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Abstract
Hypernymy relations (those where an hyponym term shares a “isa” relationship with his hypernym) play a key role for many Natural
Language Processing (NLP) tasks, e.g. ontology learning, automatically building or extending knowledge bases, or word sense
disambiguation and induction. In fact, such relations may provide the basis for the construction of more complex structures such as
taxonomies, or be used as effective background knowledge for many word understanding applications. We present a publicly available
database containing more than 400 million hypernymy relations we extracted from the CommonCrawl web corpus. We describe the
infrastructure we developed to iterate over the web corpus for extracting the hypernymy relations and store them effectively into a large
database. This collection of relations represents a rich source of knowledge and may be useful for many researchers. We offer the tuple
dataset for public download and an Application Programming Interface (API) to help other researchers programmatically query the
database.

Keywords: Hearst patterns, hypernym extraction, big data, Web crawling, Application Programming Interface.

1. Introduction

Hypernymy relations are important in many Artificial In-
telligence (AI) and Natural Language Processing (NLP) ap-
plications, and in general in data-intensive applications pro-
cessing large amounts of unstructured and semi-structured
information in order to interpret data and text that are not
already semantically annotated, assigning types to entities
(be it named entities in text, or entities in semi-structured
data) represents a crucial step to understanding the data.
For instance, in Paulheim and Fürnkranz (2012), it has been
shown that adding precise types of instances (in that case
taken from Semantic Web resources such as DBpedia and
YAGO) to a data mining problem can lead to a significantly
improved performance in many data mining tasks. Also
when performing data integration, e.g., of a large collection
of tabular datasets, into a large knowledge base, first un-
derstanding whether the entities in a table are, e.g., cities,
states, or mountains, is a very important step towards a high
quality integration result (Ritze et al., 2015).

While there are quite a few named entity recognition and
disambiguation tools that do serve that purpose and exploit
knowledge bases such as Wikipedia, DBpedia, or Freebase,
a common problem is dealing with the long tail of less
popular entities that are not contained in such knowledge
bases. Most of the existing wide-coverage knowledge bases
have no problems in identifying, e.g., major cities (“New
York is a city”) or celebrities (“Madonna is a singer”), but
they show limitations with respect to small villages and less
known people. However, the potential of web-scale intel-
ligent, data-intensive applications can only be unlocked if
they are capable of dealing with the most prominent enti-
ties, as well as the long tail. Hence, the necessity of extend-
ing existing knowledge bases with hypernymy relations that
cover also the long tail entities.

In this paper we present a novel, open resource consisting
of more than 400 million tuples extracted from the Com-

monCrawl1, each also containing a rich set of attributes
such as: the set of patterns matching the pair, the set of
the pay-level domains on which the patterns were matched,
etc. We released both the dataset and an API (the two can
be downloaded at http://webdatacommons.org/isadb/)
to let other researchers work at large scale in many NLP
task (restricted not only on ontology learning).
The rest of this paper is structured as follows. In Section 3.,
the process of creating the database is described. Section 4.
describes bot the released dataset and Java API to program-
matically access to the tuples database; and in Section 5.,
we trace some conclusions about the released resource/API
and we discuss about the impact on potential new applica-
tions in the field of text understanding.

2. Related work
In the past, many different methods have been developed
for hypernym extraction, ranging from simple lexical pat-
terns (Hearst, 1992; Oakes, 2005) to statistical and machine
learning techniques (Dolan et al., 1993; Caraballo, 1999;
Agirre et al., 2000; Ritter et al., 2009), to name a few.
Snow et al. (2004) first search sentences that contain two
terms which are known to be in a taxonomic relation (term
pairs are taken from WordNet (Miller et al., 1990)), then
parse the sentences, and automatically learn patterns from
the parse trees. Finally, they train a hypernym classifier
based on these features. Lexico-syntactic patterns are gen-
erated for each sentence relating a term to its hypernym,
and a dependency parser is used to represent them.
For the ontology learning task, Velardi et al. (2013) induce
taxonomies from scratch by extracting hypernyms from a
domain corpus and the Web. Definitional sentences such
as “lion is a dangerous animal” (where “animal” is the
type of “lion”) are recognized by the Word Class Lattices
classifier (Navigli and Velardi, 2010) trained on a large set
of Wikipedia definitions.

