
ESTNLTK - NLP Toolkit for Estonian

Siim Orasmaa, Timo Petmanson, Alexander Tkachenko, Sven Laur, Heiki-Jaan Kaalep
Institute of Computer Science, University of Tartu

Liivi 2, 50409 Tartu, Estonia
siim.orasmaa@ut.ee,tpetmanson@gmail.com,aleksandr.tkatsenko@ut.ee,swen@ut.ee,heiki-jaan.kaalep@ut.ee

Abstract
Although there are many tools for natural language processing tasks in Estonian, these tools are very loosely interoperable, and it is not
easy to build practical applications on top of them. In this paper, we introduce a new Python library for natural language processing
in Estonian, which provides a unified programming interface for various NLP components. The ESTNLTK toolkit provides utilities
for basic NLP tasks including tokenization, morphological analysis, lemmatisation and named entity recognition as well as offers more
advanced features such as a clause segmentation, temporal expression extraction and normalization, verb chain detection, Estonian
Wordnet integration and rule-based information extraction. Accompanied by a detailed API documentation and comprehensive tutorials,
ESTNLTK is suitable for a wide range of audience. We believe ESTNLTK is mature enough to be used for developing NLP-backed
systems both in industry and research. ESTNLTK is freely available under the GNU GPL version 2+ license, which is standard for
academic software.

Keywords: natural language processing, Python, Estonian language

1. Introduction
Estonian scientific community has recently enjoyed an ac-
tive period, when a number of major NLP components have
been developed under free open source licenses. Unfortu-
nately, these tools are very loosely interoperable. They use
different programming languages, data formats and have
specific hardware and software requirements. Such sit-
uation complicates their usage in both software develop-
ment and educational setting. In this paper, we introduce
ESTNLTK, a Python library for natural language process-
ing in Estonian, which addresses this issue.
The ESTNLTK toolkit glues together existing software
components and makes them easily accessible via a uni-
fied programming interface. It provides utilities for basic
NLP tasks including tokenization, morphological analysis,
lemmatisation and named entity recognition as well as of-
fers more advanced features such as a clause segmentation,
temporal expression extraction, verb chain detection, Esto-
nian Wordnet integration and grammar-based information
extraction.
The ESTNLTK toolkit is written in Python programming
language and borrows design ideas from popular NLP
toolkits TextBlob and NLTK. Users familiar with these
tools can easily get started with ESTNLTK. Accompanied
by a detailed API documentation and comprehensive tutori-
als, ESTNLTK is suitable for a wide range of audience. We
believe ESTNLTK is mature enough to be used for devel-
oping NLP-backed systems both in industry and research.
Additionally, ESTNLTK is a good environment for teach-
ing NLP for students.
Although ESTNLTK is explicitly targeted for the Estonian
language, the architecture is quite generic and the toolkit
can be used as a template for building analogous toolkits for
other languages. The only limiting factor is the availability
of external NLP components that must be replaced.
The ESTNLTK toolkit is available under the GNU
GPL version 2+ license from https://github.com/
estnltk/estnltk. The library works on Linux, Win-

dows and Mac OS X and supports Python versions 2.7 and
3.4.

2. Related Work
There is a great variety of available tools for natural lan-
guage processing. Typically, they come in the form of
reusable software libraries, which can be embedded into
user applications. Toolkits like Stanford CoreNLP (Man-
ning et al., 2014) and NTLK (Bird and Klein, 2009) pro-
vide all-in-one solution for the most common NLP tasks,
such as tokenization, lemmatisation, part-of-speech tag-
ging, named entity extraction, chunking, parsing and sen-
timent analysis. Others, like gensim (Řehůřek and Sojka,
2010), a topic modelling framework in Python, and Apache
Lucene (Cutting et al., 2004), a Java library for document
indexing and search, are designed for specific tasks. In con-
trast, projects GATE (Cunningham et al., 2011) and Apache
UIMA (Apache, 2010), represent a comprehensive family
of tools for text analytics. In addition to software mod-
ules, they provide tools to manage complex text processing
workflows, annotate corpora and support large-scale dis-
tributed computing.
The design of ESTNLTK is strongly influenced by
TextBlob (Loria, 2014), a Python library that is built on
top of the NLTK toolkit. It provides a simplified API for
common NLP tasks such as part-of-speech tagging, noun
phrase extraction, sentiment analysis, classification and
translation. The central class throughout the framework is
Text, which encodes information about natural language
text. Being passed through a text-processing pipeline, a
Text instance accumulates information provided by each
processing task. This approach differs from the typical
pipeline architecture, where each processing layer modifies
specially formatted input text.
Our choice to implement ESTNLTK as a Python library
similar to TextBlob was motivated by the following rea-
sons. First, Python is widely adopted in NLP community,
due to its powerful text processing capabilities and good

