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Abstract
In Sorani Kurdish, one of the most useful orthographic features in named-entity recognition – capitalization – is absent, as the language’s
Perso-Arabic script does not make a distinction between uppercase and lowercase letters. We describe a system for deriving an inferred
capitalization value from closely related languages by phonological similarity, and illustrate the system using several related Western
Iranian languages.
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1. Introduction
In constructing a named-entity recognition system for So-
rani Kurdish (Gautier, 1998; Thackston, 2006; Walther and
Sagot, 2010; Esmaili and Salavati, 2013), a low-resource
Western Iranian language written in a Perso-Arabic script,
we were faced with a dilemma: one of the most use-
ful orthographic features in named-entity recognition—
capitalization—is absent in Perso-Arabic writing.
However, within the Western Iranian family there are sev-
eral languages, including Kurmanji Kurdish, Zazaki, and
Tajik, that are written in Latin or Cyrillic scripts and there-
fore do feature capitalization. This article details the pro-
cess we developed and the challenges we faced in attempt-
ing to infer a “surrogate” capitalization feature for Sorani
named entity recognition based on Kurmaji, Zazaki, and
Tajik sources.
The question we are attempting to answer, and the process
that we developed for answering it, is more general than just
capitalization inference. Broadly, it is the question “How,
for a language that is low-resourced with respect to feature
F , can we infer values for F from material in a closely-
related language?” This question, of bridge-language fea-
ture inference, could equally be asked of various other fea-
tures: the presence of vowels in scripts that only partially
distinguish them, word class, tonal features, and, poten-
tially, any lexical feature F .

2. Background
2.1. The larger project
This research took place as part of a pilot project on linguis-
tic rapid response for emergency situations. When given
data in a low-resource language on which they have not
worked, how much can a small, interdisciplinary team pro-
cess in a very short (24- or 48-hour) timeframe? In par-
ticular, what NLP milestones are possible within this time-
frame when conventional textual and lexical resources are
unavailable?
This project is valuable not just because of its practical
applications, but because it spurs investigation of poten-
tial types of language resources that, in ordinary circum-

stances, might be overlooked. We had little in the way of
gold-standard annotated data, English-Sorani parallel text,
or Sorani-language lexica and gazetteers1; as mentioned
above, even the familiar feature of capitalization was ab-
sent. This spurred us to consider what resources we might
be able to adapt from “bridge languages”: closely related
languages that are better-resourced.2

2.2. Languages
2.2.1. Kurdish
Sorani (or “Central”) Kurdish is a language in the Iranian
branch of the Indo-European family, spoken by 6.7 mil-
lion people in Iraqi Kurdistan and the Kurdistan Province of
Iran.3 It is written in a Perso-Arabic script, with modifica-
tions that allow writers to indicate all but one of its vowels,
short [i].
Sorani is closely related to Kurmanji (or “Northern”) Kur-
dish, spoken by about 20 million speakers primarily in East-
ern Turkey; Kurmanji and Sorani are sometimes described
as dialects of the same language, but exhibit significant
morphological differences. Kurmanji is usually written in a
Latin script called Bedirxan.

2.2.2. Zazaki
Another language of Eastern Turkey, Zazaki (also known
as Zaza, Kirmanjki, Kirdki, and Dimli) is usually not con-
sidered a part of the Kurdish language group in the narrow
sense, although the majority of Zaza people identify ethni-
cally as Kurds. It is likewisewritten in a Latin script; the Za-
zaki sources we utilized were written in KurmanjiBedirxan,
which, although it does not perfectly correspond to the Za-
zaki phonemic inventory, is sometimes chosen by writers to

1A Sorani lexicon is in development (Walther and Sagot,
2010), but was not yet accessible in its entirety.

2To be precise, Kurmanji is not a higher-resourced language
than Sorani in general (Esmaili et al., 2013), but Kurmanji texts are
an abundant source of the feature “capitalized” where Sorani texts
are not, a clearer representation of the phonetic forms of words,
etc.

3All population figures are from Lewis et al. (2015).
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Figure 1: Kurdish and selected relatives

Language Script family Utilizes capitalization
Sorani Kurdish Perso-Arabic No

Kurmanji Kurdish Latin Yes
Zazaki Latin Yes

Iranian Persian Perso-Arabic No
Tajik Cyrillic Yes

Table 1: Selected Western Iranian languages and their writing systems

express their linguistic and ethnic solidarity with the Kur-
manji.

