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Abstract
We present the dict to 4lang tool for processing entries of three monolingual dictionaries of English and mapping definitions to
concept graphs following the 4lang principles of semantic representation introduced by (Kornai, 2010). 4lang representations are
domain- and language-independent, and make use of only a very limited set of primitives to encode the meaning of all utterances. Our
pipeline relies on the Stanford Dependency Parser for syntactic analysis, the dep to 4lang module then builds directed graphs of
concepts based on dependency relations between words in each definition. Several issues are handled by construction-specific rules that
are applied to the output of dep to 4lang. Manual evaluation suggests that ca. 75% of graphs built from the Longman Dictionary are
either entirely correct or contain only minor errors. dict to 4lang is available under an MIT license as part of the 4lang library
and has been used successfully in measuring Semantic Textual Similarity (Recski and Ács, 2015). An interactive demo of core 4lang
functionalities is available at http://4lang.hlt.bme.hu.
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1. Introduction
We present the dict to 4lang tool for automati-
cally building graphs in the style of the 4lang concept
dictionary (Kornai et al., 2015) using entries from var-
ious explanatory dictionaries of English. Our pipeline
maps the output of a state-of-the-art dependency parser
to subgraphs over concept nodes corresponding to the
words of each definition. The resulting graphs have
been used successfully for measuring semantic similar-
ity (Recski and Ács, 2015) and also allows us to map
virtually all English text to the 4lang representation.
The full pipeline is available for download under an MIT
license at http://github.com/kornai/4lang,
graphs created from three major dictionaries (Long-
man, Collins, en.wiktionary) are also freely
accessible at http://people.mokk.bme.hu/
˜recski/4lang/graphs. An online demo
of core 4lang functionalities is available at
http://4lang.hlt.bme.hu.
This paper is structured as follows: Section 2 provides a
short introduction to graph-based representations of mean-
ing, followed by an overview of the 4lang formalism and
its basic principles of semantic representation in Section 3.
Section 4 presents the dict to 4lang tool, including the
mapping from Stanford dependencies to 4lang configura-
tions, and reports some figures characterizing the graphs
created from each dataset. Section 5 mentions some errors
typical in the output and discusses possible solutions, Sec-
tion 6 presents the results of manual evaluation. Section 7
presents a method for reducing the vocabulary of newly
built 4lang-graphs by replacing nodes with their defini-
tions. Finally, Section 8 discusses some applications of the
pipeline.

2. Background
Directed graphs of concepts have been used to represent
the meaning of words, phrases, and utterances by several

influential systems in the second half of the 20th century,
including the Semantic Memory Model of (Quillian, 1968)
or the KL-ONE system (Brachman and Levesque, 1985)
and its descendants (Moser, 1983; Brachman et al., 1983).
More recently, Abstract Meaning Representation (AMR)
(Banarescu et al., 2013) was proposed as a formalism for
representing meaning using directed graphs. Tools for gen-
erating AMRs from raw text have followed (Vanderwende
et al., 2015; Peng et al., 2015; Pust et al., 2015), and AMRs
have since been applied to a variety of NLP tasks (Pan
et al., 2015; Liu et al., 2015). The 4lang theory of se-
mantic representation (Kornai, 2010; Kornai et al., 2015),
only the formalism of which can be summarized in this pa-
per, is most similar to Quillian’s model. Like the Mem-
ory Model, 4lang maps words to concepts that are de-
fined by networks of other concepts, and allows only a
very small set of relationships in such networks. 4lang
differs in many aspects from AMRs, most notably by be-
ing language-independent and by limiting severely the total
number of representational primitives.
The tens of thousands of graphs built by dict to 4lang
provide an important building block in the broader task of
assigning 4lang representations to utterances of arbitrary
size, which in turn can be used in a variety of applica-
tions in computational semantics. An early experiment ap-
plying 4lang to domain-specific understanding of natural
language is presented in (Nemeskey et al., 2013), a more
recent application to measuring the semantic similarity of
sentences is documented in (Recski and Ács, 2015).

3. The 4lang formalism
4lang is both a formalism for representing meaning via
directed graphs of concepts and the name of a manually
built lexicon of such representations for ca. 2700 words
1. A formal presentation of the system is given in (Kornai

1https://github.com/kornai/4lang/blob/master/4lang
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Figure 1: 4lang definition of bird.

et al., 2015), the theoretical principles underlying 4lang
are presented in (Kornai, 2010), we shall provide a short
overview only.
4langmeaning representations are directed graphs of con-
cepts with three types of edges. The most common is the
0-edge, which represents attribution (dog 0−→ friendly);
the IS A relation (hypernymy) (dog 0−→ animal); and
unary predication (dog 0−→ bark). Edge types 1 and
2 connect binary predicates to their arguments, e.g.
cat

1←− catch
2−→ mouse). There are no ternary or higher

arity predicates, see (Kornai, 2012). A typical definition in
the 4lang dictionary can be seen in Figure 1.
4lang is agnostic to parts-of-speech and voice, e.g. it
makes no distinction between the words freeze (N), freeze
(V), freezing, and frozen. Since attribution and (unary)
predication are also treated alike, there is also no difference
made between the meanings of water freezes and frozen wa-
ter, both of which are represented by water 0−→ freeze.

