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Abstract
We describe resources aimed at increasing the usability of the semantic representations utilized within the DELPH-IN (Deep Linguistic
Processing with HPSG) consortium. We concentrate in particular on the Dependency Minimal Recursion Semantics (DMRS) formalism,
a graph-based representation designed for compositional semantic representation with deep grammars. Our main focus is on English,
and specifically English Resource Semantics (ERS) as used in the English Resource Grammar. We first give an introduction to ERS
and DMRS and a brief overview of some existing resources and then describe in detail a new repository which has been developed to
simplify the use of ERS/DMRS. We explain a number of operations on DMRS graphs which our repository supports, with sketches of
the algorithms, and illustrate how these operations can be exploited in application building. We believe that this work will aid researchers
to exploit the rich and effective but complex DELPH-IN resources.
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1. Introduction

DELPH-IN (http://www.delph-in.net) is an in-
ternational collaboration between researchers with an in-
terest in ‘deep’, linguistically-motivated, language process-
ing. Several broad-coverage computational grammars have
been produced, together with experimental grammars for
languages in all the main language families. These gram-
mars share a framework for compositional meaning repre-
sentation known as Minimal Recursion Semantics (MRS;
Copestake et al. (2005)), which has several variants, col-
lectively referred to as *MRS. Currently, the most used and
widest coverage DELPH-IN grammar is the English Re-
source Grammar (ERG; Flickinger (2000)).
*MRS from the ERG (henceforth English Resource Seman-
tics: ERS) and other DELPH-IN grammars has been suc-
cessfully used in a number of applications. These include
machine translation (e.g., Bond et al. (2011)), informa-
tion extraction and question answering (e.g., Copestake et
al. (2006), Frank et al. (2005), MacKinlay et al. (2009),
MacKinlay et al. (2012)), extraction of ontological rela-
tionships (e.g., Herbelot and Copestake (2006)), question
generation (e.g., Yao and Zhang (2010), Yao et al. (2012)),
entailment recognition (e.g., Lien and Kouylekov (2014)),
detection of scope of negation (e.g., Packard et al. (2014))
and natural language interfaces (e.g., Packard (2014)). In
several cases (including Packard et al. (2014), Lien and
Kouylekov (2014), Packard (2014), Yao and Zhang (2010),
MacKinlay et al. (2009)) an ERS-based system has outper-
formed other approaches in a competitive task. While an
ERG-based system is not suitable for applications which
require rapid analysis of very large quantities of text, pars-
ing accuracy is competitive with other approaches and is
generally good on new domains without any need for sub-
stantial training or adaptation (MacKinlay et al. (2010),
Dridan and Oepen (2013)). ERS is especially suitable in
applications which require high precision in semantic tasks

and where some lack of recall due to parse failure rates is
tolerable. Furthermore, the ERG is bidirectional and ERSs
can also be used for realization.
However, the adoption of ERS (and *MRS with other gram-
mars) has been limited outside the DELPH-IN community,
despite the fact that the resources are all Open Source.
Anecdotally, a major problem is the complexity of the anal-
yses. The DELPH-IN community have taken various steps
towards addressing this. There is a standardized seman-
tic interface to the grammars (the SEM-I: Flickinger et al.
(2005)). Flickinger et al. (2014) described an approach
to documenting the fundamentals of ERS, allowing users
to look up the detailed analysis of particular grammatical
constructions. The Elementary Dependency representation
(Oepen and Lønning, 2006) is simpler than *MRS and cap-
tures many aspects of ERS while being relatively similar to
familiar syntactic dependency formalisms. It can be used
for comparative parser evaluation as well as other applica-
tions (Ivanova et al. (2012), Dridan and Oepen (2011)).
In this paper, we concentrate on resources for processing
Dependency MRS (DMRS; Copestake (2009)). This is a
version of MRS which can be represented as a dependency
graph, with no need for variables. Unlike Elementary De-
pendencies, DMRS has a proper representation of scope
and is fully inter-convertible with other forms of *MRS.
It thus makes use of the full power of the ERG for semantic
description. DMRS has been used in a number of applica-
tions (e.g., Reiplinger et al. (2012), Schäfer et al. (2011),
Herbelot (2013), Horvat et al. (2015), Emerson and Copes-
take (2015)) and our aim is to increase its use.
There have, of course, been earlier graph-based seman-
tic representation languages, including some which sup-
port genuine logical forms (e.g., Allen et al. (2008)). The
popularity of Abstract Meaning Representation (AMR; Ba-
narescu et al. (2013)) has led to increased interest in graph-
based formalisms. Bender et al. (2015) discusses why com-
positionality (as assumed in *MRS but not in AMR) is an

