
EasyTree: A Graphical Tool for Dependency Tree Annotation

Alexa Little∗, Stephen Tratz†
∗Yale University, New Haven, Connecticut, USA

†U.S. Army Research Laboratory, Adelphi, Maryland, USA
alexa.little@yale.edu, stephen.c.tratz.civ@mail.mil

Abstract
This paper introduces EasyTree, a dynamic graphical tool for dependency tree annotation. With EasyTree, annotators can incrementally
construct and label trees by manipulating an interactive graphical tree representation and then exporting the internal data representation
as JSON (JavaScript Object Notation). This intuitive animated interface has a number of customizable features to assist annotators,
including color-coded part-of-speech indicators and optional translation displays. It can be adapted to suit a range of different projects.
Edge labels, part-of-speech categories, and many other settings can be edited from within the GUI. EasyTree uses the standard UTF-8
encoding internally and properly handles both left-to-right and right-to-left scripts. In providing a user-friendly annotation tool, our
aim is to significantly reduce the time spent transforming data or learning to use software, to improve the overall user experience
for annotators, and to make annotation approachable even for inexperienced users. EasyTree is built entirely with standard web
technologies—JavaScript, HTML, and CSS. Thus, it is well-suited for web-based annotation efforts such as crowdsourcing efforts.

Keywords: annotation tools, dependency trees, visualization, GUI

1. Introduction
Manually constructed linguistic resources are crucial for
the training and evaluation of most state-of-the-art natural
language processing tools, including dependency parsers,
and enable countless research efforts. Unfortunately, the
annotation process is typically very slow and tedious. This
is particularly true for more complicated tasks such as de-
pendency tree annotation. Although some tree-editing pro-
grams have been developed to address this issue, most ei-
ther rely on text-based editing, which can be slow and error-
prone, or are standalone applications designed for sophisti-
cated users, assuming a moderate knowledge of linguistics
or computer programming. These issues are inconvenient
for researchers and annotators generally but are especially
problematic for low-resource language tasks, for which ex-
perienced annotators may not be available, and crowdsourc-
ing efforts, which typically require a browser-based anno-
tation tool. To address these needs, this paper introduces
EasyTree,1 a dynamic visual tree editing system designed
to make tree annotation fast and intuitive.
To reduce the time and cost of training annotators—
significant issues, especially for low-resource language an-
notation tasks—EasyTree provides a clean, uncluttered in-
terface. It provides important functionality for dealing with
large trees such as panning, zooming, and subtree hiding,
and it relies on intuitive, well-accepted metaphors such as
drag-and-drop.
To ease deployment, EasyTree is built entirely with
JavaScript, HTML, and CSS—standard web technologies
that are supported by all major web browsers. Thus,
EasyTree is easily deployed within web browsers, making
it appropriate for online web-based annotation tasks such
as crowdsourcing efforts. If running on a remote server, no
client side installation is necessary; otherwise, installation
is as simple as decompressing a .zip file.
In the remainder of this paper, we give an overview of
EasyTree’s use and important features (Section 2), discuss

1Available at https://github.com/alexalittle/easytree

the implementation of EasyTree (Section 3), and compare
and contrast it with similar tools (Section 4).

2. Capabilities and Use
2.1 Loading Trees
Users can submit sentences for annotation as plain text,
with individual tokens separated by whitespace, or as JSON
(JavaScript Object Notation) text (See Figures 1 and 2).

Figure 1: Tree upload boxes. Trees may either be uploaded
using EasyTree-compatiable JSON or plain text.

Trees created manually or via automatic dependency
parsers can be visualized or edited with EasyTree after con-
verting the representation into EasyTree-compatible JSON
objects. For large-scale projects or for annotators who need
more support, we provide a script for automatically con-
verting monolingual or parallel corpora into collections of
JSON files. There are also scripts for converting between
the popular CoNLL-X dependency tree format used in the
2006 CoNLL-X shared task (Buchholz and Marsi, 2006)
and EasyTree-compatible JSON.