2.2.3. Persian
The largest (and best-resourced) language of the Iranian
family is Persian (or Farsi), with about 47 million speakers.
The Iranian dialect of Persian is written in a Perso-Arabic
script, and therefore not directly useful to the capitalization
task, but the Tajik dialect, spoken by about 8 million speak-
ers primarily in Tajikistan, is primarily written in a Cyrillic
script. Iranian Persian and Tajik are sometimes considered
dialects of the same language, and sometimes considered
different languages.

2.2.4. Choosing a bridge language
Of these languages, the best “capitalization” surrogate for
Sorani Kurdish is clearly Kurmanji Kurdish: they are
closely related and textual material in Kurmanji is relatively
plentiful compared to other closely-related languages. Za-
zaki is reasonably closely related, but the amount of textual
material available is considerably less. Iranian Persian is
the most extensively resourced language among the West-
ern Iranian languages, but more distantly related to Sorani,
and in any case written material lacks the feature we are in-
terested in here. Tajik, while adequately-resourced for our
purposes, is sufficiently distantly related that matching So-
rani and Tajik roots can be a difficult task.
We include Zazaki and Tajik in this study, however, because
it allows us, during evaluation, a means of getting error rates
(since all of these languages capitalize, we can determine to
what extent we predict the correct ones) and interpreting
whether those error rates are reasonable for the languages
involved (i.e., wewould predict that using values frommore
distantly related Tajik should be more error-prone than val-
ues from the more closely-related Zazaki).

3. IPA conversion
We began with monolingual text in Sorani, Kurmanji, Za-
zaki, and Tajik; the texts were not parallel but were largely

comparable, drawn from the Pewan corpus of Kurdish (Es-
maili et al., 2013), news articles written in the last ten years
and, in the case of Tajik, Wikipedia articles.
To render Perso-Arabic Sorani text, Latinate Kurmanji and
Zazaki text, and Cyrillic Tajik text into comparable forms,
we converted all text into IPA transliterations. The IPA, and
the feature space (e.g. [±syllabic], [±coronal]) that concep-
tually underlies it, can be used to provide a common “space”
by which distances between words in different writing sys-
tems can be measured in a uniform manner.
For the Latinate and Cyrillic texts (i.e., the Kurmanji,
Zazaki, and Tajik texts), IPA conversion was straightfor-
ward, since these orthographies represent the respective lan-
guages’ phonemes with little ambiguity.4 For the Sorani
texts, this process took greater attention, both because of
complications in Unicode rendering, and because Sorani’s
Perso-Arabic script is more ambiguous.

3.1. Unicode normalization
An entirely digital complication in processing Sorani text
regards the Unicode expression of the very frequent short
vowel /ɛ/ (also transcribed as /æ/), which is expressed by a
special variant of the Arabic letter heh (Esmaili et al., 2013).
This complication is straightforward to fix, but we mention
it here because it is also very easy to overlook, and thereby
produce inaccurate phonetic renderings of Sorani written
text.
Arabic is a cursive script, with letter forms that differ ac-
cording to whether they join with the following letter (“ini-
tial”), the preceding letter (“final”), both (“medial”), or nei-
ther (“independent”). Most letters have distinct forms for all