1240



important property of semantic representations. We believe
that the DMRS is interestingly different from these other
representations and that the coverage and depth of ERS
have significant potential advantages in applications, if re-
searchers can overcome the difficulties arising from its de-
tail and complexity.
Our purpose here is thus to improve the utility of DMRS
to encourage increased uptake of DELPH-IN resources. In
this paper, we start by outlining DMRS and some existing
resources and then move on to describe a repository which
supports developers by providing standard operations on
DMRS and giving illustrative examples of their potential
use in applications.

2. An Outline of DMRS
Rather than give a formal introduction to DMRS, we will
outline its properties by means of the example shown in
Fig 1. This shows a scoped structure in predicate calcu-
lus using generalized quantifiers, the corresponding MRS,
the Robust MRS (RMRS; Copestake (2007b)), and finally
the DMRS. Both MRS and RMRS can be regarded as a flat
list of elementary predications, unlike a conventional logi-
cal representation which uses nesting to convey scope. The
labels (l1, l2 etc) shown in the MRS and RMRS structures
together with the qeq constraints represent (underspecified)
scope restrictions (e.g., the restrictor of every). The ERG
actually uses argument labels internally (RSTR, ARG1 etc),
but to make the comparison with the scoped representation
clearer, the MRS in Figure 1 is shown in a format which
omits them. RMRS always makes the argument labels ex-
plicit: arguments may be dropped or underspecified without
the RMRS structure being ill-formed, but the cost is that an
additional anchor element (a1, a2 etc) is required to relate
arguments to the predications.
The DMRS is essentially a simplification of the complex
graph which results if identities between labels and vari-
ables in the RMRS are replaced by links, with the canoni-
cal DMRS form being produced by exploiting general con-
ditions of ERS. These mean, for instance, that the RMRS
ARG0 is not needed.
One complication discussed by Copestake (2009) is that oc-
casionally undirected bare /EQ links are necessary to com-
pletely model the MRS. This situation arises when two ele-
mentary predications have equal labels in the MRS/RMRS
but there is no argument relation between them: e.g., in
some (fairly unusual) types of relative clause. We are cur-
rently seeking to revise the definition of DMRS to avoid
such undirected links, but since they do not substantially
affect the main objectives of this paper, we will not discuss
that further here.
Although a more detailed description of DMRS and its se-
mantics is out of the scope of this paper, it will be useful in
what follows to note that there are several different notions
of DMRS well-formedness:

• Realizability: A DMRS meets the realizability con-
straint with respect to a grammar if it corresponds to a
natural language string according to that grammar (for
the current ERG, this is mediated by the MRS). Of
course, not all semantically-meaningful DMRSs meet
this condition.

• MRS well-formedness: A DMRS meets this condi-
tion if it can be converted into a well-formed MRS
as defined by Copestake et al. (2005). Informally, a
well-formed MRS is one that can be specialized into
one or more scope-resolved structures. For a grammar
where all semantic composition operations and lexi-
cal entries are correctly specified, all MRS structures
produced by/accepted by the grammar for an utterance
will meet this well-formedness condition,1 and hence
the set of DMRSs which are well-formed under this
condition are a subset of those which meet the realiz-
ability constraint. This condition is also a requirement
for conversion into predicate calculus.

