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Abstract
The task of automatically generating sentential descriptions of image content has become increasingly popular in recent years, resulting
in the development of large-scale image description datasets and the proposal of various metrics for evaluating image description
generation systems. However, not much work has been done to analyse and understand both datasets and the metrics. In this paper,
we propose using a leave-one-out cross validation (LOOCV) process as a means to analyse multiply annotated, human-authored image
description datasets and the various evaluation metrics, i.e. evaluating one image description against other human-authored descriptions
of the same image. Such an evaluation process affords various insights into the image description datasets and evaluation metrics,
such as the variations of image descriptions within and across datasets and also what the metrics capture. We compute and analyse
(i) human upper-bound performance; (ii) ranked correlation between metric pairs across datasets; (iii) lower-bound performance by
comparing a set of descriptions describing one image to another sentence not describing that image. Interesting observations are made
about the evaluation metrics and image description datasets, and we conclude that such cross-validation methods are extremely useful
for assessing and gaining insights into image description datasets and evaluation metrics for image descriptions.
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1. Introduction
The ability to describe the content of an image is essen-
tial for various tasks such as image indexing and retrieval,
and organising or browsing large image collections. With
advances in visual object category recognition (e.g. being
able to recognise and localise a car in an image), recent
years have seen an upsurge of interest in moving beyond
annotating images with isolated keywords to automatically
generating sentence-level, natural language descriptions of
image content (Three boys playing with a ball in the park).
To facilitate progress and benchmarking on such automatic
image description generation tasks, various image datasets
with textual descriptions have been developed and various
metrics proposed to evaluate such systems. The textual de-
scriptions in such datasets are distinct from generic image
captions (e.g. on Flickr or the Web, or in news articles) in
that they aim to describe the literal visual content (actors,
attributes, activities, scenes, etc.) of the corresponding im-
age (A black dog jumping to catch a green ball in the field),
and exclude non-literal, subjective opinions or semantic in-
formation that requires external knowledge that cannot be
determined from viewing the image alone (My adorable
two-year-old poodle named Bobby loves playing with his
favourite toy in the sun, pictured here in Hyde Park in Lon-
don or Happiness is a day out with your pet).
The image datasets provide textual descriptions written by
multiple human annotators per image, and are often used
during evaluation as gold-standard reference descriptions
against a system generated candidate description. How-
ever, little work has been done to analyse or evaluate the
gold-standard descriptions against themselves, i.e. evalu-
ating a human-authored description against other human-
authored descriptions of the same image. Besides answer-
ing the obvious question of what the human upper-bound in
the image description generation task is, performing such
an evaluation can also provide further insights into (i) the

evaluation metrics used for evaluation; (ii) the similarities
and differences within and across a variety of datasets.
In this paper, we carry out this analysis. Throughout
the paper, we use the term leave-one-out cross-validation
(LOOCV) to refer to this method of evaluation1. Evalua-
tion is performed on a variety of image description datasets
that are currently available, using several commonly-used
metrics for image description generation tasks. More
specifically, we compute and analyse (i) human upper-
bounds for major evaluation metrics on a range of image de-
scription datasets; (ii) lower-bounds by examining the per-
formance when comparing a set of descriptions describing
one image to another sentence not describing the particular
image; these might describe a different image or could sim-
ply be random sentences. The lower-bounds will be useful
for investigating how textual descriptions vary within and
across datasets (and how well the metrics capture this). We
hypothesise that by comparing multiply-annotated, human-
authored descriptions in the proposed manner, we can dis-
cover subtle differences and biases within and across evalu-
ation metrics and image description datasets. To our knowl-
edge, this is the most extensive evaluation of image descrip-
tion datasets and evaluation metrics carried out to date us-
ing LOOCV over gold standard image descriptions.

Overview. The paper is structured as follows. We first
present a review and discussion of existing image descrip-
tion datasets (section 2.) and automatic evaluation metrics
that have been adopted for the image description genera-
tion task (section 3.). In section 4., we present an upper-
bound evaluation of how well humans perform in the im-
age description generation task when judged against other

1We use the term cross-validation loosely: later in the paper
we explore replacing the description that has been ‘left out’ with
a sentence not from the original set, stretching what is generally
meant by “cross-validation”. The term jackknifing has also been
used previously, but again it too does not exactly fit what we do.
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humans, on the different datasets using the various evalu-
ation metrics described. This gives insight into the sim-
ilarities and differences between the various datasets and
metrics. We also compute the ranked correlations between
pairs of metrics. Section 5. presents a lower-bound eval-
uation, i.e. the scores obtained if one evaluates a set of
descriptions for one image against an unrelated sentence
(descriptions of another image, random words, etc.). This
allows us to investigate the variation in human-authored de-
scriptions within and across datasets. Finally, section 6. of-
fers conclusions.