2460

https://github.com/estnltk/estnltk
https://github.com/estnltk/estnltk


support for NLP and machine learning. Second, Python
has a good support for external libraries written in other
compiled languages such as C or C++. This greatly sim-
plifies integration of existing tools. Furthermore, the most
performance-critical code sections can be moved to C/C++
extension modules. Thirdly, Python is a popular program-
ming language for teaching entry-level computer science
courses in many universities including Estonian. Hence, no
extra skills are needed to use ESTNLTK.
Initially, we also considered Java as a programming lan-
guage, since many tools provide libraries written in Java.
As a compiled, statically-typed, object-oriented language,
Java is well-suited for large software projects. However, it
also has a verbose inflexible syntax, what makes it highly
unproductive for prototyping and experimentation and it
cannot be used for scripting in interactive environments.
As an alternative to building ESTNLTK from scratch, we
also considered customising an existing toolkit such as
NLTK or Textblob for the Estonian language. This would
provide a benefit of using a common interface for text anal-
ysis in both Estonian and English. However, we found it
difficult to achieve, since neither NLTK nor Textblob are
designed to internally handle the morphological ambiguity
and attributes such as cases, forms and clitics found in Es-
tonian. Ignoring this information would mean incomplete
representation of Estonian morphology. On the other hand,
modifying existing framework internals would require sig-
nificant rewrites and create compatibility issues. Given the
benefits and tradeoffs, we decided to implement ESTNLTK
as a specialised package for Estonian. That said, we do not
rule our integrating ESTNLTK with other toolkits in the
future.

3. Design Principles
The ESTNLTK toolkit exposes its NLP utilities through a
single wrapper class Text. To perform a text-processing
operation, the user needs to access the corresponding prop-
erty of an initialised Text object. After that ESTNLTK
will carry out all necessary pre-processing behind the
scenes. Hence, an analysis pipeline can be specified dy-
namically through an interactive scripting session without
thinking of implementation details.
For example, named entities can be accessed via the prop-
erty named_entities. To extract named entities, the
ESTNLTK toolkit will complete five separate operations
in succession: (1) segment paragraphs; (2) segment sen-
tences; (3) tokenise words; (4) perform morphological anal-
ysis; (5) identify named entities. For each operation in the
pipeline, ESTNLTK comes with a sane default implemen-
tation. However, a user can provide an alternative imple-
mentation through the constructor of the class Text.

Text class. The Text is a subclass of a standard Python
dictionary with additional methods and properties designed
for NLP operations. A new instance can be created simply
by passing the plaintext string as an argument to the con-
structor, which initiates a dictionary with a single attribute
text. Using a dictionary as a base data format has several
of advantages: it is simple to inspect and debug, extendible,
can store meta-data and can be serialized to a JSON format.

Annotation layers. The outcome of most NLP opera-
tions can be seen as different annotation layers in the orig-
inal text. ESTNLTK stores each layer as a list of non-
overlapping regions, defined by start and end positions. The
lists are stored as dictionary elements identified by unique
layer names.
There are two types of annotations. A simple annotation
has only a single start-end position pair and is used to de-
note sentences, words, named entities and other annotations
made up of a single continuous area. Multi-region annota-
tions can have several start-end position pairs. They are
used to denote clauses and verb chains, which in Estonian
can allocate several non-adjacent regions in a sentence.
Each annotation is a dictionary, which in addition to com-
pulsory start and end attributes can store any kind of
relevant information. For example, named entity layer an-
notations have label attribute denoting whether the an-
notation marks a location, organisation or a person. Words
layer annotations store a list of morphological analysis vari-
ants, where each one is a dictionary containing a lemma,
form, part-of-speech tag and other morphological attributes
of Estonian words.
Users can create custom annotation layers simply by defin-
ing new Text dictionary elements. Of course, using re-
served layer names used by ESTNLTK is not allowed.
Users can also extend existing layers and add new attributes
as long as the attribute names are unique.