• Basic well-formedness: simply requires that the
DMRS is a graph with well-formed labels on nodes
and edges. If the bare EQ links described above are
excluded, the graph must be acyclic, but not necessar-
ily connected.

3. DMRS Resources
Links to resources for DMRS, including those highlighted
below, can be found on http://moin.delph-in.
net/RmrsDmrs. DELPH-IN is committed to the devel-
opment of Open Source resources, and all software listed
below (including the ERG, ACE, pyDelphin, and pydmrs)
uses the MIT license. The HPSG annotations in the Wiki-
Woods corpus are covered by the LGPL v3 license.

3.1. The English Resource Grammar and
DELPH-IN Tools

*MRSs are produced from English text with the ERG us-
ing suitable preprocessing tools and a compatible parser.
Details are beyond the scope of this paper, but see http:
//moin.delph-in.net/. DELPH-IN realizers al-
low text to be produced from *MRS input. For most
of our work, we now use Woodley Packard’s Answer
Constraint Engine (ACE: http://sweaglesw.org/
linguistics/ace/) for parsing and realization.

3.2. pyDelphin
The pyDelphin library (https://github.com/
delph-in/pydelphin) is an Open Source Python
package implementing a variety of DELPH-IN formal
representations, with a particular emphasis on MRS and
DMRS support. As most of the parsers/realizers which
handle DELPH-IN grammars (including ACE) currently
assume MRS output/input rather than DMRS, pyDelphin’s
MRS⇀↽DMRS conversion functionality is useful for
researchers wishing to work with DMRS representations.
A Python wrapper for ACE is also provided, which can
simplify applications or workflows that rely on ACE.

3.3. WikiWoods DMRS
WikiWoods (Flickinger et al., 2010) is a dump of Wikipedia
parsed with the ERG. It is very useful for applications
where a large number of semantic contexts are required, for

1Note that in the ERG treatment of fragments, an additional
predication is associated with an utterance so it can be resolved
into a scope-resolved structure (see Fig 2).
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Sentence: Every big angry dog barks loudly.

Scoped form (single scope
for this example):

every q(x4, big a 1(e8,x4) ∧ angry a 1(e9, x4) ∧ dog n 1(x4),
bark v 1(e2,x4) ∧ loud a 1(e10,e2))

MRS (hiding argument
labels):

l1: every q(x4,h5,h6), h5 qeq l2,
l2: big a 1(e8,x4), l2: angry a 1(e9,x4), l2: dog n 1(x4),
l4: bark v 1(e2,x4), l4: loud a 1(e10,e2)

RMRS: l1:a1: every q, BV(a1,x4), RSTR(a1,h5), BODY(a1,h6), h5 qeq l2,
l2:a2: big a 1(e8), ARG1(a2,x4), l2:a3: angry a 1(e9), ARG1(a3,x4), l2:a4: dog n 1(x4),
l4:a5: bark v 1(e2), ARG1(a5,x4), l4:a6: loud a 1(e10), ARG1(a6,e2)

DMRS: every q big a 1 angry a at dog n 1 bark v 1* loud a 1
-

ARG1/EQ
�
ARG1/EQ

�
ARG1/NEQ

-
ARG1/EQ

-
RSTR/H

Figure 1: Semantic representations for ‘Every big angry dog barks loudly.’ Note that the directionality of the modifier links
in the DMRS follows from the predicate calculus representation but is the opposite of conventional syntactic dependencies.
Tense and number information is associated with variables in MRS and RMRS and nodes in DMRS, but is omitted here for
clarity. Figure 2 shows a complete representation.