4. Building definition graphs
The dep to 4lang module implements a mapping from
the output of the Stanford Dependency Parser (DeMarneffe
et al., 2006) to 4lang-subgraphs over concept nodes cor-
responding to words of a sentence. The dict to 4lang
tool extends this functionality by including parsers for three
monolingual dictionaries of English – the Longman Dictio-
nary of Contemporary English (LDOCE) (Bullon, 2003),
the Collins COBUILD dictionary (Sinclair, 1987) and also
database dumps of the English Wiktionary2 – and some pre-
processing steps that handle issues specific to each dataset.
To process the output of the Stanford Parser we created
manually a mapping from relations to 4lang graph con-
figurations (presented in Table 1).
To map words to 4lang concepts we first lemmatized them
using the hunmorph morphological analyzer (Trón et al.,
2005) and the morphdb.en database. We use the ROOT
relation in the parser’s output to identify the head of the
definition phrase and we add a 0-edge leading to the match-
ing concept from the headword’s node. Finally we added
edges to the graph based on the above mapping. The result-
ing graphs are the new (approximate) 4lang definitions of
each concept; an example is shown in Figure 2. Here the
system correctly added edges based on “a large wild ani-
mal that has yellow and black lines on its body” but failed

2https://dumps.wikimedia.org/enwiktionary/

Dependency Edge

amod

w1
0−→ w2

advmod
npadvmod
acomp
dep
num
prt

appos w1
0 0←→ w2

nsubj

w1
1−→ w2

csubj
xsubj
agent

dobj

w1
2−→ w2

pobj
nsubjpass
csubjpass
pcomp
xcomp

poss
w2

1←− HAS
2−→ w1prep of

tmod w1
1←− AT

2−→ w2

prep with w1
1←− INSTRUMENT

2−→ w2

prep without w1
1←− LACK

2−→ w2

prep P w1
1←− P

2−→ w2

Table 1: Mapping from dependency relations to 4lang
subgraphs

Figure 2: Definition built from: tiger - ‘a large wild animal
that has yellow and black lines on its body and is a member
of the cat family’

to process the remainder of the definition “and is a member
of the cat family”. A future version of our pipeline that is
still under development will also map certain combinations
of dependencies, in this case the triplets cop(member, is)
and rcmod(animal, member) will together trigger the edge
animal

0−→ member. Finding the right representation for
noun compounds such as cat family remains an unsolved
problem, although there are plans to implement noun com-
pound analysis in future versions of the Stanford Parser
(De Marneffe and Manning, 2008).
The resulting sets of definition graphs for
each dataset can be freely downloaded
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from http://people.mokk.bme.hu/
˜recski/4lang/graphs/ as serialized python
objects (.pickle files) that can be loaded by the 4lang
module. An interactive demo is also available under
http://4lang.hlt.bme.hu. Table 2 shows for each
dataset the total number of (non-empty) graphs and the
average number of nodes in a graph.

Dict # graphs av. nodes

LDOCE 24 799 6.1

Collins 45 311 4.9

en.wikt 120 670 5.4

Table 2: Basic figures for each dataset

5. Issues
While the above mapping yields good results for most dic-
tionary definitions, there are several structures that will
currently result in incorrect graphs and need more so-
phisticated treatment than a simple mapping from depen-
dency relations to 4lang edges. Heads of the relations
nsubj, csubj, etc. may be unary or binary predicates,
which require different treatment in 4lang, e.g. the re-
lation nsubj(eat, wombat) should map to wombat 1←− eat

while nsubj(smile, wombat) warrants wombat 0−→ smile.
A possible way out could be adding the latter edge for
all occurences of nsubj, csubj, etc., claiming that
the 0-relation includes all subject-predicate relations, and
adding a 1-edge only in the presence of a direct object (e.g.
dobj(eat, leaf)). This strategy would map the sentences The
wombat is eating and The wombat is eating a leaf to the
graphs wombat 0−→ eat and wombat 1 0←→ eat

2−→ leaf,
respectively.
Dependencies related to quantification (quantmod, etc.) are
not handled yet, nor are determiners or negation. Non-finite
verbal modifiers of NPs (vmod) are also untreated, since
the dependencies don’t tell us if the nouns are subjects or
objects of the verb in question (compare The man climb-
ing the tree was tall and The tree climbed by the man was
tall, which trigger vmod(man, climb) and vmod(tree, climb)
respectively), although these cases might prove simple to
disambiguate based on POS-tags in the future.
Finally, the largest number of errors are caused by incor-
rect parse trees, many of which are assigned to definitions
that are truly ambiguous. An example is the PP attachment
problem, resulting in our incorrect graph for basement in
Figure 4, built from the Longman definition a room or area
in a building that is under the level of the ground. Many
such ambiguities are easily resolved by humans based on
world knowledge (in this case e.g. that buildings with some
underground rooms are more common than buildings that
are entirely under the ground, if the latter can be called
buildings at all), and efforts to include distributional mean-
ing models in parsing have been reported to improve accu-
racy on such structures (Socher et al., 2013).
One frequent class of parse errors involve constituents mod-
ifying a coordinated phrase, which are often analysed as