Dependency management. The ESTNLTK NLP tools
require specific preconditions to be satisfied before the de-
sired operations can be performed. These dependencies are
depicted in Figure 1. Whether a dependency is satisfied or
not, can be answered by looking directly at the dictionary
contents of the Text class. This is exactly, what the code
does, when the user requests a certain resource. In case the
resource is not available, the code will execute the opera-
tion that can provide the resource. This operation in turn
checks if all of its dependencies are available and recur-
sively executes necessary operations to provide the missing
resources.

1. paragraph tokenization

5. named entity recognition2. sentence tokenization

5. clause detection

4. morphological analysis

3. word tokenization 5. temporal expressions

6. verb chain detection

5. grammars

Figure 1: Text-processing utilities in ESTNLTK. Numbers
and lines denote the order and dependencies between the
operations.

In case of a newly initiated Text instance, requesting any
non-trivial resource executes large portions of the pipeline.
However, consequent calls to the same resource only re-
quire few dictionary lookups later.

Overriding standard operations. ESTNLTK comes
with reasonable default behaviour for all built-in opera-
tions, but it may be desirable to override this functionality.
For example, the user might require a custom sentence to-
kenizer or an optimised named entity recogniser for some
task. How a specific component can be replaced, is dis-
cussed more thoroughly in Section 4. In simple cases, it is

2461



sufficient to provide replacement components as keyword
arguments to the Text constructor. However, miscella-
neous use cases may benefit from subclassing the Text
class and develop the custom behaviour directly into it.

Text segmentation. It is often better to process texts in
smaller chunks if smaller pieces represent the problem we
are solving better or the text is just too big to process as a
whole. This can be achieved with the split_by method.
The method takes in a name of an annotation layer and cre-
ates a list of Text instances based on the regions defined in
the annotations. The number of the resulting texts is equal
to the total number regions in the original annotation layer.
As multi-layer annotations can define more than a single
region, this number can be greater than the number of an-
notations.
All annotation layers are preserved in this process, but the
annotations themselves are divided between the resulting
Text instances. As annotations may define one or more
regions, they can end up in more than a single piece. In such
cases, only the regions belonging to the piece will appear in
the annotation, although other attributes are preserved.

Comparison with alternatives. Note that layers can be
embedded directly to the textual output format. This has
been the traditional way for Estonian NLP tools. Although
it makes it easy to write shell programs for analysis work-
flows, it is brittle and restricting. A small change in an
output format may cause subtle errors and parsing routines
are needed to do unexpected analysis steps. The second
alternative is to store the layer information in a separate
index object that is shared by many documents. This can
significantly speed up certain search operations, as linear
scan over all documents can be replaced with simple index
lookup. However, the right structure of the index object
depends on a particular task and is wasteful for online pro-
cessing of documents. Hence, ESTNLTK uses this alter-
native only for handling large document collections where
the creation index objects justified and the potential list of
search terms are known upfront.

4. Standard NLP Tasks
In this section, we will discuss the rationale and the de-
sign tradeoffs of each standard NLP task. The ESTNLTK
standard tasks are paragraph, sentence and word tokeniza-
tion, morphological analysis, clause detection, named en-
tity recognition and temporal time expression detection.
These tools depend on each other and form a dependency
graph, which can be seen in Figure 1.

Tokenization. Text tokenization tasks are the most basic
steps of any NLP pipeline. Paragraph tokenization is use-
ful when texts are longer and contain more than a single
paragraph, such as news articles. By default, ESTNLTK
assumes the paragraphs are separated by a single empty
line (two newline characters). Sentence tokenization uses
a pre-trained NLTK punkt tokenizer for Estonian, which
is trained on a corpus of news articles. For word tokeniza-
tion, we use a modified NLTK WordPunctTokenizer
that makes a tradeoff between traditional word tokenization
practices and compatibility with other NLP tools.