2. Image description datasets
In this section, we provide a review of existing image
datasets that are coupled with multiple human-authored de-
scriptions of image content. As mentioned, noisy, large-
scale datasets with user-generated captions exist for news
images (Berg et al., 2004; Feng and Lapata, 2008) and
Flickr (Ordonez et al., 2011; Chen et al., 2015; Thomee
et al., 2015). However, in this paper, we are mainly in-
terested in literal descriptions of what is depicted in the
image, rather than non-literal or non-visual descriptions
that require significant inference from additional knowl-
edge about the image context. As such, we only explore
image datasets that are annotated with multiple, sentential
descriptions of the visually observable content of the corre-
sponding image. The requirement for multiple descriptions
per image also rules out the IAPR TC-12 dataset (Grub-
inger et al., 2006) which contains only one English descrip-
tion per image.2 Eight datasets meet the above criteria:

1. UIUC PASCAL Sentence Dataset (PAS-
CAL1K) (Farhadi et al., 2010) contains 1,000
real-world images and five crowd-sourced descrip-
tions per image. The images are taken from the
PASCAL Visual Object Classes (VOC) 2008 Chal-
lenge (Everingham et al., 2015) (which in turn are
sourced from Flickr), and are thus biased towards
20 selected object categories (aeroplane, bird, chair,
etc.). The descriptions are authored by Amazon’s
Mechanical Turk (AMT) workers based in the US.

2. The Visual and Linguistic Treebank Dataset
(VLT2K) (Elliott and Keller, 2013) comprises
2,424 images of various human actions (e.g. person
using computer, riding a horse or a bicycle), along
with three crowd-sourced descriptions per image.
The images are again taken from the PASCAL VOC
challenge, specifically the 2011 Action Classification
Taster Competition to recognise 10 action classes
(jumping, playing instrument, etc.). The descriptions
are produced by AMT workers, and are generally
made up of two sentences: the first sentence describes
the main action in the image (“A band is playing
on stage.”), and the second covers other background
objects (“They are in a white tent.”). For this paper,
we retain only the first sentence of each description.3

2While some images have multiple descriptions, they each de-
scribe different aspects of the image.

3We have experimented using both sentences as the descrip-

3. Abstract Scenes Dataset (Zitnick and Parikh, 2013)
consists of scenes illustrated from clip art and crowd-
sourced descriptions for scenes. It is aimed at explor-
ing image description generation without the complex-
ities of visual recognition, as clip art instances can act
as gold standard visual annotations. The dataset con-
tains 10,020 images with six AMT crowd-sourced de-
scriptions each (2 sets of 3 descriptions, each descrip-
tion per set describes different aspects of the image).
Some of the images are also semantically similar since
they originate from the same seed description (1,002
seed descriptions used to generate 10 images each),
and as such we expect this dataset to contain many se-
mantically similar descriptions.

4. Flickr30k (Young et al., 2014), an extension of the
Flickr8k (Rashtchian et al., 2010) dataset, contains
over 30,000 Flickr images with five AMT crowd-
sourced descriptions each. The original Flickr8k
dataset is the successor of PASCAL1K ((1) above),
and later extended as the Flickr30k dataset. Images
are collected directly from Flickr, and depict various
actions, events and human activities.

5. MS COCO (Microsoft Common Objects in Con-
text) (Lin et al., 2014) contains approximately 80,000
training images and 40,000 validation images with at
least five AMT crowd-sourced descriptions per image.
Like previous datasets, the images are sourced from
Flickr. The emphasis on this dataset is to gather large
numbers of images for a small set of 80 categories.
As such, images and the descriptions may be biased
towards these categories.

6. The ImageCLEF2015 development set from the Scal-
able Image Annotation, Localization and Sentence
Generation task (Gilbert et al., 2015) of the Image-
CLEF2015 (Villegas et al., 2015) challenge consists of
2,000 web images with 5 to 51 descriptions per image
(with a mean of 9.5 descriptions). The descriptions
are crowd-sourced using CrowdFlower. Unlike pre-
vious image description datasets, the images are ob-
tained from a large set of generic web pages gathered
by the challenge organisers, making it a highly varied
dataset, albeit still constrained by the 251 object cate-
gories defined for the challenge.