4More precisely, while the orthography used in the Zazaki texts
was not a 100% unambiguous rendition of the Zazaki phonemes,
this ambiguity was not an issue for our task. The Zazaki texts ig-
nored some Zazaki-specific distinctions in favor of writing in a
more “pan-Kurdish” manner. Since our end goal was, in any case,
the minimization of Kurdish-Zazaki distinctions in order to iden-
tify Kurdish-Zazaki shared lexical items, text that already attempts
to minimize these distinctions is a benefit rather than a hindrance.
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four positions, but six letters (specifically, و ز ر ذ د (ا never
join with the following letter and therefore only have two
distinct forms.
The Arabic letter heh, representing /h/, has all four forms,
initial ,(هـ) medial ,(ـهـ) final ,(ـه) and independent .(ه) In So-
rani, however, these four forms express two different let-
ters: the initial (هـ) andmedial (ـهـ) forms (those that join with
the following letter) express /h/, whereas the final (ـه) and
independent (ه) forms (those that do not join with the fol-
lowing letter) express /ɛ/.5 Put another way, Sorani has de-
veloped a seventh non-joining letter, representing /ɛ/, from
the non-joining forms of the letter heh.
There exist separate Unicode points to distinguish these in
Sorani (ARABIC LETTER HEH U+0647 and ARABIC
LETTER AE U+06D5 respectively), but most Sorani writ-
ers are using Arabic-targeted software and fonts. Instead of
expressing [ɛ] with ARABIC LETTER AE, they create the
appropriate on-screen letter form by typing ARABIC LET-
TER HEH and then, when necessary, preventing it from
joining with the following letter using the special invisi-
ble character ZEROWIDTH NON-JOINER U+200C. This
suffices for typesetting purposes, but for text processing it
can require downstream components to understand the rules
of when ARABIC LETTER HEH should or should not be
interpreted as if it represents /ɛ/. Instead, we simply nor-
malize all instances of /ɛ/ to ARABIC LETTER AE at the
outset, along with a few other normalizations for special let-
ter forms that one can encounter (like the occasional occur-
rence of Persian-style ک for /k/ instead of the Arabic-style
.(ك

3.2. Vowel prediction
A more substantial problem involves the rendering of So-
rani vowels. Arabic script does not, when writing Arabic,
represent short vowels or make a distinction between long
high vowels and glide consonants. However, this can be a
source of greater ambiguity when Arabic scripts are used to
write languages in which vowels carry a higher functional
load – in particular, Indo-European languages like Iranian
Persian and Sorani. While both Iranian Persian and Sorani
have innovated new vowel letters and developed other dis-
ambiguatory strategies, ambiguities nonetheless remain. In
particular, Sorani does not represent the short vowel [i], ex-
presses [w] and [u] identically, and expresses [y] and [i:]
identically, and has a few additional context-dependent am-
biguities.

3.3. Implementation: CRF
We implemented and trained a character level linear chain
conditional random field (CRF) based system for convert-
ing the Perso-Arabic script for Sorani to IPA. This system
relied on the following components:

• A lookup table including all of the possible mappings
from Sorani orthography to IPA (initially based on

5Word-initially, /ɛ/ is expressed with a preceding hamza, which
eliminates the ambiguity between word-initial /ɛ/ and word-initial
/h/ (Thackston, 2006); we also encountered this form when /ɛ/ fol-
lows another vowel.

information from Wikipedia, Omniglot, the Unicode
standard, etc)6.

• A human linguist who interactively selected the “best”
(phonotactically best-formed) outputs from the CRF-
based component.

• The CRF implementation from cdec (Dyer et al.,
2010).

An important additional set of features used were the dis-
tinctive articulatory (phonological) features corresponding
to each IPA symbol. Due to extensive linguistic literature
on these features, their characteristics are fairly well un-
derstood and superordinate groupings are well-established.
(Proposals differ in details but are broadly similar.)

3.4. PanPhon
We developed a resource combining a database of articula-
tory features for IPA segments, a library of Python classes
and functions for manipulating IPA representations and ar-
ticulatory feature vectors, and a pair of utilities for manipu-
lating IPA-feature databases. This resource is distributed as
PanPhon.7
The core of PanPhon is a database of mappings between
IPA single-letter bases and values for a widely used set of
phonological features (all of which are defined in articula-
tory terms). Members of this feature set include [±coronal]
(+ for sounds produced with the tip or blade of the tongue),
[±nasal] (+ for sounds produced with nasal airflow), and
[±voice] (+ for sounds accompanied by vibration of the
vocal folds). The features are technically three-valued: plus
(+), minus (−) and unspecified (0). However, unspecifica-
tion is used sparingly in the database and 0 values can be
safely recoded as + values. This base component of the
database is stored as a CSV table. In contrast, the defini-
tions of diacritics and modifiers are written as rules which
are represented in a human-readable YAML file format. We
took this approach for the following reasons:

• The semantics of diacritics and modifiers, in terms of
features, is predictable.

• The bases towhich a particular diacritics/modifiers can
attach are predictable in terms of the bases’ features.

• More than one diacritic/modifier may be affixed to a
single base.