1https://commoncrawl.org
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Kozareva and Hovy (2010) induce a taxonomy using a par-
ticular kind of Hearst-like (Hearst, 1992) lexico-syntactic
patterns, i.e. so-called Doubly Anchored Patterns (DAP ).
The hypernymy relations extraction consist of two phases.
First the authors bootstrap the terminology harvesting with
DAP of the kind “animals such as lions and *”, so it is
possible to discover new terms such as “cats”. Next, for
each pair of terms in the discovered terminology e.g. (“li-
ons”,“cats”) they automatically create a DAP−1 of the
kind “* such as lions and cats” and discover new hyper-
nyms e.g. “felines”. The above mentioned works focus on
domain-specific hypernymy relations extractions and due
to their need of domain constraints - a specific defined term
in (Navigli and Velardi, 2010) or a seed pair (Kozareva and
Hovy, 2010) - they may not be used to collect the whole set
of hyponym-hypernym pairs from a large scale corpus such
as the Web.
The Linked Hypernym Dataset (Kliegr, 2015) is similar
to the work presented in this paper. The authors try to
add missing types to DBpedia, which is a common task
in knowledge graph completion (Paulheim, 2016). The
dataset contains types for DBpedia entities that have been
extracted from the corresponding Wikipedia articles using
Hearst patterns. In contrast, the work presented in this pa-
per uses the whole Web as a corpus, not only Wikipedia,
and hence, it is not limited to find hypernymy relations to
entities that are represented by a Wikipedia page, but be-
tween arbitrary entities.
Microsoft’s Probase (Song et al., 2011) is the work clos-
est to ours, albeit not freely accessible. The authors used
Hearst-like lexico-syntactic patterns to extract hypernymy
relations from 1.68 billion web pages in Microsoft Bing’s
web corpus, instead of focusing on domain specific hyper-
nymy relations. Probase’s main purpose was to create a
universal taxonomy containing more than 2.7 million con-
cepts. To this end, the methods underlying Probase are able
to extract approximately 25 million pairs.

3. Hypernymy relations extraction
In this section we describe the methodology we applied to
extract hypernymy relations from the Web.

3.1. Relation representation
We designed and modeled an hypernymy relation as a tu-
ple, where different attributes related to each extracted ”isa“
relation can be stored (e.g. statistics, provenance etc.). A
tuple T (with reference to Table 1, where we show a real tu-
ple from our dataset) which in wath follow is our data struc-
ture which store an hypernymy relation, is defined as (tT =
(lt, t, rt), hT = (lh, h, rh), PT , ST , UT , frT , pidT , pldT )
where:

• lt, t, rt are the elements of the hyponym component of
the “isa” relation. Specifically, lt is the hyponym pre-
modifier, t is the hyponym head noun and rt is the hy-
ponym post-modifier, e.g. lt =“second”, t =“law” and
rt =“of thermodynamics”;

• lh, h, rh are the elements of the hypernym component of
the “isa” relation. Specifically, lh is the hypernymy pre-
modifier, h is the hypernymy head noun and rh is the

Table 1: A tuple from our database.
Tuple ID = 12, 265, 628

tT
lt = second t = law rt = of thermodynamics

hT

lh = basic h = law rh = of physic

PT

NP, one of the NP

NP such as NP

UTXST

vedicsciences.net
“This would seem to involve violations of certain basic laws of physics such as
conservation of energy, the second law of thermodynamics, and statistical laws of
quantum mechanics.“

evolutiondeceit.com
“The second law of thermodynamics, one of the most basic laws of physics, is
based on a very large number of observations and experiments.“

darwinism-watch.com
“The second law of thermodynamics, one of the most basic laws of physics, is
based on a very large number of observations and experiments.“

harunyahya.com
“The second law of thermodynamics, one of the most basic laws of physics, is
based on a very large number of observations and experiments.“

frT = 4 pidT = 2 pldT = 4

hypernymy post-modifier, e.g. lh =“basic”, h =“law”
and rh =“of physics”;

• PT is the set of patterns matching the hyponym-
hypernym pair, that is (PT = {“NP, one of the NP”,
“NP such as NP“}) in our example;