<dmrs surface="Allusions to other works" ident="1214528100230">
<node nodeid="10001" cfrom="2" cto="26">

<gpred>unknown_rel</gpred><sortinfo cvarsort="e" sf="prop-or-ques"/>
</node>
<node nodeid="10002" cfrom="2" cto="26">

<gpred>udef_q_rel</gpred><sortinfo/>
</node>
<node nodeid="10003" cfrom="2" cto="11">

<realpred lemma="allusion" pos="n" sense="1"/>
<sortinfo cvarsort="x" pers="3" num="pl"/>

</node>
<node nodeid="10004" cfrom="12" cto="14">

<realpred lemma="to" pos="p"/>
<sortinfo cvarsort="e" sf="prop" tense="untensed" mood="indicative"/>

</node>
<node nodeid="10005" cfrom="15" cto="26">

<gpred>udef_q_rel</gpred><sortinfo/>
</node>
<node nodeid="10006" cfrom="15" cto="20">

<realpred lemma="other" pos="a" sense="1"/>
<sortinfo cvarsort="e" sf="prop" tense="untensed" mood="indicative"/>

</node>
<node nodeid="10007" cfrom="21" cto="26">

<realpred lemma="work" pos="n" sense="1"/>
<sortinfo cvarsort="x" pers="3" num="pl"/>

</node>
<link from="10001" to="10003"><rargname>ARG</rargname><post>NEQ</post></link>
<link from="10002" to="10003"><rargname>RSTR</rargname><post>H</post></link>
<link from="10004" to="10003"><rargname>ARG1</rargname><post>EQ</post></link>
<link from="10004" to="10007"><rargname>ARG2</rargname><post>NEQ</post></link>
<link from="10005" to="10007"><rargname>RSTR</rargname><post>H</post></link>
<link from="10006" to="10007"><rargname>ARG1</rargname><post>EQ</post></link>

</dmrs>

Figure 2: An example of DMRS in XML format, from the WikiWoods corpus. This format is intended to be machine-
readable rather than human-readable. It includes information about number and tense (omitted for simplicity in Figure 1)
and also shows the surface string and character position information essential for bookkeeping. Note the ‘UNKNOWN REL’
which means this fragment can be treated as a proposition.
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instance building distributional models from parsed data.
The DMRS version of WikiWoods has been used by a
number of researchers (e.g., Herbelot (2013), Emerson and
Copestake (2015)) since it is much easier to extract seman-
tic relationships from it than to deal with variable interac-
tions in MRS/RMRS. An example WikiWoods DMRS is
shown in Fig 2.

3.4. DMRS Application Libraries: pydmrs
The bulk of this paper concerns pydmrs: a new Python
package supporting operations such as DMRS subgraph
matching, standard types of DMRS simplification, mapping
and chunking as discussed in more detail in §4. A user may
choose either to import the routines provided in this pack-
age into their own Python code, or to run specific modules
as batch scripts to process large amounts of data. Detailed
examples of various uses are given in the pydmrs reposi-
tory. We are also including some sample applications, out-
lined in §5, in order to help developers to investigate these
resources further themselves.

4. Operations on DMRS
By considering the DMRS as a semantic graph, we define a
number of operations which can be utilized in applications.
Our aim here is to motivate the abstract operation types and
outline how they can be exploited. Note that all these types
of operation are applicable both where machine learning is
used and for hand-written rules or patterns.

4.1. Matching
Matching is the basic *MRS operation used in information
extraction and question answering. Copestake (2007a) dis-
cusses how the *MRS matching operation can be regarded
as a form of robust inference. In the robust approach to real-
ization described by Horvat et al. (2015), subgraph match-
ing is required to find which rules can be applied to the in-
put DMRS graph. Matching can be used with wildcards to
implement ontology extraction, as outlined in §5. One ad-
vantage of matching using DMRS, as opposed to the earlier
*MRS approaches, is that DMRS structures may be packed,
allowing efficient matching operations to be performed on
a forest of alternative structures.
The basic operation of DMRS matching amounts to sub-
graph matching, with conditions on node and arc labels
that they are compatible rather than identical. It can thus
be stated more simply than MRS/RMRS matching and is
more straightforward to implement, since there is no need
to maintain a list of variable equalities. *MRS matching
is worst-case exponential, but, as discussed below, efficient
algorithms exist for practical uses.
The pydmrs library includes three algorithms for DMRS
matching: exact subgraph matching, surface-aligned
matching and general scored matching.
The exact (sub)graph matching checks whether a DMRS
graph contains a specified subgraph. If any element of the
subgraph is missing in the larger graph, no match is de-
tected. The efficiency of this matching method is based on
the assumption that a DMRS graph corresponding to a sen-
tence or a sentence fragment mainly consists of uniquely-
labelled nodes, which hence match unambiguously. A