7. Pascal50S (Vedantam et al., 2015) is an extension of
Pascal1K ((1) above) with 50 descriptions per image.
This dataset is used primarily for improving the relia-
bility of evaluation given the significantly larger num-
ber of reference image descriptions per image.

8. Abstract50S (Vedantam et al., 2015) is an extension
of the Abstract Scenes Dataset ((3) above), also with
50 descriptions per image.

Parallel to our work, Bernardi et al. (2016) summarised
most of these datasets, among others, and reviewed differ-
ent approaches to image description generation. Ferraro et

tion, and predictably found the overall scores to be low. This is
further compounded by the fact that only two reference descrip-
tions remain after leaving one out.
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al. (2015) also summarised a subset of these datasets, along
with other vision and language related datasets. They also
analysed the datasets based on different criteria, such as ab-
stract:concrete word ratios, syntactic complexity and per-
plexity. Most related to our work is their proposed measure
of pairwise perplexity across different datasets to predict
the words in a test set given a language model trained on
another dataset. Our proposed LOOCV method can also
achieve this, albeit in a different manner, and additionally
allows us to evaluate the metrics as well as the datasets.

3. Evaluation metrics
Several automatic metrics have been proposed for evaluat-
ing image description generation systems. We review and
compare an array of evaluation measures (and their vari-
ants) that have been proposed or adopted for the task:

1. BLEU (Papineni et al., 2002) is a precision-based
metric adopted from the machine translation commu-
nity. It measures the number of n-grams in a candidate
sentence also appearing in at least one reference sen-
tence, with the count clipped to avoid positive terms
being over-repeated in the candidate sentence. BLEU-
n is the geometric mean between the modified preci-
sion (pn) for each n, multiplied by the brevity penalty
(BP ) to penalise short sentences:

BLEUN = BP × exp
( N∑
n=1

wn log pn
)

(1)

where wn is usually set to 1
N , and N being the maxi-

mum n-gram order of BLEUN .

While BLEU was originally devised as a corpus-level
metric, it has also been used to measure sentence-level
performance, with various smoothing techniques pro-
posed to address the issue of n-gram sparseness at sen-
tence level, especially for higher order n-grams (Lin
and Och, 2004; Gao and He, 2013; Chen and
Cherry, 2014). For this paper, we evaluate sentence-
level BLEU-1, BLEU-2, BLEU-3 and BLEU-4 with
smoothing.4 Our implementation is different from the
BLEU evaluation used in previous image description
generation work; in their case, no smoothing is per-
formed and the brevity penalty is always set to 1. Al-
though the latter may have been useful in earlier, more
constrained work (“a cow” is considered a good sen-
tence), recent progress in techniques and the availabil-
ity of larger datasets have shifted the focus of the task

4Our implementation of smoothing is based on the official
mteval-v13a.pl script, which assigns a geometric sequence
1/2k to n-grams with zero matches – please refer to Chen
and Cherry (2014) for the algorithm (Smoothing Technique 3).
We found an oddity in the script’s handling of short hypothe-
ses (length l < n), where division-by-zero cases are assigned
log p>l = 0 (e.g. a hypothesis of length 2 will result in p3 = 0

0

for trigram matches, and log p3 is set to 0 in this case). Eq (1) will
inflate the scores of such cases (because exp(0)=1), making the
BLEU-3 score undesirably higher than the BLEU-2 in this exam-
ple. Our implementation modifies this by setting the denominator
of such candidates to 1 and performing smoothing as described.

to “describing the image as a human would”. As such
we argue that precision alone is insufficient, and that
recall should now be factored in as part of the evalua-
tion process.

2. ROUGE (Lin, 2004) is a recall-based metric used to
evaluate automatic summarisation systems. In its orig-
inal formulation, ROUGE-N computes the n-gram re-
call between a candidate summary and a set of refer-
ence summaries. Its variants, such as ROUGE-L and
ROUGE-S, are f-measure-based metrics. ROUGE-L
considers the longest common subsequence between
two summaries, while ROUGE-S uses skip-bigram co-
occurrences as statistics for measuring the similarity
between two summaries, allowing for gaps between
the two terms of a bigram. ROUGE-W is a variant
of ROUGE-L, and awards higher scores to contiguous
n-grams over skip-grams. ROUGE-SU is an exten-
sion of ROUGE-S which also captures unigram co-
occurrences in addition to skip bigrams. In this paper,
we evaluate – using the official rouge-1.5.5.pl
script – the following variants: ROUGE-15, ROUGE-
L, ROUGE-W1.2, and ROUGE-SU4.