• ST is list of sentences from where the extraction was
performed. Due to the nature of the Web, we can have
duplicate sentences. In our example, ST contains a sin-
gle instance of the sentence “This would seem to involve
violations of certain basic laws of physics such as con-
servation of energy, the second law of thermodynamics,
and statistical laws of quantum mechanics.“ and three
instances of “The second law of thermodynamics, one of
the most basic laws of physics, is based on a very large
number of observations and experiments.“;

• UT is the set of pay-level domains from where the pair
comes, that is, the patterns’ provenance (in our example
UT = {vedicsciences.net, evolutiondeceit.com,
darwinism-watch.com, harunyahya.com });

• frT is the absolute number of hyponym-hypernym pair
occurrences (in our example frT = 4);

• pidT : is equal to |PT | (in our example pidT = 2);

• pldT : is equal to |UT | (in our example pldT = 4)2.

3.2. Extraction workflow
We depict our approach in Figure 1, which consists of three
main modules, and corresponding tasks:

1. WebDataCommons framework: a framework to access
the CommonCrawl dataset;

2Note that a pair may occur multiple times within the same
Web document.
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Figure 1: Overview of our method for the tuples extraction.

2. Extraction and filtering: is the component of the frame-
work which given a Web page, searches for pattern
matches (see Section 3.4.) and generate tuples;

3. Indexing: to easily access the large set of extracted tu-
ples, we populated a MongoDB database also released
together with a Java Application Programming Interface
(see Sections 4.1. and 4.2.).

3.3. WebDataCommons Framework
In order to efficiently parse all websites, we used the
framework of the WebDataCommons project3, which was
already used to extract one of the largest hyperlink
graphs (Meusel et al., 2015) from the crawl corpora pro-
vided by the CommonCrawl Foundation4 (see Figure 1
block 1), as well as corpora of harvested structured data
annotations (Meusel et al., 2014) and HTML tables with
relational content (Lehmberg et al., 2015).
The framework is written in Java and tailored towards the
Amazon Web Service (AWS) environment. The frame-
works allows an efficient parsing of large document col-
lections, like crawl corpora. This workflow is described in
Figure 2. In general (1) a queue (SQS) is filled with the
references to all documents which needs to be processed.
Then (2) a number of servers is requested and is started
automatically, which perform all the same process on all
available cores:

(A) ask the queue for the next file;

(B) download the file to the server;

(C) process the file using a custom parsing method;

(D) the output is written back to the storage (in the default
case S3);

(E) the queue is notified that the file is parsed and can be
removed from the queue.

After the queue is empty, (3) the results can be collected
from S3. In this process only three actions need to be trig-
gered manually via a command line interface, the remain-
ing actions, including the communication between the dif-
ferent components, is done automatically.
The framework is designed to process a large amount of
documents in parallel, but does not allow a communication
between the servers, which means that in our case the sort-
ing, aggregation, and cleaning of the extracted tuples needs

3http://webdatacommons.org/framework/
4http://commoncrawl.org

to be done in a post-processing step, and cannot be done
directly within the framework. The original corpus con-
tains over 2.1 billion crawled web pages, consisting of over
38, 000 WARC5 files with a total packed size of 168TB.
The corpus is provided by the Common Crawl Foundation
on AWS S3 as free download.6 The extraction of the tuples
took around 2, 200 computing hours and was realized using
100 servers in parallel in less than 24 hours. The next sec-
tion describes with details the tuple extraction approach, the
implementation of which is also avaliable as source code at
http://webdatacommons.org/isadb/) and can be used
to repeat the tuple extraction for different or newer Com-
mon Crawl releases.

3.4. Tuple Extraction approach
The tuple extraction is a complex phase where preliminary
methodology design decisions have a great impact on the
resulting output. We divided this section into three main
subsections, each describing few important aspects of the
methodology.