Note that word tokenization depends on sentence tokeniza-
tion, which in turn depends on paragraph tokenization. Al-
though any of the tokenizers can be actually executed on
raw plain text, they might not be consistent. Thus, the
Text class enforces consistency by performing sentence
tokenization on each individual paragraph and word tok-
enization on each individual sentence.
To customise tokenisation, one needs to implement an
interface defined by NLTK’s StringTokenizer class
and pass the tokeniser as paragraph_tokenizer,
sentence_tokenizer or word_tokenizer argu-
ment to the constructor of the Text class.

Morphological analysis. Morphological analysis is a
core part of any text-processing pipeline, as it serves needs
of many higher level tasks. ESTNLTK provides a wrap-
per API built on top of the VABAMORF, a C++ library for
morphological analysis for Estonian (Kaalep and Vaino,
2001). Full text analysis can be performed using the func-
tion tag_analysis of the class Text. It identifies word
lemmas, suffixes, endings, parts of speech, forms (e.g. the
case of a noun, the tense and the voice of a verb). These bits
of information can be accessed via the corresponding prop-
erties of the class Text. When a word has multiple mor-
phological interpretations, VABAMORF will try to perform
disambiguation. If disambiguation fails, multiple analysis
variants will be reported.

Morphological synthesis and spell checking. To syn-
thesise a particular form of a word, ESTNLTK provides a
function synthesize. Given a word and some criteria, it
generates all possible inflections that satisfy these criteria.
The spell-corrector allows to identify misspelled words and
provides suggestions for correction through the properties
spelling and spelling_suggestions of the class
Text. As the synthesis and spell check functions are built
on top of VABAMORF, they inherit strengths and shortcom-
ings of VABAMORF counterpart functions.

Named entity recognition. Named entity recognition
(NER) is often used as an important subtask in informa-
tion retrieval, opinion mining and semantic indexing. The
class Text provides default algorithms for recognising
persons, organisations and locations. These algorithms
can be invoked by calling tag_named_entities. The
call will trigger the whole text-processing pipeline, includ-
ing tokenization, morphological analysis if these analyses
have not been performed before. The first invocation of
tag_named_entities will additionally load statistical
models and store them in the global scope for future use.
NER algorithms in ESTNLTK are reimplementations of the
methods described by Tkachenko et al (Tkachenko et al.,
2013). The main difference lies in the implementation de-
tails. The original NER tool uses conditional random fields
training algorithm (Lafferty et al., 2001) implemented
in a Java package MALLET (McCallum, 2002), whereas
the algorithms in ESTNLTK use the C++ CRFSUITE li-
brary (Okazaki, 2007). Both algorithms achieve reasonable
accuracy for Estonian text. The C++ version just provides
a better integration with Python.
Extracted named entities, their categories and lo-
cations in the text can be accessed using proper-

2462



ties named_entites, named_entity_labels and
named_entity_spans. The same information is also
accessible through the layers named_entities and
words. The layer named_entities stores information
on entity categories and their positions in text. The layer
word carries individual token labels in BIO format (Tjong
Kim Sang and De Meulder, 2003).
The default models have been pre-trained to recognise a
fixed set of entity-types in generic news articles. It is also
possible to customise NER algorithms by providing a new
training corpus consisting of annotated sentences. For this
purpose, the class estnltk.ner.NerTrainer imple-
ments necessary feature extraction logic and provides a
training interface. To train a new CRFSUITE model, a user
must provide a training corpus and a custom configuration
module, which lists feature extractors and feature templates
used for detecting named entities. The resulting model can
be used with a class estnltk.ner.NerTagger to ex-
tract entities from text.

Temporal expression tagging. In many information ex-
traction applications, recognition and normalisation of
time-referring expressions (timexes) can significantly im-
prove accuracy. We can essentially discard sentences that
describe events from irrelevant time-periods. Sometimes,
the exact time of an event is the desired information.
The ESTNLTK package integrates AJAVT, a rule-based
temporal expression tagger for Estonian (Orasmaa, 2012).
The tagger recognises timexes and normalises semantics
of these expressions into a standard format based on
TimeML’s TIMEX3 (Pustejovsky et al., 2003). Results
of the tagging can be accessed via Text object’s property
timexes.
By default, expressions with relative semantics (such as eile
’yesterday’ or reedel ’on Friday’) are resolved with respect
to the execution time of the program. This default can also
be overridden by providing creation_date argument
on initialisation of the Text object, after which relative
expressions are resolved with respect to the argument date.
Although the current version of the tagger is tuned for pro-
cessing news texts, our evaluation has shown that the cur-
rent configuration of rules obtains high accuracy levels also
on other types of formal written language texts, such as on
law texts, and on parliament transcripts.
Details on the implementation of the tagger and its evalua-
tion are provided in (Orasmaa, 2012).