A Python script takes the database of IPA base letters and
the collection of rules for diacritics and modifiers as in-
puts. It uses them to generate a comprehensive table of
IPA segments—both simple (consisting of a single let-
ter) and complex (consisting of a letter and one or more
diacritics/modifiers—with their corresponding definitions
in terms of articulatory features. A second (very simple)
script validates Unicode IPA files (UTF-8 only) against this
comprehensive table.

6During the course of the project, we developed an improved
version ofUnitran (Qian et al., 2010)which can be used to generate
a lookup table of this type rapidly.

7This resource (PanPhon) will be made available through the
ELRA Catalogue of LRs.
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Additionally, PanPhon includes a Python library with nu-
merous utility functions for manipulating articulatory fea-
ture vectors and a Python class for interacting with the com-
prehensive IPA feature database. This class includes meth-
ods for querying the database in various ways, for query-
ing IPA segment inventories, for fixed width pattern match-
ing based on articulatory features, for calculating the sonor-
ity of an IPA segment, and for implementing feature-based
edit distance (both unweighted and weighted) between IPA
strings.
The comprehensive database of feature definitions for IPA
segments in PanPhon served as the source for the source
of the universal segment source used in the IPA prediction
process.

3.5. Experiments
For Kurmanji, Zazaki, and Tajik, conversion to IPA presents
only a trivial challenge, so experimental conditions and re-
sults are reported for Sorani alone. Training data were gen-
erated for 244 instances (types) and the IPA predictor was
tested on 402 instances. Additional factors were character-
level language models derived from Kurmanji Kurdish and
Tajik. Both LM languages have transparent orthographies
that can be converted unambiguously to IPA. They differ,
however, in their phylogenetic proximity to Sorani: Kur-
manji is very close while Tajik is somewhat more distantly
related. The Kurmanji and Tajik LMs were 4-gram lan-
guage models and were implemented using SRILM (Stol-
cke, 2002). It was predicted that inclusion of the Kur-
manji factor would increase performance more than the
more remotely-related Tajik.

3.6. Results
The effects of these factors on accuracy and total character
error rate (CER) are given in Table 3.
Our predictor, using only basic features, predicts IPA forms
with better than chance accuracy. Adding the articula-
tory features improves the performance significantly. The
most important articulatory features were major class, la-
ryngeal, and place features. However, even without the
articulatory features, a reliable IPA predictor can be built.
Kurmanji fluency features have a significant impact on the
performance of the predictor. However, even adding the
somewhat distantly-related Tajik boosts performance sig-
nificantly.9

4. Lexical matching and capitalization
inference

The next step in the capitalization inference process in-
volved taking the lexicon derived from these corpora and in-
ferring initial, hypothesized matches between lexical items.

8For example, the features [±syllabic] and [±sonorant] are
considered major class features here, while [±continuant] is a
manner feature.

9Manual investigation of errors suggests, in addition, that some
of the cases where the predictor generates the “wrong” output, that
output is actually a linguistically acceptable pronunciation of the
orthographic token, although not necessarily the same pronuncia-
tion or the same phonetic rendering as the one in the test set.