3. Meteor (Denkowski and Lavie, 2014), again adopted
from machine translation, is an f-measure-based mea-
sure that finds the optimal alignment of chunks of
matched text, incorporating semantic knowledge by
allowing terms to be matched to stemmed words, syn-
onyms and paraphrases. Content and function word
matches can be assigned different weights, and each
type of matcher (exact, stemmed, synonym, para-
phrase) is also weighted individually. Word ordering is
accounted for by encouraging fewer matched chunks,
indicating less fragmentation. Meteor matches a can-
didate text to each reference one-to-one, and takes the
maximum score out of all references as the final score.
We use the official version 1.5 of Meteor for this paper,
with the default recommended parameters for English.

4. CIDEr (Vedantam et al., 2015) is a measure devel-
oped specifically for evaluating image descriptions by
consensus. The measure computes the cosine sim-
ilarity (per n-gram length, n) between a candidate
and reference description, each represented as TF-IDF
weighted bag of n-grams. The scores are averaged
over all reference descriptions belonging to the same
image, and further averaged across n. A variant of
the measure, CIDEr-D has also been proposed to pre-
vent gaming issues with the metric. Note that in the
official version of CIDEr/CIDEr-D, the score is arbi-
trarily multiplied by a factor of 10 so that the scores
do not appear too discouragingly low. The theoreti-
cal possible range is thus between 0.0 and 10.0,where
the scores of state-of-the-art image description genera-
tion systems are often between 0.8-1.06. In this paper,

5For ROUGE-1, we consider the f -measure variant with
equally weighted precision and recall. We have tested the re-
call version of ROUGE-1 and found the scores to be just slightly
higher than the f -measure. The general trend however is similar.

6https://competitions.codalab.org/competitions/3221
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we report the raw CIDEr/CIDEr-D scores before this
multiplication process. We also compute IDF scores
independently per dataset.7

Elliott and Keller (2014) evaluated how well the first three
metrics correspond to human judgements. This is done by
asking human annotators to score the output sentences from
one of the systems of Hodosh et al. (2013) on a scale of 1-
4, and computing the correlation between the human scores
and the scores from the same system for each metric. They
found that Meteor correlates best with human judgements,
followed by ROUGE-SU4 and BLEU-4 (with smoothing).
Vedantam et al. (2015) also compared the four metrics in
terms of how well they correlate with human judgement
on a consensus task, i.e. which is more similar to sentence
A? Sentence B or sentence C? They found CIDEr captured
human consensus best.
Other metrics have also been proposed to evaluate the con-
tent of image descriptions, for example using semantic tu-
ples (Ellebracht et al., 2015) and concentrating only on
the content selection phase (Wang and Gaizauskas, 2015).
These however require additional annotations.

4. Human upper-bound evaluation
Given the multiply annotated datasets, we first evaluate hu-
man performance on each using LOOCV, i.e. by withhold-
ing one human-authored image description as a candidate
description, and evaluating it against all remaining descrip-
tions for the same image, repeating the process in turn for
each description of the image. The final score is produced
either by micro-averaging the scores across all descriptions
in the dataset or by macro-averaging the scores across all
images (average scores per image, and average the mean
scores). Other statistics such as standard deviation, me-
dian, minimum and maximum scores are also computed.
We evaluate the images descriptions for eight datasets (sec-
tion 2.), using the various metrics described in section 3.
In section 4.2., we further measure the ranking correlation
between metrics. As it is impractical to present all these
numbers in this paper, we provide all computed statistics
online8, and instead concentrate here on highlighting and
discussing interesting observations.
As a preprocessing step, all image descriptions are stripped
of punctuation, case-normalised and tokenised (words sep-
arated by hyphens are always tokenised).

4.1. Human upper-bound results
We discuss the human upper-bound evaluation results
by metric, interleaved with dataset-specific observations
where relevant.

7We have experimented concatenating all datasets to com-
pute a common DF statistic, which results in significant bias to-
wards the two large datasets (MS COCO and Flickr30k). We
did not observe any notable differences except for the Abstract
Scenes Dataset and Abstract50S, which ended up with much
higher CIDEr scores. We presume that this is mainly due to the
words ‘mike’ and ‘jenny’, common in these datasets, being as-
signed inflated IDF weights as they do not occur often (if ever) in
the dominant MS COCO and Flickr30k datasets.

8http://visualsense.github.io/loocv/
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Figure 1: Upper-bound, micro-averaged BLEU scores for
the eight datasets (best viewed in colour).

PASCAL1K
VLT2K

Abstract
Flickr30k

MSCOCO

ImageCLEF2015
PASCAL50S

Abstract50S
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

sc
o
re

ROUGE-1

ROUGE-L

ROUGE-W1.2

ROUGE-SU4

Figure 2: Upper-bound, micro-averaged ROUGE scores for
the eight datasets.