Clause boundary detection. Clause boundary detection
can be used to split long and complex sentences into smaller
segments (clauses). As such, it can be useful in ma-
chine learning experiments offering a linguistically moti-
vated “window” for feature extraction. In linguistic analy-
sis, clause boundary detection offers a context form which
phrase boundaries or word collocations can be detected.
The clause tagging in ESTNLTK is a re-implementation of
the clause detector module introduced by Kaalep and Muis-
chnek (Kaalep and Muischnek, 2012). It recognises con-
secutively ordered clauses (e.g. [Ta istus nurgalauda ja]
[tellis kohvi.] ’[She sat on the corner table and] [ordered a
coffee.]’) and clauses embedded within other clauses (e.g.
[Mees[, keda seal nägime,] lahkus kiirustades.] ’[The man

[who we saw there] left in a hurry.]’).1 Calling the property
clause_texts performs clause tagging along with all
the dependent computations such as paragraph, sentence,
word tokenization and morphological analysis. Clauses are
stored as multi-region annotation in the clauses layer.

Because commas are important clause delimiters in Esto-
nian, the quality of the clause segmentation may suffer due
to missing commas. We have improved the original clause
boundary detection algorithm, adding a special mode in
which the program is more robust to missing commas.
In this mode, we apply the regular segmentation rules aug-
mented with the following general heuristic: if a conjunc-
tion word (such as et ’that, for’, sest ’because’, kuid ’al-
though’, millal ’when’, kus ’where’, kuni ’as long as’) is
in the context where it is preceded and followed by a ver-
bal centre of a clause, but it is not preceded by a comma
(although it should be, according to Estonian orthographic
conventions), we mark a clause boundary at the location
of missing comma. The heuristic has a number of excep-
tions, which account for ambiguous usages of the specific
conjunction words.
For example, kuni also means ’to’, and so we have to ex-
clude its usage in range-denoting phrases (such as in 5 kuni
7 kilomeetrit ’5 to 7 kilometres’) from being marked as a
clause boundary. We have also written exceptions to ex-
clude frequently used verbal idiomatic expressions, such as
vaat et ’almost, nearly’, lit. ’look that (until)’, from being
detected as clause boundaries.
We believe that this new mode can be useful for improv-
ing clause segmentation quality on non-standard language
(such as the Internet language), where comma usage often
does not follow the orthographic rules.

NLP task Affected layers
tokenize_paragraphs() paragraphs
tokenize_sentences() sentences
tokenize_words() words
tag_analysis() words
tag_clauses() words, clauses
tag_named_entities() words, named_entities
tag_timexes() timexes
tag_verb_chains() verb_chains

Table 1: Annotation layers affected by ESTNLTK’s stan-
dard NLP tasks.

5. Additional Analysis Tools
Besides standard NLP components ESTNLTK contains ad-
ditional tools which are less commonly used or are less ma-
ture compared to the standard components.

WordNet. The ESTNLTK package comes together with
the Estonian Wordnet developed under the EuroWord-
Net project (Ellman, 2003). Provided interface is mostly
NLTK-compatible and enables to query for synsets, rela-
tionships and compute similarities between the synsets. To

1Clause boundaries in the examples above are indicated by
square brackets surrounding the clauses.

2463



>> text = Text(’Londoni lend, mis pidi täna hommikul kell 4:30 Tallinna saabuma,
hilineb mootori starteri rikke tõttu ning peaks Tallinna jõudma ööl vastu
homset kell 02:20.’)