(In this paper, we will illustrate this using Sorani and Kur-
manji, but the same process was performed for each pair
of languages.) This task is complicated, however, in that
we do not know, a priori, the appropriate distance metric
that would best match Sorani and Kurmanji forms. That is
to say, there exists, abstractly, some (potentially very com-
plex) distance metric that would match a Sorani word to
the Kurmanji word to which it corresponds (either by cog-
natehood or common borrowing). If we knew this “perfect”
metric (call itm∗), we could knowwhichwords correspond,
and if we knew which words corresponded, we could ap-
proximate that perfect metric to some degree. In the ab-
sence of knowledge of either of these, however, we can at
least start with a naïve metric (call it m0) and iterate from
that.
So, we began by taking an unweighted Levenshtein distance
as our initial approximation of the distance function, and
from this getting an initial hypothesis regarding Sorani-to-
Kurmanji word correspondences. For example, by Leven-
shtein distance, the nearest Kurmanji neighbor to the Sorani
word bɾiːtanja (“Britain”) is the Kurmanji word bɾi:tanija
(also “Britain”).
In practice, calculating the distance between every Sorani
and Kurmanji word is computationally prohibitive. In order
to restrict the task to a reasonable run-time for an emergency
situation, we made a simplifying assumption, that every vi-
able Kurmanji correspondence to a Sorani word w will be
within t edits of w.10
The reason for choosing some value t, higher than which we
will not consider Kurmanji words to be viable candidates for
correspondence, is because a Levenshtein automaton can
find all word pairs in two lexica that are within t edits11
of each other (Schulz and Mihov, 2002), in O(m+n) rather
than O(mn) time. We constructed from our Sorani lexicon
a Levenshtein trie automaton for distance t, in which a trie
that recognizes each known word in Sorani exactly is aug-
mented into a Levenshtein automaton by adding an addi-
tional t layers of nodes to represent paths that include up
to t errors. Meanwhile, we constructed a Kurmanji trie as
well, that recognizes each known Kurmanji word exactly.
By traversing the intersection of these trees, we can effi-
ciently find the list of ⟨wSor, wKur⟩ word pairs within t
edits of each other.
From this, we take the nearest neighbor wKur for each
wSor, and calculate the edits for this pair. For example,
for the pair ⟨bɾiːtanja, bɾi:tanija⟩, the edits would be ⟨b,b⟩,

10That is to say, if we consider the “perfect” metric that we are
seeking m∗, and our naïve initial metric m0 (in this case, an un-
weighted Levenshtein distance), there exists some threshold con-
stant t such that every nearest neighbor of a word w according to
m∗ is within t distance of w according to m0. Since we do not
knowm∗, we cannot know t, and in any case, any practical value
chosen for t in a time-critical situation will probably be well be-
low the actual t. However, for any chosen value of t, there is at
least some percentage of actual nearest neighbors ofw that will be
within t edits.

11For the purposes of this algorithm, “edits” are counted be-
tween IPA segments – e.g. ɾ or i: or d͡ʒ – rather than between
Unicode characters, so a change of r to d͡ʒ counts as a single edit
rather than three.
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Features Description
Basic Simple features relevant to IPA symbol

translation rules; whether IPA symbols are
consonants or vowels.

PanPhon Phonological features (articulatory),
grouped according to major8classes.

Kurmanji Fluency features from Kurmanji derived
from character-level 4-gram language
models.

Tajik Fluency features from Tajik derived from
character-level 4-gram language models.

Table 2: Features used for IPA prediction

Features Accuracy CER
Basic 0.635 0.237
Basic+PanPhon 0.669 0.234
Basic+Kurmanji 0.701 0.223
Basic+Kurmanji+PanPhon 0.721 0.221
Basic+Tajik 0.661 0.231
Basic+Tajik+PanPhon 0.664 0.228
All features 0.721 0.221

Table 3: IPA prediction results

⟨ɾ,ɾ⟩, ⟨i:,i:⟩, ⟨t,t⟩, ⟨a,a⟩, ⟨n,n⟩, ⟨∅,i⟩, ⟨j,j⟩, ⟨a,a⟩.12
From the aggregate edits from all best ⟨wSor, wKur⟩ pairs,
we can derive a further metric m1, by treating the cost of
an edit between the Sorani character cS and the Kurmanji
character cK as the positive log frequency which with that
correspondence occurs when using our unweighted metric
m0:

m1(⟨cS , cK⟩) =


0, if cS = cK

− logP (⟨cS , cK⟩),
if cS ̸= cK

Using this new metric to discourage unlikely correspon-
dences – that is, to encourage pairs with reasonable cor-
respondences like ⟨e,ɛ⟩ and discourage pairs with un-
reasonable correspondences like ⟨p,ɛ⟩, we attempted to
find Sorani-Kurmanji word pairs again, this time using
a weighted Levenshtein algorithm with the cost function
m1.13
The final correspondent chosen is then taken as that word’s
surrogate for capitalization frequency. For example, if the
Kurmanji word amɾiːkajiːjɛkan (“Americans”) has a capi-
talization frequency of 1.0 (that is, it is capitalized 100%
of the time in the Kurmanji text), the hypothesized corre-
sponding Sorani word ɛmɾiːkiːjɛkan (also “Americans”) is
assigned an inferred capitalization frequency of 1.0. Since

12Not all such edits would be genuine Sorani-Kurmanji cor-
respondences, of course, since not all word pairs found in the
previous step are genuine Sorani-Kurmanji correspondences, but
manual inspection of the collected edits showed that reasonable
cross-linguistic correspondences like ⟨e,ɛ⟩ and ⟨a,ɛ⟩ overwhelm-
ingly outnumber unlikely correspondences like ⟨p,ɛ⟩ and ⟨q,ɛ⟩.