BLEU. Figure 1 shows the absolute BLEU scores for the
dataset. We found the overall BLEU-1 scores to be high
(0.56-0.91), and as expected are lower for increased n-
gram length. We also noticed that BLEU is sensitive to the
number of references per image. Datasets with many de-
scriptions per image (ImageCLEF2015, PASCAL50S, Ab-
stract50S) produced higher scores, while VLT2K (two ref-
erences per image) yielded lower scores. In fact, the me-
dian BLEU score for PASCAL50S is actually 1.00. The
reason for this observation is that BLEU measures the over-
lap between a candidate and the union of n-grams in the
corresponding references, thus increasing the number of
references increases the chances of overlap. We further
verified this by repeating the experiments, but sampling
only 5 descriptions per image for ImageCLEF2015, PAS-
CAL50S and Abstract50S. The BLEU scores on these re-
duced datasets are now in the same range as the other
datasets. As such, we do not recommend BLEU for datasets
with too many reference descriptions because of the higher
likelihood of spurious matching.
Another noteworthy point about all the datasets is that the
maximum BLEU scores (all variants, micro-averaged) are
1.00 across all datasets. This means that for each dataset,
there is at least one description that has all its 4-grams
matched with the union of all 4-grams in the correspond-
ing references.

ROUGE. Like BLEU, the unigram-based ROUGE-1 re-
sulted in higher absolute scores than its skip-gram counter-
parts (Figure 2). ROUGE-W1.2’s absolute scores are lower
than ROUGE-L as the measure penalises non-contiguous
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Figure 3: Upper-bound, micro-averaged Meteor, CIDEr
and CIDEr-D scores for the eight datasets.

common subsequences. In contrast to BLEU, ROUGE is
not sensitive to number of descriptions per image, as it per-
forms averaging over all reference descriptions. This can
be seen from the more uniform scores across datasets in
Figure 2. With the scores being less dependent on ref-
erence size, we observe several outliers. VLT2K yields
higher ROUGE scores than other datasets, most likely be-
cause the first sentence describes the main action, mak-
ing the problem more constrained, and has better a chance
of word or skip-gram overlaps. In fact, there are images
with all three reference sentences being identical (six such
cases). The standard deviation on this dataset, however, is
also higher. This suggests that there are also many main ac-
tions in the images that can be described differently by dif-
ferent annotators. The other outlier is the Abstract dataset,
with the lowest ROUGE-1, ROUGE-L and ROUGE-SU4
scores. This confirms the fact that the agreement between
descriptions of the same image is quite low, i.e. many de-
scriptions of the same image describe something different
about the image. This can also be confirmed by compar-
ing Abstract against Abstract50S, where the score range of
Abstract50S is more similar to that of other datasets as it
does not have this constraint of defining different aspects
of the same image. Therefore, ROUGE manages to high-
light this fact by averaging recall across all reference de-
scriptions, compared to BLEU which computing precision
against matching segments in any reference descriptions.

Meteor. We can observe from Figure 3 that Meteor is also
sensitive to the number of reference descriptions per im-
age, albeit not to the extent of BLEU. This is because Me-
teor takes the best matching reference (maximum score) as
the final score, thus increasing the likelihood for a good
match with more references. Contrast this to BLEU which
sums co-occurrences of each n-gram from any reference
(i.e. matching n-grams do not have to be in the same sin-
gle reference ’robI’ve changed the wording here to make
it clearer – is this correct?), which explains why BLEU
is even more dependent on the number of reference de-
scriptions. Again, like BLEU, the maximum Meteor score
across all datasets is 1.0 (exact match). This suggests that
there is at least one image with at least one pair of identi-
cal descriptions; we have manually verified this fact. Thus,
Meteor is the only metric covered in this paper that can cap-
ture such cases. Again, VLT2K shows high scores despite

having only two reference sentences. Interestingly, Ab-
stract actually showed the highest standard deviation with
Meteor compared to other datasets (and other metrics). We
attempt to draw some inferences from the second order
macro-average statistics, more specifically by computing
the standard deviation across descriptions per image, and
computing the mean and standard deviation of these stan-
dard deviations. The value for these are quite high, demon-
strating that (i) there is on average high variation within
descriptions of the same image; (ii) some descriptions of
the same image have similar pairs, while others are quite
dissimilar (the standard deviation themselves vary).