Lexico-syntactic patterns. To extract tuples (see Figure
1, block 2) a number of Hearst-like (Hearst, 1992) lexico-
syntactic patterns are used. Frequent lexico-syntactic pat-
terns are easily recognizable and indisputably indicate the
lexical relation of interest. In particular we focused on 59
patterns that we collected from the past literature. In Table
2 we show the full list of patterns we used for the extrac-
tion phase. Eight patterns come from Ponzetto and Strube
(2011), where isa patterns were used to induce a taxon-
omy from Wikipedia. Other isa-patterns were collected
from Orna-Montesinos (2011), where patterns for the term
“building” were extracted on a set of specialized textbooks
in the field of construction engineering. Remaining pat-
terns were finally collected from Klaussner and Zhekova
(2011) where the authors extract isa relations from selected
Wikipedia pages.
The patterns identified in literature are then translated into
regular expressions. For example, (with respect to Table 2)
the pattern p5 (i.e. “NPh such as NPt” where NPt indi-
cates the hyponym and NPh the hypernym) was translated
into the following regular expression:

(\p{L}|\d)[\"\']?\,?\ssuch\sas\s[\'\"]?(\p{L}|\d)

As the corpus is read line by line, the length of line has an
impact on the performance of a regular expression. Lines

5Web ARChive, ISO 28500:2009
6http://blog.commoncrawl.org/2015/05/

april-2015-crawl-archive-available/
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Figure 2: Overview of our workflow of the Web Data Commons Extraction framework.

longer than 100,000 characters are rather frequent in the
corpus and therefore the lines have to be split before a
regex can be matched. To cope with the line length issue
we adopted a sentence splitter strategy; in other words we
splitted a line into sentences to analyze each single sentence
with regular expressions. For this purpose we defined other
regular expressions to split a line of text into sentences.
In order to test the quality of the above defined regular ex-
pressions we extracted a random 1% portion of the entire
corpus and analyzed 100 matches per pattern. With that
evaluation, we estimated the precision of each pattern, as
shown in Table 2. Patterns with a very low precision have
then been excluded before performing the subsequent steps.

Noun phrase identification: In order to identify noun
phrases we used the Stanford POS Tagger (Toutanova et al.,
2003) to obtain the mapping of words to lexical categories.
The noun phrase identification basically entails a selection
of allowed part of speech (POS) tags for the pre/post mod-
ifiers and for the head noun.
We defined as head noun allowed tags: singular noun
or mass (NN), plural noun (NNS), singular proper noun
(NNP), plural proper noun (NNPS). For the premodifier,
we added the following tags we selected for the previous
set: adjective (JJ), comparative adjective (JJR), superlative
adjective (JJS) and past participle verb (VBN).
The allowed tags for the postmodfier include: adjective (JJ),
comparative adjective (JJR), superlative adjective (JJS),
past participle verb (VBN), gerund or present participle
verb (VBG), singular or mass noun (NN), plural noun
(NNS), singular proper noun (NNP), plural proper noun
(NNPS), preposition or subordinating conjunction (IN),
cardinal number (CD) and determiner (DT).

Filtering: Since none of the patterns are perfect (neither
is content on the Web), some post-processing and filtering
is required to reduce the amount of noise in the database.
We try to facilitate a sensible trade-off between coverage
and precision. In general, we try to remove only the ob-
vious noise, while keeping as much coverage as possible.
This strategy comes from the idea that some task may need
“less precise” but “more covering” data. In use cases where
more precision is required, we provide metadata for each
tuple that allows for additional filtering techniques on the
client side. Our filtering strategy may be summarized as
follows:

• Removal of duplicates: due to the implementation
of the crawler used by the CommonCrawl foundation
and the nature of content on the Web, the same web
page may be replicated in the corpus. To reduce the
impact of spam and to decrease the size of the ex-
tracted tuples, tuples that occur more than once under
the same pay level domain are removed. We also made
a duplication removal at sentence level (based on exact
match).

• Tuple normalization: At this stage we apply a post-
processing tuple normalization: i) we transform all the
capital letters to lower case and removed all leading
and trailing punctuations. ii) we remove all quota-
tion marks and apostrophes, since apostrophes are fre-
quently used as replacement for quotation marks;7 iii)
we analyze different kinds of punctuation occurrences.
This step does not only target the optional commas or
the commas of co-ordinations, but also full stops, ex-
clamation marks, question marks, colons, and semi-
colons. These usually occur at the end of a word and
are followed by a space. If this is the case these punc-
tuations are removed. However, sentences on the web
are not always written with the proper syntax and the
space behind a punctuation is simply left out. This has
an adverse effect on the POS tagger and consequently
the noun phrase extraction. After the removal of inter-
punctuated symbols we performed a length check. If
one entity of a tuple is longer than 50 characters, it is
regarded as noise and the tuple is removed from the
processing pipeline. This length is the result of empir-
ical tests (a check of 100 tuples with an entity longer
than 50 characters, showed that only 8 percent of these
were correct); iv) we lemmatized each word of a noun
phrase. With the lemmatized entities a further refac-
toring step is taken, which targets noun phrases that
contain multiple nouns. To be more specific, this re-
gards noun phrases, which are located in front of the
pattern and contain nouns separated by a preposition
(complex NPS). The issue regarding these entities is,
that it is not trivial to determine, which of these nouns
is in a hyponymy relation with the entity behind the
pattern. For example given a pattern “* such as *”:

7we preserved the apostrophes in the genitive form of a noun
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Table 2: The list of patterns used for the tuples extraction
(NPt indicates the hyponym and NPh the hypernym).

ID Pattern Precision
p1 NPt and other NPh 0.70
p2 NPh especially NPt 0.19
p3a NPh including NPt 0.44
p4 NPt or other NPh 0.70
p5 NPh such as NPt 0.58
p6 NPt and any other NPh 0.76
p7 NPt and some other NPh 0.54
p8 NPt is a NPh 0.44
p8b NPt was a NPh 0.39
p8c NPt are a NPh 0.57
p8d NPt were a NPh 0.42
p9 NPh like NPt 0.17
p10 such NPh as NPt 0.58
p11 NPt like other NPh 0.31
p12a NPt, one of the NPh 0.38
p12b NPt, one of these NPh 0.13
p12c NPt, one of those NPh 0.15
p13 examples of NPh is NPt 0.33
p14 examples of NPh are NPt 0.45
p15a NPt are examples of NPh 0.20
p15b NPt is example of NPh 0.36
p16 NPh for example NPt 0.31
p20a NPt is adjsup NPh 0.63
p20b NPt are adjsup NPh 0.41
p20c NPt is adjsup most NPh 0.63
p20d NPt are adjsup most NPh 0.49
p21a adjsup NPh is NPt 0.25
p21b adjsup most NPh are NPt 0.19
p21c adjsup NPh is NPt 0.31
p21d adjsup most NPh are NPt 0.21
p22a NPt which is called NPh 0.50
p22b NPt which is named NPh 0.26
p23a NPh mainly NPt 0.22
p23b NPh mostly NPt 0.16
p23c NPh notably NPt 0.28
p23d NPh particularly NPt 0.19
p23e NPh principally NPt 0.26
p24 NPh in particular NPt 0.25
p25 NPh except NPt 0.22
p26 NPh other than NPt 0.44
p27a NPh e.g. NPt 0.33
p27b NPh i.e. NPt 0.29
p28a NPt, a kind of NPh 0.18
p28b NPt, kinds of NPh 0.45
p28c NPt, a form of NPh 0.18
p28d NPt, forms of NPh 0.33
p29a NPt which look like NPh 0.13
p29c NPt which sound like NPh 0.18
p30a NPh which are similar to NPt 0.28
p30b NPh which is similar to NPt 0.29
p31a NPh example of this is NPt 0.25
p31b NPh examples of this are NPt 0.18
p34 NPh types NPt 0.17
p35 NPt NPh types 0.12
p36 NPh whether NPt or 0.13
p37 compare NPt with NPh 0.16
p38 NPh compared to NPt 0.17
p39 NPh among them NPt 0.23
p40 NPt as NPh 0.17
p41 NPh NPt for instance 0.13
p42 NPt or the many NPh 0.31
p43 NPt sort of NPh 0.18
p44 NPt sort of NPh 0.14

Table 3: Statistics of the released dataset.
number of used patterns 58
|{T}| 401,150,041
|{tT }| 120,992,255
|{hT }| 107,691,822
|{tT } ∩ {hT }| 16,528,348
Avg. patterns matches per tuple 1.1
Avg. pay level domain matches 1.3
Avg. (tT , hT ) count 1.5
Max. patterns per (tT , hT ) 52

1) “Works of artists such as Vivaldi”, where the last
noun is in hyponymy relation with the entity be-
hind the pattern. Consequently it would be wrong
to take the first noun as head noun;

2) “Works of artists such as The Four Seasons”,
where this example depicts the opposite, as it is
the first noun that is correct. In this case the noun
in the post-modifier is - as intended - a special-
ization of the first noun;

3) “A variety of works such as The Four Seasons”,
where it appears to be similar to the first one;
However, the leading noun is a so called collec-
tive noun, as it refers to a group of entities.