13It is worth noting that performing further iterations on this
process, in which we generate further metricsm2,m3, etc. based
on the pairs generated by the previous step, did not result in overall
lower error rates in the end.

this assignment is the trivial case of a k-nearest-neighbors
regression, we also performed experiments using higher
values of k.

5. Results
The narrow question – how well can we predict the capital-
ization rates of Language X words given text in Language
Y? – cannot be answered directly for Sorani, of course, be-
cause written Sorani does not utilize capitalization. This, as
mentioned above, is among the reasons we included other
Western Iranian languages in this sample, because all of
these languages utilize capitalization.
There remains, however, the broader question as well.
How well do these inferred resources support named-entity
recognition or other tasks in which capitalization is a rel-
evant feature, and how best to utilize them within a larger
system? We do not yet know how the resources above cor-
respond (if at all) to performance increases in named entity
recognition or other tasks, and in particular what ranges of
the error rates above would result in performance increases;
this is a subject we are pursuing as ongoing research.
In Table 4, we can see the coverage (the percentage of L1
words for which correspondents were found) and the ac-
curacy (the mean squared error between the L1 words’ in-
ferred capitalization rates and their actual capitalization rate
in the original L1 text) of inferred capitalization rates be-
tween the different languages.
It is difficult to interpret these error rates in isolation, al-
though we can observe that, as predicted, the error rates
are better between the more closely-related languages than
between the more distantly-related languages and, unsur-
prisingly, that inferring capitalization from a smaller cor-
pus (i.e., from Zazaki) gets worse results. It is unsurprising,
therefore, that we get the best coverage and error rate when
inferring Zazaki capitalization from a Kurmanji text – that

3322



L1 Word types in L1 text L2 Word types in L2 text t Coverage Error
Sorani 13,240 Kurmanji 124,089 3 83.47% N/A
Sorani 13,240 Zazaki 26,305 3 61.72% N/A
Sorani 13,240 Tajik 108,814 3 34.90% N/A

Kurmanji 124,089 Zazaki 26,305 3 63.62% 0.294
Kurmanji 124,089 Tajik 108,814 3 31.80% 0.470
Zazaki 26,305 Kurmanji 124,089 3 85.66% 0.255
Zazaki 26,305 Tajik 108,814 3 46.09% 0.534
Tajik 108,814 Kurmanji 124,089 3 37.41% 0.459
Tajik 108,814 Zazaki 26,305 3 31.99% 0.467

Table 4: Results of inferring L1 capitalization rate from L2 text, for t = 3

is, when inferring capitalization from a much larger corpus
in a closely-related language.
The Zazaki-from-Kurmanji error rates can probably be used
as a rough surrogate for what the Sorani-from-Kurmanji er-
ror rates would be, were Sorani to use capitalization. The
Zazaki text was, like the Sorani text, fairly short compared
to the Kurmanji text. Meanwhile, although Zazaki is not
quite as closely related to Kurmanji as Sorani is, the Zazaki
texts we used were, as noted in §2., written using Kurmanji-
style spelling conventions, making the Zazaki text more
similar to the Kurmanji text than it would otherwise be.
The choice of threshold t = 3 for the experiments above
depended largely on practical constraints; as mentioned
above, these experiments are intended to simulate a compo-
nent in a pipeline that must execute, in its entirety, within
a limited timeframe. A choice of t = 2 gave similar over-
all error rates (as illustrated for Zazaki-to-Kurmanji exper-
iments in Table 5), but simply did not provide correspon-
dents for a third of Zazaki words – that is to say, it happened
that a third of Zazaki words did not have any correspondents
within two edits. Meanwhile, however, t > 4 led to sig-
nificant slowdown without a gain in accuracy; there are so
many Kurmanji forms within five or six edits of each Za-
zaki form that the subsequent derivation of the m1 metric
was hindered. While the first step of the correspondence
calculator – the construction of the Levenshtein automaton
and its cotraversal with the bridge language trie – runs in
O(m+n) time, the subsequent step runs inO(mn) time where
n is the mean number of bridge language words generated
by the previous step. t > 4 leads to a sufficiently high n
that the efficiency of using a Levenshtein automaton was
rendered moot by the subsequent step.
As noted above, the capitalization inference procedure de-
scribed above is the trivial case of a k-nearest-neighbors re-
gression, leading to a further experiment: how does consid-
ering higher values for k effect the accuracy? As illustrated
in Table 6, including additional neighbors leads to a signifi-
cant improvement in the error rate. (Considering neighbors
beyond the tenth-closest neighbor resulted in only marginal
differences in results.)