naive matching algorithm performing an exhaustive search
over all possible node match combinations, with worst-case
exponential runtime, is therefore sufficient in practice. The
algorithm identifies the unambiguous node matches and
then adds all matches that can be inferred for repeated la-
bels by considering their immediately neighbouring nodes.
Node labels which are repeated in a sentence will generally
correspond to common words like quantifiers or preposi-
tions, which will be connected to open class words which
are unlikely to be repeated. If all of the neighbouring nodes
already match uniquely and there is only one node in the
other graph containing the corresponding neighbourhood,
we can conclude a match of the node in question. Subse-
quently, we continue to perform an exhaustive search over
all the possible combinations if there are still unmatched
nodes left.
The other two matching approaches find the best possible
match, even a non-exact one, and assess its quality with an
F-score, computed based on the number of matched nodes
and links, similarly to a metric by Cai and Knight (2013).
Nodes and links are treated as equally important.
The surface-aligned matching uses the fact that parser
output contains information on which part of the original
string corresponds to a given predicate. By ordering the
DMRS nodes by the position of their predicates in a sen-
tence, we can limit the search space of the matching algo-
rithm. There are two ways to use this form of matching.
The matched subgraph returned as the result of the query
can include only nodes from the query, or it can include all
the nodes corresponding to the aligned region of the sur-
face. For example, if we query for big dog in the DMRS
graph from Figure 1, the first variant of the algorithm grants
the match a perfect score. In the second variant the match
is penalized because the surface region of interest and the
matched subgraph include angry.
The above approach cannot be used when the alignment in-
formation is missing. Moreover, if two different sentences
have the same DMRS representation but different word or-
der, the algorithm will not match them perfectly. To ac-
count for these and other scenarios, we provide an alterna-
tive in the form of a less efficient general matching algo-
rithm. The algorithm traverses the DMRS graph following
its link structure exploring any matching regions and com-
bining the disconnected matches from individual regions in
a way which maximizes the score. The resulting subgraph
contains only the nodes and links from the query.

4.2. Simplification
For many applications, much simpler structures than the
full ERS are all that is required. For instance, for an ap-
plication involving a simple interface to a robot, quantifiers
may not be needed. However, there is little point in provid-
ing a single ‘Simplified MRS’ as an alternative to the stan-
dard ERS. Quantifiers are not needed for some applications,
but are essential for others. Our approach, therefore, is to
define a series of standard simplification operations which
can be combined as required for any given application.
We define simplification as any DMRS graph rewriting op-
eration which results in a reduction of complexity by re-
moval of particular classes of subgraph. In some cases, a
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proper q named/David compound proper q named/von compound proper q named/Platen

�
ARG2/NEQ

-
ARG1/EQ

�
ARG2/NEQ

-
RSTR/H

-
ARG1/EQ

-
RSTR/H

-
RSTR/H

Figure 3: Original DMRS/ERS structure for the name David von Platen.

proper q named/David von Platen
-

RSTR/H

Figure 4: Simplified DMRS/ERS structure for David von Platen

subgraph may be replaced with a smaller subgraph. We dis-
tinguish between reversible, semi-reversible and lossy sim-
plifications: after lossy simplification the DMRS is not re-
quired to meet any well-formedness criteria other than that
of basic well-formedness.

