population track. In TAC.

Mihalcea, R., Chklovski, T., and Kilgarriff, A. (2004). The
Senseval-3 English lexical sample task. In Senseval.

Snyder, B. and Palmer, M. (2004). The English all-words
task. In Senseval.

Spitkovsky, V. I. and Chang, A. X. (2012). A cross-lingual
dictionary for English Wikipedia concepts. In LREC.

Zhong, Z. and Ng, H. T. (2010). It makes sense: A wide-
coverage word sense disambiguation system for free text.
In ACL: System Demonstrations.

867