CIDEr. Compared to other metrics, the absolute raw
CIDEr scores are much lower. This is due to CIDEr be-
ing designed to evaluate descriptions by consensus, i.e. a
good candidate should agree with the majority of reference
descriptions. To achieve a CIDEr score of 1.00 requires
the candidate description and all reference descriptions to
be exact matches. Our informal experiments showed that
changing just a few words to one reference description can
greatly affect the score. CIDEr is, however, very intu-
itive and reinforces our previous observations. The Ab-
stract Scenes Dataset achieved extremely low CIDEr scores
(<0.04) compared to other datasets (≈0.09-0.11), show-
ing low consensus among the descriptions. Again, VLT2K
showed high consensus (0.14), with a high standard devia-
tion (0.13), and a maximum score of 1.00 (all three descrip-
tions are exact matches). CIDEr-D showed similar results.

Other observations. Across all metrics, MS COCO con-
sistently achieved slightly higher scores than Flickr30k,
suggesting that MS COCO might be more homogeneous
than Flickr30k. PASCAL1K and MS COCO seems to be
about equally homogeneous. The homogeneity of Image-
CLEF2015 is hard to assess as it varies across metrics, but
in general seems to lie between Flickr30k and MS COCO.

4.2. Ranking correlation between metrics
In this section, we investigate whether different metrics
rank datasets similarly. This gives insight into which met-
ric pairs correlate better with each other. Two setting are
explored: (i) ranking per image (average the upper-bound
scores across all descriptions for the same image); (ii) rank-
ing per description (use the upper-bound score for each de-
scription directly, independent of the image). Kendall’s τ
ranking coefficient is used to measure the monotonic corre-
lation between metric pairs. This measure is more intuitive
and less sensitive to outliers compared to the more com-
monly used Spearman’s ρ.9 We used Kendall’s τ -b vari-
ant which makes adjustments for ties. The p-values (two-
tailed) are found to be extremely small (the largest being
9.9E-40). Again, we concentrate on highlighting interest-
ing facts – detailed numbers are provided online.

Per image ranking correlation. All metric pairs across
all datasets are found to be positively correlated (τ be-
tween 0.37-0.97), indicating that there is a monotonic re-
lationship between the rankings of each metric pair. First,
looking at the coefficient values among BLEU variants,

9We have computed Spearman’s ρ and found the overall trend
to be similar to Kendall’s τ , but with higher values.
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BLEU-2 and BLEU-3 show very strong correlation (0.83-
0.88), BLEU-3 and BLEU-4 show even stronger correla-
tions (0.89-0.93). BLEU-2 and BLEU-4 show strong cor-
relation (0.74-0.82), but not as strong as BLEU-2/BLEU-4
and BLEU-3/BLEU-4. BLEU-1 shows much weaker cor-
relation: 0.67-0.79 against BLEU-2, 0.57-0.70 (BLEU-3),
and 0.51-0.66 (BLEU-4). BLEU-1 also seems to show
much weaker correlation when compared against all other
metrics (0.37-0.70), especially on the datasets with many
descriptions (0.38-0.49 against PASCAL50S/Abstract50S).
All ROUGE variants strongly correlate with each other,
especially between ROUGE-L and ROUGE-W (0.87-
0.93). All BLEU variants almost always correlate bet-
ter with ROUGE-SU4 than with the other ROUGE vari-
ants. ROUGE also shows weak correlation with Me-
teor and CIDEr (0.39-0.68). ROUGE generally correlates
slightly better with Meteor than with CIDEr (especially for
Flickr30k, VLT2K and MS COCO), although the correla-
tion is comparable for PASCAL50S.
The correlation between CIDEr and CIDEr-D is extremely
strong (0.80-0.97), especially for Abstract, MS COCO, Ab-
stract50S and PASCAL50S (0.90 or above). Meteor and
CIDEr/CIDEr-D are moderately correlated (0.55-0.68).

Per description ranking correlation. Compared to per
image ranking, the overall correlation for per description
ranking is predictably slightly lower, except for Abstract
which varies depending on the metric. The datasets with
many descriptions show a larger drop in scores, because
there can be more disagreements in rankings with a larger
set of descriptions. There is quite a large drop in correlation
scores for Meteor compared to per image ranking. This is
likely because of themax function used by Meteor, making
the variation in rankings larger; the mean aggregation for
per image ranking appears to help alleviate this.