4.2.1. Simplification of Complex ERS Structures
There are cases where the generality and compositionality
of ERS produces structures which are inconveniently com-
plex for many applications. For instance, numbers are rep-
resented compositionally: the DMRS for twenty five has
three nodes — two nodes for numbers ‘20’ and ‘5’ and a
‘plus’ node connecting the two. Although this represen-
tation follows from MRS compositionality principles and
is required for full generality (e.g., three or four thousand
with the interpretation 3000 or 4000), the representation of
numbers written using words can often usefully be simpli-
fied to be equivalent to the representation using digits. For
instance, the simplified DMRS for twenty five is equivalent
to the DMRS for 25.
We provide a number of operations to simplify complex
structures of this type. Consider the case of proper names
such as David von Platen. The ERS for this structure is
given in Fig. 3, with the simplified structure in Fig. 4.
As shown, in the simplified structure, the name is treated as
a single element, as though it were a simple proper name
(see below for discussion of PROPER Q). As with numbers,
there are cases where this simplification process fails (e.g.,
David and Albrecht von Platen), which justifies the ERS
approach as a more general account, but for most texts, such
examples are rare.
Complex structure simplification may optionally be fol-
lowed by grammar predicate filtering (discussed below), in
which case the PROPER Q can also be removed.
In general, complex structure simplification is semi-
reversible. A *MRS can be constructed from the simpli-
fied DMRS which is equivalent to an ERS structure, but
the precise input structure may not be recoverable. For in-
stance, names with more than two elements have multiple
bracketing possibilities in ERS: name simplification can be
reversed to a canonical structure equivalent to one of these,
but cannot recover the original analysis. Complex structure
simplifications nevertheless meet the realizability and MRS
well-formedness conditions (§2).

4.2.2. Grammar Predicate Filtering
In addition to lexically-derived predicates, ERS uses a
considerable number of grammar predicates, such as

PROPER Q and COMPOUND. Grammar predicates capture
the semantic contribution of various grammatical construc-
tions. For instance, COMPOUND is used to represent com-
pound nouns (e.g., kitchen knife) as well as the complex
names discussed above.
Although grammar predicate nodes are an important facet
of ERS, they are not needed for some applications. For ex-
ample, although PROPER Q is necessary in order to produce
a well-formed structure according to the MRS criteria, it
can usually be omitted without losing information. Another
example is ELLIPSIS, which allows a representation of the
semantics of elliptical constructions, but in practice very
often occurs in misparses. Such nodes increase the size and
complexity of the DMRS graph, and also make it more dif-
ficult to align the DMRS with the original text: developers
working with DMRS may therefore remove them. For ex-
ample, in graph to string realization (Horvat et al., 2015),
unneeded grammar predicate nodes are removed from the
DMRS graph to lessen the data sparsity problem with trans-
lation grammar, as well as to speed up the otherwise re-
source and time intensive decoding.
Our current aim is to make removal of predicate nodes less
ad hoc. Grammar predicate filtering works by matching in-
dividual nodes against a filter list and, when a match occurs,
removing the node and adjacent edges from the DMRS
graph. Specifying which grammar predicates to filter is ac-
complished using a configuration file. We provide a default
configuration used by Horvat et al. (2015) in pydmrs.
Removing some types of grammar predicate nodes may re-
sult in a disconnected graph. Since this is generally un-
desirable, we implemented optional functionality that only
removes a grammar predicate node if the graph will remain
connected. Computing whether a graph is disconnected can
be done with breadth-first search: starting from any node,
we iteratively visit adjacent nodes; if any nodes are left un-
visited at the end, the graph is disconnected.

4.3. Conversion to Rooted Acyclic Graphs
There are many useful algorithms operating over trees,
which pass either from the root to the leaves, or vice versa.
For example, Socher et al. (2010) present a recursive neu-
ral network architecture, where the leaves of a syntactic
parse tree are associated with embedding vectors, which
are recursively combined to give vector representations of
phrases, until we reach the root of the tree. Such algorithms
are difficult to extend to an arbitrary directed graph, as there
may be cycles or multiple roots. Although DMRS inher-
ently requires non-tree structures for full expressivity (e.g.
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Search: [2]:node? <-3- [1]:_give_v_1 e? -2-> _hand_n_1 x? <-- _a_q
Replace: [1]:_help_v_1 e? -2-> [2]:node?