6. Discussion
The capitalization error rates between differentWestern Ira-
nian languages are as expected; more closely-related lan-
guages have correspondingly more coverage and (when
knowable) less error, while more distantly-related lan-
guages have relatively poor coverage and error. Moreover,

we see that relative corpus size is unsurprisingly a major
factor in coverage and error as well.
However, it may seem counterintuitive that expanding the
number of neighbors kwould increase the accuracy somuch
in this particular task; unlike many regression tasks, this is
a task in which we expect there to be one (or at most a few)
genuine correspondent words, and that further neighbors
beyond that will not be as viable surrogates for capitaliza-
tion, any more than a random word might be. That is to say,
once the system has chosen Kurmanji <loksemburg> as the
closest corresponding word to Zazaki <luksembu:rg> (both
“Luxembourg”), we would not expect including ten further
neighbors, more distant from <luksembu:rg>, to serve as
a better capitalization surrogate than <loksemburg> itself
does.
Manual inspection of the produced gazetteers suggests a
possible explanation for why increasing the number of
neighbors k does not increase error by including additional
spurious correspondents. Many of the capitalized words in
both corpora are renderings of foreign names and places,
and are not, in their inventory or phonotactics, similar to
the native Western Iranian vocabulary. When the Zazaki
rendering of a foreign name has any Kurmanji correspon-
dents within the threshold t at all, they are often renderings
of the same foreign name. Increasing the number of allowed
neighbors thus does not tend towards introducing error.
On the other hand, more non-capitalized words are Western
Iranian vocabulary and tend to have many neighbors within
t. Since native, non-capitalized words are comparatively
frequent, one of the main sources of overall error is Zazaki
native, non-capitalized words being in spurious correspon-
dence with capitalized Kurmanji words. Introducing addi-
tional neighbors (spurious or not) will on average move the
result towards zero, which in these cases is the correct re-
sult.
That is to say, increasing the number of neighbors does
not greatly increase false positives (because many capi-
talized words do not have additional neighbors within the
threshold, and there are fewer capitalized words in any
case), while greatly reducing false negatives (because un-
capitalized words are more common, and many uncapital-
ized words tend to have many neighbors within the thresh-
old, so addingmore neighbors brings down the average cap-
italization rate).
The accuracy increase from the inclusion of more neigh-
bors, therefore, is probably not due to collecting additional
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L1 L2 t Coverage Error
Zazaki Kurmanji 1 45.05% 0.227
Zazaki Kurmanji 2 67.58% 0.253
Zazaki Kurmanji 3 85.66% 0.255
Zazaki Kurmanji 4 91.27% 0.257
Zazaki Kurmanji 5 95.64% 0.259
Zazaki Kurmanji 6 97.83% 0.258

Table 5: Results of inferring Zazaki capitalization from Kurmanji text, for different thresholds t

L1 L2 t k Error
Zazaki Kurmanji 3 1 0.256
Zazaki Kurmanji 3 2 0.207
Zazaki Kurmanji 3 3 0.188
Zazaki Kurmanji 3 4 0.180
Zazaki Kurmanji 3 5 0.175
Zazaki Kurmanji 3 10 0.169

Table 6: Results of inferring Zazaki capitalization from Kurmanji text, using k neighbors

good capitalization correspondences. However, number of
neighboring words within a threshold may end up being
a surrogate for phonological foreignness, and phonologi-
cal foreignness a surrogate for capitalization. This sug-
gests that investigating phonological foreignness directly –
rather than indirectly, as here – may be a promising avenue
for future experiments in capitalization prediction and low-
resource NER feature engineering.
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