>>> text.named_entities
[u’London’, u’Tallinn’, u’Tallinn’]
>>> text.clause_texts
[u’Londoni lend hilineb mootori starteri rikke tõttu ning’,
u’, mis pidi täna hommikul kell 4:30 Tallinna saabuma,’,
u’peaks Tallinna jõudma ööl vastu homset kell 02:20.’]
>>> text.timex_values
[u’2016−02−28T04:30’, u’2016−02−29T02:20’]
>>> text.verb_chain_texts
[u’hilineb’, u’pidi saabuma’, u’peaks jõudma’]

Figure 2: Example of standard NLP tasks in Estnltk applied to a sentence “Londoni lend, mis pidi täna hommikul kell
4:30 Tallinna saabuma, hilineb mootori starteri rikke tõttu ning peaks Tallinna jõudma ööl vastu homset kell 02:20.” (eng.
“The flight from London, which was scheduled to land to Tallinn today morning at 4:30, is late due to an engine starter
malfunction and is about to arrive to Tallinn tomorrow night at 02:00.”). The example has been run on date 2016-02-28 (so
timex values have been calculated with respect to that date).

access EuroWordNet database files, we use a Python mod-
ule Eurown (Kahusk, 2010).

Verb chain detection. Estonian language is rich in verb
chain constructions where the meaning of the content verb
is significantly altered by other parts of the chain. Hence,
proper detection and semantic normalisation of such con-
structions is essential in many practical applications. It al-
lows us to detect negated clauses in sentiment analysis, to
distinguish actual events from events marked with uncer-
tainty in event factuality analysis, and to handle verb chains
as a single translation unit in machine translation experi-
ments.
The corresponding module in ESTNLTK addresses single-
word main verbs and the following verb chain construc-
tions: regular grammatical constructions (negation and
compound tenses), catenative verb constructions (such as
modal verb + infinite verb, e.g. Ta võib meid homme külas-
tada ’He might visit us tomorrow’, and finite verb + infinite
verb constructions in general, e.g. Ta unustas meid külas-
tada ’He forgot to visit us’), and verb+nominal construc-
tions which subcategorise for infinite verbs (e.g. Ta otsis
võimalust meid külastada ’He sought for opportunity to
visit us.’). Detected verb chains are available via property
verb_chains of the Text object. Grammatical features
of the finite verb (polarity, tense, mood and voice) are pro-
vided as attributes of a verb chain object.
The module has been implemented in a rule-based man-
ner. It firstly uses morphological information (informa-
tion about finite verbs) and clause boundary information to
detect grammatical main verb constructions, and then re-
lies on subcategorisation information listed in lexicons to
further extend the grammatical main verbs into catenative,
and/or verb+nominal+infinite verb constructions. Subcate-
gorisation lexicons were derived by semi-automatic analy-
sis of the Balanced Corpus of Estonian2.

2http://www.cl.ut.ee/korpused/
grammatikakorpus/index.php

Word2Vec models. Recent advances in machine learning
provide high dimensional word embeddings which capture
distributed semantics of words and phrases. These have
been successfully applied in machine translation and syn-
onym detection. Thus, we have included experimental sup-
port for word2vec models (Mikolov et al., 2013), trained
on the Estonian Reference Corpus3. The corpus consists of
16M sentences, 55M words and 3M types. We provide sep-
arate models trained on the original or on the lemmatised
version of the corpus. For training, we used word2vec soft-
ware4. Resulting models can be used with the word2vec
command line tools or a Python library gensim5.

Efficient document storage. Many modern text analysis
methods require a large collection of documents as an input
to be bootstrapped. This process is usually very resource
intensive. In most cases, the computational complexity can
be significantly reduced by providing an efficient search in-
terface. Most storage solutions provide only efficient key-
word search for text whereas operations in ESTNLTK re-
quire efficient search over layers. Therefore, we have in-
cluded a Database class that uses NoSQL database Elas-
tic Search6 to store and retrieve Text objects.

Visualisation tools. Many NLP applications produce text
annotations. Visualisation of these annotations is often the
best way convey the analysis results to the end user. The
PrettyPrinter class can be used to highlight text frag-
ments according to annotations. The class generates valid
HTML markup together with CSS files that can be used for
developing Web front ends.
There are eight aesthetics that can be used for visualisa-
tion: text colour, text background, font, font weight, nor-
mal/italics, normal/underline, text size, character tracking.
The most simple use case involves mapping a layer to an

3http://www.cl.ut.ee/korpused/segakorpus/
4https://code.google.com/p/word2vec/
5https://radimrehurek.com/gensim/
6https://www.elastic.co/products/

elasticsearch

2464

http://www.cl.ut.ee/korpused/grammatikakorpus/index.php
http://www.cl.ut.ee/korpused/grammatikakorpus/index.php
http://www.cl.ut.ee/korpused/segakorpus/
https://code.google.com/p/word2vec/
https://radimrehurek.com/gensim/
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/elasticsearch


aesthetic and then rendering it as HTML and CSS. As a re-
sult, all regions in the layer will obtain the same markup,
for instance have a green background. It is also possible
to decorate regions according to annotations, e.g., colour
verbs green and nouns red. For that one must specify map-
ping between annotation values and aesthetic values.