Example sentence: “I can give you a hand with your work.” → “I can help you with your work.”

Search: [2]:node? <-1- [1]:_give_v_1 e? -3-> [3]:node?
Replace: [3]:node? <-1- [1]:_get_v_1 e? <=1= _from_p e -2-> [2]:node?

Example sentence: “Kim gave a book to Sandy.” → “Sandy got a book from Kim.”

Search: [1]:_like_v_1 e? -2h-> [2]:_?_v e[pui--]
Replace: [1]:_enjoy_v_1 e? -2h-> [2]:_?_v e[pui-+]

Example sentence: “I like to play tennis.” → “I enjoy playing tennis.”

Figure 5: Example for paraphrases of the idiom “give a hand” to “help”, “give” to “get” (involving argument re-ordering)
and “like to” to “enjoy” (involving a gerund; note the -/+ in the square bracket event variable specification indicating
progressive form) using DMRS mapping (question marks denote underspecification). The subgraph patterns are written in
our DMRS graph description language.

Kim promised to go), for many tree-based algorithms, it suf-
fices to have a graph that is both acyclic and rooted, because
it is then possible to pass from the root to the leaves, or vice
versa. To facilitate using such algorithms, we provide func-
tionality for converting DMRS structures to rooted acyclic
graphs, by changing the directionality of certain links, such
as modifiers. As a side effect, this results in a structure that
is closer to syntactic dependencies.

4.4. Mapping
DMRS mapping is a two-step process, referring to the iden-
tification of a DMRS subgraph, followed by its replacement
by another (i.e., a form of graph rewriting) to obtain a mod-
ified DMRS graph that can be used in realization.
First, the subgraph S to be replaced has to be identified in
the DMRS graph G. This is done via a form of exact sub-
graph matching, where nodes in S are associated with cor-
responding nodes in G and all links in this subgraph of G
match the ones in S (see §4.1). However, matching nodes
exactly would be very inflexible and would require writing
all possible concrete instantiations of a mapping pattern.
We therefore introduce underspecification for the attributes
of a node, like predicates and variable features. For exam-
ple, this allows us to specify that a node must be nominal
or verbal but to underspecify the tense of a verb.
The subgraph S found in G then is replaced by another sub-
graph S′. To do this, the mapping rule has to specify how
the relevant anchor nodes of S in G are associated with re-
spective nodes in S′. The anchor nodes of S′ can again be
underspecified, meaning that they overwrite only specific
attributes of the corresponding node of S and leave the rest
unchanged. For example, this allows us to keep the tense of
a verb but change the lemma.
DMRS mapping has a variety of applications. Sets of sub-
graphs that are considered to be semantically equivalent
(in a specific context) correspond to possible paraphrases,
and mapping between them corresponds to the process of
paraphrasing (see §5.2). By distinguishing one of the para-
phrases as the target to which others are mapped, one can
“normalise” sentences to a subset of possible expressions.
Initial experiments with DMRS mapping for paraphrase us-
ing automatically acquired rules are described by MacKin-
lay (2012, ch7). On the other hand, when the source and

target languages of the subgraphs are different, mapping
becomes a method of machine translation, analogous to the
use of MRS transfer rules in MT (compare e.g., Bond et al.
(2011) or Oepen et al. (2004)). We are experimenting with
ways of generalizing the current mapping procedure pre-
sented above. One application of interest is question gen-
eration (see Yao and Zhang (2010) and Yao et al. (2012)),
which reduces to a more structural variant of DMRS map-
ping than straightforward node-to-node replacement.