To find resolution for the latter problem, we inspected
a random sample of 100 tuples with multiple nouns.
Out of those, there were 21 starting with a collective
noun. In all of these 21 instances the latter noun was
the correct one. Therefore, the decision was made to
remove collective nouns and the subsequent preposi-
tion from the tuple.

• Tuple aggregation: The tuple aggregation is the last
step in the pipeline, before the tuples database cre-
ation. Two tuples x and y are aggregated if tx equal to
ty and if hx equal to hy , in other words, if the two tu-
ples share the same hyponym and the hypernym head
nouns. In this phase we not only reduce the data vol-
ume significantly, but also generate three useful statis-
tics: i) the count of the occurrences frT of a tuple
T ; ii) the amount of distinct patterns pidT , which ex-
tracted a tuple T ; iii) the number pldT of pay-level
domains from where the pair was extracted.

3.5. Statistics
In Table 3 we show some statistics about the resulting
dataset. Thanks to our approach, we are able to extract
401, 150, 041 isa relations, and identify 120, 992, 255 and
107, 691, 822 unique hyponyms and hypernyms, respec-
tively. Table 4 shows the 10 most frequent matching pat-
terns. As expected with 242, 370, 719 matches the list is
dominated by the “NPt is a NPh” pattern.
Since there are more than 120M hyponyms, i.e., concepts
which we can assign at least one type, the number of entities
is by one to two orders of magnitude larger than that of
other freely available knowledge graphs, such as DBpedia,
YAGO, or Wikidata.8

8See Paulheim (2016) for comparison figures.
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Table 4: Top 10 frequent patterns.
count pattern
242, 370, 719 NPt is a NPh

80, 640, 885 NPh including NPt

70, 337, 543 NPh such as NPt

45, 900, 092 NPt and other NPh

20, 872, 227 NPh especially NPt

13, 392, 348 NPt or other NPh

11, 656, 254 NPh (mainly|mostly|notably|particularly|usually
|principally|especially) NPt

11, 080, 276 NPh types NPt

10, 360, 953 adjsup NPh be NPt

9, 648, 662 NPh (like|except) NPt

Table 5: Excerpt from the top 1, 000 frequent (tT , hT ).
tT hT

worldcat linked data resources
telephone number basic information
chainmail form of spam
video content
phone number datum
united states country
estimate datum special algorithm
gsview pdf viewer
english language
socialcam video app for iphone
copper conductive material
social security number personal information

In Table 5 we show some examples for interesting hyper-
nymy relations from the top occurring on the entire web.
Please note how the meaning of “most interesting” may
vary across uses, for example some study may be more in-
terested on analyzing domain specific hypernymy relations
which are assumed to be in the “long tail” and not between
the most frequent.
We also report in Table 6 the 15 pay level domains contain-
ing the highest number of extracted hypernymy relations.
We noticed that this list contains: i) the most important blog
sites (i.e. blogspot.com, wordpress.com, etc.); ii) Google

Table 6: Top 15 frequent URLs.
count urls
32, 114, 019 blogspot.com
31, 230, 507 google.com
11, 220, 307 wordpress.com
4, 542, 604 google.es
3, 334, 085 docstoc.com
3, 153, 578 google.fr
3, 015, 504 wikipedia.org
2, 975, 284 google.com.au
2, 752, 864 google.ca
2, 574, 356 faqs.org
2, 490, 576 slideshare.net
2, 488, 768 archive.org
2, 425, 906 issuu.com
2, 230, 084 google.co.uk
2, 184, 607 typepad.com

_id long
instanceLemma String
classLemma String
frequency double
pidspread int
pldspread int
modifications BasicDBList

Tuple

_id long
ipremod String
ipostmod String
cpremod String
cpostmod String
frequency double
pidspread int
pldspread int
pids String
plds String
provids BasicDBList

TupleModification

_id long
sentence String
pld String

Document

1

n

n

1

Figure 3: The Tuples database schema.

sites in different languages; iii) reference Web content (e.g.,
wikipedia.org).