Figure 3: Definition graph built from: casualty - someone
who is hurt or killed in an accident or war

Figure 4: Incorrect definition graph built from: basement
- a room or area in a building that is under the level of the
ground.

modifying only one of the coordinated elements, e.g. in
casualty - someone who is hurt or killed in an accident or
war. We introduced a workaround to deal with these struc-
tures: in a postprocessing step edges in the 4lang graph
are copied between coordinated words (see Figure 3).
Finally, a notable error class consists of dictionary defi-
nitions that have an unusually complex phrase structure.
The majority of headwords in each of our datasources are
defined using a single phrase, e.g. koala is defined in
LDOCE as an Australian animal like a small grey bear with
no tail that climbs trees and eats leaves. In a much smaller
number of cases, a full sentence containing the headword is
used in definitions, e.g.:

• playback - the playback of a tape that you have
recorded is when you play it on a machine in order
to watch or listen to it

• indigenous - indigenous people or things have always
been in the place where they are, rather than being
brought there from somewhere else

• ramshackle - a ramshackle building or vehicle is in
bad condition and in need of repair

Such full sentences yield a higher number of dependency
relations, resulting in a denser definition graph with a
higher number of erroneous edges.

6. Evaluation
To perform quantitative evaluation of our pipeline, we man-
ually inspected a small output sample, graphs built for 20
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words that were chosen randomly from the Longman Dic-
tionary3. When grouping the graphs by quality we found
that 11 graphs were perfect or near-perfect definitions (see
e.g. Figure 5) and a further 4 were mostly accurate, with
only minor details missing or an incorrect relation present
in addition to the correct ones. While such a small sam-
ple obviously cannot lead us to the conclusion that 75% of
graphs built by dict to 4lang are of acceptable qual-
ity, these results are nevertheless promising. In a second
round of evaluation we inspected all intermediate represen-
tations of the 20 definitions and grouped them based on the
source of errors in the output. We found that 6 out of the 9
graphs that had errors at all were mostly affected by parser
errors, while 3 were cases of the non-standard definitions
discussed in Section 5.

Figure 5: Graph constructed from the definition of Zen: a
kind of Buddhism from Japan that emphasizes meditation

7. Expansion
The 4lang dictionary contains by design all words of
the Longman Defining Vocabulary (LDV, (Boguraev and
Briscoe, 1989)). This allows us to map the words of each
Longman definition to concepts that have been defined
manually. This allows us to perform an expansion step on
graphs built using dict to 4lang: each node is replaced
by its definition graph in the 4lang dictionary until only
those that belong to some basic vocabulary remain. That
such vocabularies (Feedback Vertex Sets (FVS) of the di-
rected graphs containing all 4lang definitions) exist and
are significantly smaller than e.g. the 4lang dictionary it-
self was shown in (Kornai et al., 2015). In particular, defini-

3The 20 words in our sample, selected randomly using GNU
shuf were the following: aircraft, characteristic, clothesline,
contrived, cypress, dandy, efface, frustrate, incandescent, khaki,
kohl, lizard, nightie, preceding, residency, rock-solid, scant, trans-
ference, whatsit, Zen

tions in the 4lang dictionary can be stated using no more
than 129 primitives.

8. Applications
Since our pipeline works on any English sentence, we have
also created an extension which processes running text, cre-
ates a 4lang graph for each sentence, then merges nodes
with the same label and also nodes that refer to the same en-
tity according to the Stanford Coreference Resolution sys-
tem (Lee et al., 2011). While limited by the quality of pars-
ing, coreference resolution, and the shortcomings of our
method described in Section 5, the resulting system is ca-
pable of creating a graph representation of the meaning of
any English text.
The 4lang definitions built from the Longman Dictionary
using our pipeline have been used successfully in a state-
of-the-art system for measuring semantic similarity of sen-
tence pairs (Recski and Ács, 2015). This system derives
sentence similarity scores from the similarity between pairs
of words, and defines word similarity by measuring the
overlap between 4lang definition graphs for each word,
ranking 11th out of 78 systems on the 2015 Semeval Task
for Semantic Textual Similarity (Agirre et al., 2015).
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Trón, V., Gyepesi, G., Halácsy, P., Kornai, A., Németh, L.,
and Varga, D. (2005). Hunmorph: open source word
analysis. In Martin Jansche, editor, Proceedings of the
ACL 2005 Software Workshop, pages 77–85. ACL, Ann
Arbor.

Vanderwende, L., Menezes, A., and Quirk, C. (2015). An
AMR parser for English, French, German, Spanish and
Japanese and a new AMR-annotated corpus. In Proceed-
ings of NAACL-HLT, pages 26–30.

2624