4.5. Chunking
Chunking refers to the splitting of a DMRS graph into sub-
graphs which can be processed independently. The results
of processing can be recombined with minimal loss of in-
formation. For instance, if a DMRS corresponds to two
complex propositions joined by a conjunction, it can be
split into two subgraphs corresponding to the coordinated
propositions. Each of these subgraphs can then be treated
separately by a realization system at a lower cost than the
full graph. The subgraph results can then be recombined,
yielding the same outcome as performing the operation on
the original graph. Apart from conjunctions, chunking can
also be applied to subordinated clauses, phrasal comple-
ments and to other grammar structures, depending on the
demands of the application.

5. Sample Applications
These are included in the pydmrs repository to give some
guidance to developers about possible uses of ERS.

5.1. A Simple Robot Interface
In certain applications, the full expressivity of DMRS is
not necessary, as we are dealing with a restricted do-
main. Using a wide-coverage parser like the ERG and post-
processing the DMRS output allows us to quickly build a
system that can handle a wide range of natural language
input, requiring much less developer time than building a
system from scratch, while avoiding the need for substan-
tial training data. One such situation is giving commands
to a robot, where the range of possible actions is limited.
We can first simplify the DMRS (as explained in §4.2) to
strip out details that are not relevant in this context. We
can then apply mapping rules (as explained in §4.4), so that
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commands which should be interpreted in the same way are
mapped to identical graphs. For example, we might want to
treat “Turn left at a yellow line” and “On a yellow line, turn
to the left” in the same way. The simplified graphs can then
be converted to a domain-specific representation, such as
low-level instructions for the robot.

5.2. Paraphrase
One application of DMRS mapping is paraphrasing. In
terms of DMRS, paraphrases correspond to sets of sub-
graphs that are considered to be semantically equivalent
(in a specific context). Mapping one subgraph to another
within a DMRS corresponds to replacing one expression
with another in a sentence. We are currently developing a
DMRS graph description language as part of the pydmrs li-
brary which will allow for a convenient way of specifying
such subgraphs. The pydmrs library contains some exem-
plary paraphrase rules, based on our DMRS mapping func-
tionality with underspecified nodes and written in a prelim-
inary version of the aforementioned description language.
In figure 5, we present a few examples of paraphrase rules
together with an input sentence and corresponding realiza-
tion after applying the paraphrase rule.

5.3. Ontological Relationship Extraction
DMRS matching can be used to query subgraph patterns in
corpora of parsed text. Searching for DMRS subgraphs is
a more robust query method than one based on e.g., regular
expressions, since DMRS graphs comprise semantic depen-
dencies and abstract certain purely syntactic phenomena
(like active/passive). The effectiveness of a *MRS strategy
for extraction of ontological relationships was previously
demonstrated by Herbelot and Copestake (2006) using the
RMRS representation on Wikipedia. This allowed exam-
ples such as the following to be processed:

The Cottontop Tamarin (Saguinus oedipus), also
known as the Pinchu Tamarin, is a small New
World monkey weighing less than 1lb (0.5 kg):
cottontop tamarin is-a new world monkey

Our current use of DMRS in combination with the
Wikipedia dump of WikiWoods (see §3.3) considerably
simplifies the work required to achieve such results. The
following example illustrates the extraction of the relation-
ship “X eat Y” from a few sentences:

A mouse ate the whole cheese. → (mouse, cheese)
Lions eat around 15 zebras per year. → (lion, zebra)
Their children eat so many sweets. → (child, sweet)
Potatoes are mostly eaten by humans. → (human, potato)

Such relationships can be easily expressed in terms of
DMRS subgraphs using our DMRS description language.

6. Conclusion
We have outlined a diverse range of applications of ERS,
and discussed the need to make it easier to use. We have de-
scribed why DMRS is preferable to MRS/RMRS for some
applications, illustrated some standard types of operation
on DMRS and discussed some uses which we are currently

making of the representation. We have outlined the DMRS-
related resources which we have developed to support de-
velopers. The pydmrs repository is currently under active
development and we intend to expand it further to support
other operations and illustrative applications.
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