2.2 Editing Trees
Tree editing in EasyTree is straightforward; users simply
click on word nodes and move them around using drag-

2343



Original: 花子さんの友達は東京に住んでいます
Translation: Miss Hanako’s friend lives in Tokyo
JSON:
{“name”: “root”, “children”:

[{“name”: “花子”, “def”: “Hanako”, “pos”: “noun”},
{“name”: “さん”, “def”: “Miss”, “pos”: “x”},
{“name”: “の”, “def”: “s”, “pos”:“det”},
{“name”: “友達”, “def”: “friend”, “pos”:“noun”},
{“name”: “は”, “def”: “は”, “pos”:“x”},
{“name”: “東京”, “def”: “Tokyo”, “pos”:“noun”},
{“name”: “に”, “def”: “in”, “pos”:“adp”},
{“name”: “住んでいます”, “def”: “lives”, “pos”:“verb”}]}

Figure 2: Example sentence and associated EasyTree-
compatible JSON.

and-drop. As depicted in Figure 3, when the user begins
dragging a node, red circles appear around the remaining
nodes. These “drop zones” indicate where the node may be
re-attached. When the dragged node is eventually dropped
onto a drop zone, a link representing a syntactic depen-
dency is created between the two nodes with the dropped
node as the child. The re-attached node is inserted such that
it and its new siblings remain sorted according to the orig-
inal word order of the sentence. The annotator continues
this incremental process until the dependency tree is fully
constructed.

Figure 3: Red “drop zones” appear while dragging a node
to highlight possible attachment sites.

EasyTree supports both labeled dependency trees, which
have syntactic labels on each dependency link, and unla-
beled dependency trees, which lack such labels. To assign a
syntactic label to a dependency relation, the annotator sim-
ply clicks on the edge between a pair of nodes, as depicted
in Figure 4, and, in response, a pop-up window appears,
which enables the user to either choose the appropriate la-
bel from a list of labels sorted by frequency or, alternatively,
enter a new label. The selected label then appears at the
midpoint of the edge.
To manage large trees, which can be difficult to view in
their entirety, EasyTree provides pan, collapse, and zoom
capabilities. Panning is accomplished by clicking in the
background and dragging the mouse in the desired direc-
tion. Subtrees can be collapsed or expanded with a mouse
click on the topmost node of the subtree; nodes with hidden
descendants are depicted with a filled-in node as shown in

Figure 4: Edges can be given dependency labels by clicking
on an them and selecting an appropriate label.

Figure 5. Adjust the zoom factor of the tree display, the an-
notator rolls the mouse scroll wheel forward or backward.
Together, these functions allow users to quickly navigate
very large dependency trees with minimal effort and using
only the mouse.

Figure 5: Subtree collapsing/expansion. The user may click
to hide/show descendants. If a node has hidden descen-
dants, it is displayed with a solid node.

2.3 Visual Customization
EasyTree includes several customizable features to assist
annotators.
First, in order to facilitate annotation by non-native anno-
tators, if a translation or definition is available for a partic-
ular word, EasyTree will display it when the user moves
the mouse over that word, as shown in Figure 6. To enable
this feature, the JSON for the tree node must include “def”
keys for words with their translations as the corresponding
values. This can be done manually or with a custom script;
we provide a Python script to automatically include trans-
lations based upon a user-specified dictionary.
Second, part-of-speech types are indicated by a ring of
color around each node using a user-specified part-of-
speech to color mapping, as shown in Figure 7. This cus-

2344



Figure 6: Mouseover to view translation.

tomizable mapping persists until modified or reset by the
user, enabling users to customize the color settings only
once and then use them for the entire duration of the project.

Figure 7: Customizable color scheme for indicating part-
of-speech.