5. Lower-bound evaluation
In this section, we employ LOOCV to compute various
lower-bounds for evaluation metrics across different im-
age description datasets. More specifically, we investigate
the performance of various metrics when comparing a set
of reference descriptions describing one image to a candi-
date sentence that is not from the original set of descrip-
tions for that particular image. The candidate might de-
scribe a different image from the same or different dataset,
or could simply be random sentences from a generic corpus
or even a random list of words. Lower-bound evaluation
by LOOCV will be useful for investigating how image de-
scriptions vary within and across dataset, and how well the
metrics capture this.
To explore lower-bound evaluation, we perform LOOCV
as in section 4., but substitute the candidate description that
has been left out with one of the following candidate ‘de-
scriptions’:

1. Random Intra-Dataset: A random description from
a different image from the same dataset. More specif-
ically, for each candidate description, a description
from another image in the dataset is randomly se-
lected. This allows us to investigate how descriptions
of different images vary within the same dataset.

2. Random Inter-Dataset: A random description from
a different dataset (selected at random). This allows
us to explore how descriptions vary across datasets.
Also, by comparing this to Random Intra-Dataset,
we can establish how domain-specific a particular
dataset is. To be precise, for each candidate descrip-
tion, one dataset (not the source dataset) is first ran-
domly selected, and a description is randomly chosen
from the selected dataset. To avoid bias from highly
similar datasets, we rule out using descriptions from
Pascal50S as candidates for Pascal1K (and vice versa);
and similarly for Abstract and Abstract50S.

3. Random Brown: A random sentence from the Brown
corpus. This is useful to ensure that the metrics are
indeed measuring something more specific to image
descriptions (content, structures, style, etc.) We retain
only sentences with at least five word tokens and at
least ten characters.

4. Gibberish Dataset: A randomly generated ‘gibber-
ish’ n-word sentence, with each word drawn indepen-
dently from the unigram distribution of the image de-
scriptions of the same dataset. This explores how well
a metric captures structure, as these ‘sentences’ are
not grammatically well-formed. We experiment with
n = 10 and n = average number of words in the de-
scriptions of the corresponding dataset.

5. Gibberish Brown: A randomly generated ‘gibber-
ish’ n-word sentence, with each word drawn indepen-
dently from the unigram distribution of the Brown cor-
pus. This is useful to investigate how well a metric
captures structure and content. We expect the scores
for these to be the lowest out of all the substitute can-
didates above. Again, we experiment with a fixed
n = 10 and a variable n per dataset (average length
of descriptions of the dataset).

5.1. Results for lower-bound evaluation
Overall, the lower-bound scores are significantly lower than
the upper-bound scores. As in section 4., we discuss the
results by metric and, where relevant, highlight dataset-
specific observations, providing detailed numbers online.

BLEU. The most notable observation is that the BLEU
scores (all variants) for Random Brown are lower than
for Gibberish Brown. This is mainly because BLEU is
a precision measure that favours shorter sentences: the sen-
tences in the Brown corpus can be quite long. This also
explains why the scores are better for shorter sentences
when we vary the n of the Gibberish candidate sets (scores
are higher for the shorter of n=10 and n=average). Also,
BLEU does not seem to be able to capture too well the sub-
tle differences in structure between Gibberish Dataset and
Random Intra-Dataset. This is slightly surprising for the
higher order BLEU-4, which is expected to capture some
structure; this is most likely because there is minimal over-
lap between high order n-grams in the first place. Another
interesting observation is that for many datasets, Random
Inter-Dataset actually achieved higher scores than Ran-
dom Intra-Dataset. Upon investigation, this is again found
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to be due to BLEU being biased towards shorter descrip-
tions, rather than because of the correctness of the descrip-
tions. However, candidates drawn from a dataset of im-
age descriptions perform better than those from the Brown
corpus. As such, we can conclude that BLEU captures
word overlap well, although we could not gain much in-
sight about the datasets themselves.