4. Resources
We offer the tuple dataset for public download and an
Application Programming Interface (API) to help other
researchers programmatically query the tuple dataset.
The dataset and the API are available at http://
webdatacommons.org/isadb/. At the same URL it is pos-
sible to download:

• the tuple dataset in the form of a MongoDB-based
database;

• the tuple dataset in the form of tables, as compressed
tab separated values (TSV) files;

• the Java API package, to programmatically access the
tuple from the MongoDB dataset;

• the Java implementation of the tuple extraction ap-
proach (see Section 3.4.).

A quick guide on how to install the downloaded software
and how to use the Java API is also available.

4.1. Tuple MongoDB
To store and access all the extracted tuples we created
a database (see Figure 1, block 3). During prototyping
we experimented with many database management sys-
tems (DBMS) and found MongoDB (Plugge et al., 2010)
(a NoSQL DBMS) as the most suitable technology to store
our large set of tuples. NoSQL technologies are designed to
scale with “big data” and such databases support dynamic
schema design, offering the potential for increased flexibil-
ity, scalability and customization.
Figure 3 shows the resulting database schema. The de-
sign of that schema was guided by the fact that we aimed
at favouring the access to hypernymy relations of the kind
(t, h), where t and h are head nouns (see Section 3.). The
entity Tuple defines such basic hypernymy relation and rep-
resents the most used background knowledge to many text
understanding tasks. Other additional information may be
accessed as a list of TupleModification. The TupleModifi-
cation entity represents a variant of a tuple where t and h
are preserved but the left and right modifiers (i.e. lt, lh, rt,
rh) changes. From each tuple variant we can also access to
the list of:

365



• Pattern: the set containing the patterns which matched
the “isa” relation;

• Pay-level domain: the Urls of the Web documents from
where the relation was extracted;

• Documents: entities of the kind (pay-level domain, sen-
tence) from which the relation was extracted.

4.2. Java API to access the MongoDB
We next describe the Java Application Programming In-
terface to programmatically query the database. The class
”TuplesDb“ is the main class from where access the tuples
database and can be instantiated as follows:

...
TuplesDb tDb=TuplesDb.getInstance ();
...

To query the database and to iterate through all the tu-
ples, the class ”TuplesDb“ has a public method ”getAllTu-
ples()“ to retrieve an instance of the ”AllTuplesResultIter-
ator“ class, which implements the standard Java ”Iterator“
interface:

AllTuplesResultIterator
qri=tdb.getAllTuples ();

while (qri.hasNext ()) {
for (Tuple t:qri.next())
System.out.println(t);

}

The class ”TuplesDb“ has also public methods to express
many kinds of queries. All of them return specialized a
class instance which implements the standard Java iterator
interface. For example, if we want to print all the hyper-
nyms hT of the tuple T where the instance lemma tT is
equal to ”gaga“:

TupleQueryResultIterator tqri=
tdb.getAllTuplesWhereInstanceLemma("gaga");
while (tqri.hasNext ()){
for (Tuple T:tqri.next())

System.out.println(T.getClassLemma ());
}

Other queries can be more sophisticated and include:

• thresholds for the minimum and maximum values of
the tuple frequency frT , number of matching patterns
pidT and number of pay-level domain pldT attributes;

• a specific set of pattern ids PIDs, each resulting tuple
T has to include in PT ;

• a specific set of pay-level domain ids, each resulting
tuple T has to include in UT ;

5. Conclusion
We presented an overview of a database of isa relations
automatically extracted from the CommonCrawl, the
largest existing repository of Web content. This is, to
the best of our knowledge, the largest publicly available
resource of hypernymy relations from textual resources.
We described the resource with some statistics and the
database schema designed for storing the data, as well

as the Java API we developed to let programmatically
query the tuples database. Our database represents a first
step towards a more complex semantic resource such as
full-fledged taxonomies. In fact, we already used it as
part of a SemEval competition on taxonomy induction
(Bordea et al., 2015), where we achieved a competitive
performance by leveraging our isa relations harvested from
the Web (Panchenko et al., 2016).

The WebIsaDatabase and the Java API can be downloaded
at http://webdatacommons.org/isadb/.
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