Third, although the standard settings of EasyTree have been
optimized to work with 14 different writing systems, vari-
ation in word length, script type, and other factors make
a one-size-fits-all display configuration unrealistic; hence,
EasyTree provides a settings panel for access to the most
important style settings. The customizable options accessi-
ble from the settings panel are as follows:

• Increase / decrease tree width
• Increase / decrease tree height
• Increase / decrease node size
• Increase / decrease text x offset
• Increase / decrease text y offset
• Change font family of labels

2.4 Saving Trees
To save the state of the tree annotation, the user clicks the
Save Tree button. EasyTree then prompts the user to down-
load a copy of the JSON object representing the depen-
dency annotation, and the user chooses where to save it.
Users can also access the JSON directly in the EasyTree
application; the Save As Text button triggers a pop-up con-
taining the JSON plain text for the current state of the tree.

3. Implementation
EasyTree is written entirely in JavaScript, CSS, and HTML.
This means that it can run in modern web browsers and

Original: 花子さんの友達は東京に住んでいます
Translation: Miss Hanako’s friend lives in Tokyo
{“name”:“root”,“id”:9,“children”:

[{“name”:“住んでいます”,“def”:“lives”,“pos”:“verb”,“id”:1,
“children”:
[{“name”:“友達”,“def”:“friend”,“pos”:“noun”,“id”:5,

“link”:“subject”,“children”:
[{“name”:“花子”,“def”:“Hanako”,“pos”:“noun”,

“id”:8,“link”:“DP modifier”,“children”:
[{“name”:“さん”,“def”:“Miss”,“pos”:“x”,

“id”:7,“link”:“honorific”},
{“name”:“の”,“def”:“s”,“pos”:“det”,“id”:6,

“link”:“possessive”}]},
{“name”:“は”,“def”:“は”,“pos”:“x”,“id”:4,
“link”:“topic”}]},

{“name”:“東京”,“def”:“Tokyo”,“pos”:“noun”,
“id”:3,“link”:“location”,“children”:
[{“name”:“に”,“def”:“in”,“pos”:“adp”,“id”:2,

“link”:“dative”}]}]}]}

Figure 8: JSON corresponding to the tree in Figure 9.

is platform independent. For the interactive graphical dis-
play, EasyTree leverages D3, a popular open source data
visualization library written in JavaScript (Bostock et al.,
2011). The D3 library binds data to visual SVG (Scalable
Vector Graphics) elements, allowing manipulations of data
to affect the graphics and vice versa. EasyTree utilizes the
UTF-8 encoding, which enables it to work with Unicode
characters.

4. Related Work
Of the alternatives, the most relevant graphical annotation
software tool is the tree editor TrEd, (Pajas and Štěpánek,
2008). TrEd is a programmable graphical user interface for
editing and viewing trees and has been used for several tree-
banking projects, including the Prague Arabic Dependency
Treebank (Hajič et al., 2004). It has a substantial number of
features but can be unintuitive at times and difficult to learn;
thus, it may not be a good choice for less experienced an-
notators. A notable difference between TrEd, a standalone
application written in Perl, and EasyTree is that EasyTree is
designed to run in web browsers, making it trivial to install
and, more importantly, appropriate for web-based annota-
tion tasks such as crowdsourcing efforts.
A couple other notable graphical NLP annotation tools are
BRAT2 (Stenetorp et al., 2012) and WEBANNO3 (Yimam et
al., 2013). These tools support a wide range of annotation
tasks and are capable of being used for dependency annota-
tion. However, the manner in which they display text—on
a single line—makes following the dependency arcs some-
what difficult, and, thus, these tools are probably more ap-
propriate for other tasks, such as marking events and named
entities. Like EasyTree, these tools are browser-based ap-
plications.
Although text-based annotation for dependency trees is typ-
ically avoided in favor of graphical annotation, text-based

2http://brat.nlplab.org/
3https://webanno.github.io/webanno/

2345



Figure 9: Full view of EasyTree with a complete tree structure.

editing has not been completely abandoned. One recent re-
search effort into lightweight dependency syntax annota-
tion introduced a new text-based annotation scheme called
GFL (Graph Fragment Language) that is designed to ease
such annotation (Schneider et al., 2013). A key character-
istics of GFL is that it provides for underspecified trees—
that is, annotators are not required to annotate the entire in-
put segment but may instead annotate only the portions that
are grammatical or are otherwise relevant to their particular
project.