Grammar extractor. In many information retrieval and
text classification tasks one must first recognise text frag-
ments with a certain structure, such as measurements in
medical text or trigger phrases in sentiment mining. Gram-
mar extractor module allows to specify such phrases in term
of layers using finite grammar.

6. Performance
For practical uses, it is important to have idea of the per-
formance characteristics of individual components of the
framework. Thus, we benchmarked ESTNLTK using a
sample of 500 news articles picked randomly from the Es-
tonian Reference Corpus7. The sample contains 167,180
tokens. We run benchmarks using Python3.4 on a Linux
Mint desktop with the Intel Core i5 processor and 4GB of
RAM. Table 2 illustrates the results. Note that the abso-
lute values should be taken with a grain of salt, since they
largely depend on a particular benchmark environment.

NLP task tokens/second
Tokenization 97,095
Morphological analysis 3,913
NER 2,550
Temporal expression tagging 1,905
Clause boundary detection 5,271
Verb chain detection 11,658

Table 2: Performance of ESTNLTK core components. The
reported performance relates to the individual component
alone and does not account for execution time of its depen-
dencies.

7. Source Code
ESTNLTK is implemented in Python and supports lan-
guage versions 2.7 and 3.4. Under the hood, ESTNLTK
uses a number of external components:

vabamorf, a C++ library for morphological analysis, dis-
ambiguation and synthesis, licensed under LGPL.
https://github.com/Filosoft/vabamorf

python-crfsuite, a python binding to CRFSUITE C++ li-
brary. python-crfsuite is licensed under MIT license,
CRFSUITE library is licensed under BSD license.

osalausestaja, a Java-based clause segmenter for Esto-
nian, licensed under GPL version 2.
https://github.com/soras/osalausestaja

Ajavt, a Java-based temporal expression tagger for Esto-
nian, licensed under GPL version 2.
https://github.com/soras/Ajavt

7http://www.cl.ut.ee/korpused/segakorpus/
index.php

The source code is hosted online on github.com.
ESTNLTK can be installed directly from GitHub or, alter-
natively from the Python Package Index (PyPi) using com-
mand pip install estnltk.
ESTNLTK source code is licensed under a GNU GPL ver-
sion 2+. It permits to use ESTNLTK to build proprietary
software requiring the entire source code of the derived
work to be made available to end users.

8. Conclusions
We presented ESTNLTK, a Python library which aims to
organise Estonian NLP resources into a single framework.
Although ESTNLTK is right in its infancy, it has already
seen a number of uses, including online media monitor-
ing, digital book indexing and client complaint categorisa-
tion. Recently, ESTNLTK for the first time has been used
in teaching a NLP course in Estonian at the University of
Tartu. We believe that in the future ESTNLTK will find
even more applications.

9. Acknowledgements
ESTNLTK has been funded by Eesti Keeletehnoloogia Ri-
iklik Programm under the project EKT57, and supported
by Estonian Ministry of Education and Research (grant
IUT 20-56 "Computational models for Estonian"). We
are grateful to our code contributors: Heiki-Jaan Kaalep,
Neeme Kahusk, Karl-Oskar Masing, Andres Matsin, Siim
Orasmaa, Timo Petmanson, Annett Saarik, Alexander
Tkachenko, Tarmo Vaino and Karl Valliste.

10. References
Apache, U. (2010). Unstructured information management

applications. http://uima.apache.org. Online;
accessed 20-October-2015.

Bird, Steven, E. L. and Klein, E. (2009). Natural Language
Processing with Python. O’Reilly Media Inc.

Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.,
Aswani, N., Roberts, I., Gorrell, G., Funk, A., Roberts,
A., Damljanovic, D., Heitz, T., Greenwood, M. A., Sag-
gion, H., Petrak, J., Li, Y., and Peters, W. (2011). Text
Processing with GATE (Version 6).

Cutting, D., Busch, M., Cohen, D., Gospodnetic, O.,
Hatcher, E., Hostetter, C., Ingersoll, G., McCandless,
M., Messer, B., Naber, D., et al. (2004). Apache
lucene. https://lucene.apache.org/. Online;
accessed 20-October-2015.

Řehůřek, R. and Sojka, P. (2010). Software framework for
topic modelling with large corpora.

Ellman, J. (2003). Eurowordnet: A multilingual database
with lexical semantic networks: Edited by piek vossen.
kluwer academic publishers. 1998. isbn 0792352955.
Kluwer Academic Publishers.

Kaalep, H. J. and Muischnek, K. (2012). Robust clause
boundary identification for corpus annotation. In LREC,
pages 1632–1636.

Kaalep, H.-J. and Vaino, T. (2001). Complete morpho-
logical analysis in the linguist’s toolbox. Congressus
Nonus Internationalis Fenno-Ugristarum Pars V, pages
9–16. The corresponding C++ code is available from
https://github.com/Filosoft/vabamorf.

2465

https://github.com/Filosoft/vabamorf
https://github.com/soras/osalausestaja
https://github.com/soras/Ajavt
http://www.cl.ut.ee/korpused/segakorpus/index.php
http://www.cl.ut.ee/korpused/segakorpus/index.php
github.com
http://uima.apache.org
https://lucene.apache.org/
https://github.com/Filosoft/vabamorf


Kahusk, N. (2010). Eurown: an eurowordnet module for
python. In Principles, Construction and Application of
Multilingual Wordnets. Proceeding of the 5th Global
Wordnet Conference: The 5th International Conference
of the Global WordNet Association (GWC–2010), pages
360–364.

Lafferty, J., McCallum, A., and Pereira, F. C. (2001). Con-
ditional random fields: Probabilistic models for segment-
ing and labeling sequence data.

Loria, S. (2014). Textblob: Simplified text processing.
TextBlob. Np.

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J.,
Bethard, S. J., and McClosky, D. (2014). The Stan-
ford CoreNLP natural language processing toolkit. In
Proceedings of 52nd Annual Meeting of the Association
for Computational Linguistics: System Demonstrations,
pages 55–60.

McCallum, A. K. (2002). Mallet: A machine learning
for language toolkit. http://mallet.cs.umass.
edu.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013).
Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781.

Okazaki, N. (2007). Crfsuite: a fast implementa-
tion of conditional random fields (crfs). http://

www.chokkan.org/software/crfsuite/. On-
line; accessed 20-October-2015.

Orasmaa, S. (2012). Automaatne ajaväljendite tuvas-
tamine eestikeelsetes tekstides (Automatic Recognition
and Normalization of Temporal Expressions in Estonian
Language Texts). Eesti Rakenduslingvistika Ühingu aas-
taraamat, (8):153–169.

Pustejovsky, J., Castano, J. M., Ingria, R., Sauri, R.,
Gaizauskas, R. J., Setzer, A., Katz, G., and Radev, D. R.
(2003). Timeml: Robust specification of event and tem-
poral expressions in text. New directions in question an-
swering, 3:28–34.

Tjong Kim Sang, E. F. and De Meulder, F. (2003). In-
troduction to the conll-2003 shared task: Language-
independent named entity recognition. In Proceedings
of the seventh conference on Natural language learning
at HLT-NAACL 2003-Volume 4, pages 142–147. Associ-
ation for Computational Linguistics.

Tkachenko, A., Petmanson, T., and Laur, S. (2013).
Named entity recognition in estonian. In Proceedings of
the Workshop on Balto-Slavic NLP, page 78. Association
for Computational Linguistics.

2466

http://mallet.cs.umass.edu
http://mallet.cs.umass.edu
http://www.chokkan.org/software/crfsuite/
http://www.chokkan.org/software/crfsuite/

	Introduction
	Related Work
	Design Principles
	Standard NLP Tasks
	Additional Analysis Tools
	Performance
	Source Code
	Conclusions
	Acknowledgements
	References