ROUGE. In contrast to BLEU, ROUGE is less sensitive
to the candidate sentence length. Although we detected
some slight bias towards longer sentences (e.g. Gibberish
fared better with n=10 than n=6 for Abstract), the met-
ric is balanced by both precision and recall, as evidenced
from the comparable scores between Random Brown and
Gibberish Brown. Like BLEU, the ROUGE scores are
much higher for candidates drawn from dataset-specific
corpora than for those using the Brown corpus, show-
ing the importance of domain-specific tuning for generat-
ing image descriptions. Random Intra-Dataset yielded
much higher ROUGE scores than Random Inter-Dataset,
something not quite captured by BLEU. This suggests
that besides domain-specific tuning, dataset-specific tun-
ing is also important for these datasets, especially Ab-
stract (ROUGE-1 score of 0.23 for Intra-Dataset vs. 0.09
for Inter-Dataset) which contains many dataset-specific vo-
cabularies and structure/style not present in other datasets.
We also found VLT2K to be quite dataset-specific (0.23 vs.
0.15), while ImageCLEF2015/MS COCO (0.17 vs. 0.14)
are less so and PASCAL1K/PASCAL50S/Flickr30k even
less again (less than 0.02 difference in score).
Another interesting observation is how the scores of
Random Intra-Dataset for ROUGE-1, ROUGE-L and
ROUGE-W1.2 are much closer to their upper-bound scores
(ratio is about 1:2). This either shows that the datasets
are pretty homogeneous, or that the ROUGE measure over-
rewards irrelevant terms. The Abstract Scenes Dataset, with
a ROUGE-1 score of 0.23 (compared to its upper-bound of
0.30), and Abstract50S (0.28 vs. 0.40) show the smallest
difference between the upper-bound and the lower-bound
Random Intra-Dataset scores. The small difference in
score suggests that the datasets are quite homogeneous –
recall that the dataset contains images that are semantically
similar. Thus, ROUGE successfully picks out this fact. The
distances between the scores are much larger for ROUGE-
SU4 (ratio about 1:3), although it still picks out the homo-
geneity of the two Abstract datasets very well. For this rea-
son, ROUGE-SU4 may be the best measure for evaluating
image descriptions among the ROUGE variants.

Meteor. The lower-bounds for Meteor also echo the same
observations from ROUGE: (i) using dataset-specific cor-
pora gives higher scores than using the Brown corpus;
(ii) structured sentences are better than ’gibberish’. Like
ROUGE, Meteor also captures dataset specificity, but in-
terestingly shows an even larger difference in the Intra-
Dataset vs Inter-Dataset scores for Abstract/Abstract50S
(0.17/0.23 vs. 0.07/0.08 respectively) compared to the ratio
of other datasets, and also showed that Flickr30k is more
dataset-specific than previously suggested by ROUGE.
Like ROUGE-SU4, Meteor also captures the homogeneity
of the datasets (ratio is about 1:3 to 1:4, except the Ab-

stract datasets with a ratio of about 1:1.6-1:1.9). In this
case, we find that Meteor might be an even better measure
than ROUGE-SU4, or otherwise comparable.

CIDEr. Finally, CIDEr/CIDEr-D also demonstrates the
same observations as ROUGE, giving higher scores to can-
didates from image description specific domains than from
the Brown corpus. It also captures the fact that the two
Abstract datasets are much more dataset-specific than the
other datasets. What is most striking is that the differ-
ences in scores between the upper-bounds and Random
Intra-Dataset lower-bounds are much larger compared to
ROUGE and Meteor (e.g. 0.1372 vs. 0.0095 for VLT2K,
0.0949 vs. 0.0029 for ImageCLEF2015, and 0.0384 vs.
0.0066 for Abstract). Thus it captures the homogeneity of
datasets while still keeping the lower-bound/upper-bound
score differences large. We have not ascertained why, but
we assume that this is because of the way CIDEr tries to
ensure that the candidate must be similar to all reference
descriptions (and by extension the majority). This is a very
interesting observation, which makes CIDEr an extremely
valuable metric for evaluating image descriptions.

6. Conclusion
We proposed using leave-one-out cross validation
(LOOCV) to analyse and gain insights into multiply
annotated, human-authored, image description datasets
as well as commonly used metrics for evaluating image
descriptions. We estimated a human upper-bound perfor-
mance on the task with regards to each evaluation metric,
for each dataset. The upper-bound performance scores
provided us insights into both the datasets and the metrics.
For example, BLEU is sensitive to the number of reference
descriptions, Meteor was useful for discovering the fact
that there is at least one image with at least one pair of
identical descriptions, and ROUGE and CIDEr were useful
for measuring agreement/consensus among reference
descriptions. We also ranked the image descriptions per
dataset by their scores, and analysed the rank correlation
between difference metrics. We found BLEU to be weakly
correlated with other metrics, and that ROUGE shows
better correlation than BLEU to Meteor and CIDEr, which
in turn are moderately correlated. We further estimated
various lower-bounds for the evaluation metrics, again
using LOOCV, to investigate how image descriptions vary
within and across datasets and how well the evaluation
metrics capture this. From the results, we concluded that
learning to generate descriptions from image description
specific datasets does yield better performance than from
a generic corpus, and that using dataset-specific image
descriptions further improves results, even more so with
datasets like the Abstract Scenes Dataset, which has a
unique vocabulary set and language structure.
Future work should consider characterising image descrip-
tion datasets and discovering which components of image
descriptions matter more to each evaluation metric.
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