5. Conclusion
In this paper, we described the EasyTree graphical depen-
dency tree visualization and editing software. EasyTree
uses the intuitive drag-and-drop metaphor for editing tree
structures, and its pan, collapse, and zoom capabilities fa-
cilitate the display and editing of large complex trees. It
supports both unlabeled and labeled dependency annota-
tion and supports a variety of customizations. Being built
entirely using standard web technologies, it runs in all ma-
jor web browsers and is ideal for online annotation efforts,
such as crowdsourcing efforts. It supports UTF-8 encod-
ing and works with multiple writing systems including both
left-to-right and right-to-left scripts.

6. Future Work
Possible future directions include implementing support for
adding new nodes, such as nodes to represent various types
of null elements, adding additional link types, such as links
for connecting pronouns to their antecedents, and adding a
capability to specify a restricted set of edge labels. We have
also considered developing a graphical download option, so

that users can build trees and capture the resulting image.
We hope to implement a web server-based active learning
system with which a future version of EasyTree could di-
rectly interface for the purpose of accelerating annotation
tasks. Support for more complex annotation, including Ab-
stract Meaning Representation (AMR) (Banarescu et al.,
2013) is another possibility, and there is a wide range of
additional visual customizations and file format options that
could be implemented.

Acknowledgments
We wish to thank the U.S. Army’s Educational Outreach
Program’s (AEOP’s) College Qualified Leaders (CQL) pro-
gram for providing the internship opportunity that facili-
tated this work.

References
Banarescu, L., Bonial, C., Cai, S., Georgescu, M., Grif-

fitt, K., Hermjakob, U., Knight, K., Koehn, P., Palmer,
M., and Schneider, N. (2013). Abstract Meaning Rep-
resentation for Sembanking. In Proceedings of the 7th
Linguistic Annotation Workshop & Interoperability with
Discourse, pages 178–186. Association for Computa-
tional Linguistics.

Bostock, M., Ogievetsky, V., and Heer, J. (2011). D3 data-
driven documents. IEEE Transactions on Visualization
and Computer Graphics, 17:2301–2309.

Buchholz, S. and Marsi, E. (2006). CoNLL-X Shared Task
on Multilingual Dependency Parsing. In Proceedings of
the Tenth Conference on Computational Natural Lan-
guage Learning, pages 149–164. Association for Com-
putational Linguistics.

2346



Hajič, J., Smrz, O., Zemánek, P., Šnaidauf, J., and Beška, E.
(2004). Prague Arabic Dependency Treebank: Develop-
ment in Data and Tools. In Proceedings of the NEMLAR
Intern. Conf. on Arabic Language Resources and Tools,
pages 110–117.

Pajas, P. and Štěpánek, J. (2008). Recent Advances in a
Feature-Rich Framework for Treebank Annotation. In
Proceedings of the 22nd International Conference on
Computational Linguistics, pages 673–680. Association
for Computational Linguistics.

Schneider, N., O’Connor, B., Saphra, N., Bamman, D.,
Faruqui, M., Smith, N. A., Dyer, C., and Baldridge,
J. (2013). A Framework for (Under) specifying De-
pendency Syntax without Overloading Annotators. Pro-
ceedings of the 7th Linguistic Annotation Workshop &
Interoperability with Discourse, pages 51–60.

Stenetorp, P., Pyysalo, S., Topić, G., Ohta, T., Ananiadou,
S., and Tsujii, J. (2012). brat: a web-based tool for nlp-
assisted text annotation. In Proceedings of the Demon-
strations Session at EACL 2012. Association for Com-
putational Linguistics.

Yimam, S. M., Gurevych, I., Eckart de Castilho, R., and
Biemann, C. (2013). Webanno: A flexible, web-based
and visually supported system for distributed annota-
tions. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics: System
Demonstrations, pages 1–6, Sofia, Bulgaria, August. As-
sociation for Computational Linguistics.

2347


