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Abstract
We describe a method for identifying and performing functional analysis of structured regions that are embedded in natural language
documents, such as tables or key-value lists. Such regions often encode information according to ad hoc schemas and avail themselves of
visual cues in place of natural language grammar, presenting problems for standard information extraction algorithms. Unlike previous
work in table extraction, which assumes a relatively noiseless two-dimensional layout, our aim is to accommodate a wide variety of
naturally occurring structure types. Our approach has three main parts. First, we collect and annotate a a diverse sample of “naturally”
occurring structures from several sources. Second, we use probabilistic text segmentation techniques, featurized by skip bigrams over
spatial and token category cues, to automatically identify contiguous regions of structured text that share a common schema. Finally,
we identify the records and fields within each structured region using a combination of distributional similarity and sequence alignment
methods, guided by minimal supervision in the form of a single annotated record. We evaluate the last two components individually, and
conclude with a discussion of further work.
Keywords: table recognition, semistructured data, information extraction

1. Introduction
We address the problem of information extraction from
structured regions embedded in unstructured documents.
Whereas information extraction systems are generally de-
signed to process sentential text, many important “unstruc-
tured” genres draw freely on a variety of structured idioms
to communicate important information concisely, such as
headings, lists, and tables. In general, a complete recovery
of the information communicated in such genres requires
that these structures be recognized and processed.
Although the extensive literature on table processing offers
a number of algorithmic recipes, tables are only one im-
portant structuring idiom. Moreover, most such approaches
make fairly strong assumptions about their inputs, and are
therefore of limited general use. We are interested here in
the general problem of embedded structure (in all its forms)
and are in search of methods that can accommodate as wide
a range of structuring phenomena as possible.
Consider the following excerpt from a law enforce-
ment press release (we have changed names to preserve
anonymity):

The six defendants arrested in the first
indictment are charged with.... They are:

Don Juan Williams, a/k/a "Flav,"
"Flava Flav," and "Flay,"age 32,
of Laurel, Maryland;

Andre T. Dupont, a/k/a "Dre," age 37,
of Riverdale;

The indictment alleges that Williams
purchased large quantities ....

This is an example of a form that might be called a “loosely
formatted two-dimensional sequence.” Although it exhibits
something of a tabular structure, its inter-cell and inter-row
delimiters obey no positional regularity. This example also

exemplifies the typical centrality of information communi-
cated in structured idioms; often, such information repre-
sents the primary payload of a document.
Our target use case is that of a language engineer having
to survey and develop an extraction strategy for a body of
documents. Indeed, several of the authors have had to per-
form this task under tight time pressure, motivating a focus
on rapid deployment against a variety of naturally occur-
ring idioms. Two key desiderata arise from this use case:
maximal generality and minimal supervision.
This paper offers three main contributions in support of
these desiderata:

• We present a corpus of human-authored documents
drawn from a number of sources, with annotations that
identify and provide a functional analysis of embed-
ded structures.

• We describe and evaluate a novel algorithm that identi-
fies such structures, using a probabilistic segmentation
algorithm over featurized lines of text.

• We describe and evaluate a novel lightly-supervised
algorithm that identifies and aligns structure elements
in a way that reflects functional roles.

2. Related Work
Work on the automated analysis of structured data intended
for human consumption has focused primarily on table
recognition, structured objects in which linear geometries
reflect functional and semantic relations. Research in this
area, which had its genesis in the document analysis com-
munity, is quite deep and is covered in several thorough
surveys (Zanibbi et al., 2004; e Silva et al., 2006; Embley
et al., 2006).
E Silva et al. (2006) place tables in a conceptual continuum
between lists (repeating structures that lack vertical align-
ment) and diagrams (structures that use devices other than
geometry, typically pictorial elements, to communicate key

2063



relations). Our work can be viewed as investigating and
elaborating lists, arguing for a practical treatment that uni-
fies them with tables. We also study structuring idioms that
are not lists, such as header-style structures, and that, to our
knowledge, have not been studied.
Although we argue for a framing of tables as a special case
of communicative written structure, much of the concep-
tual framework that the field of table recognition has de-
veloped applies to our more general class of structuring
phenomena. Wang and Wood (1996) established an in-
fluential formalism that separates functional relations com-
municated by tables from the details of their presentation.
Non-table structures can be subjected to the same analysis.
Göbel et al. (2012) provide a helpful taxonomy of concerns
that have been addressed in the work on table processing:
detection, segmentation, and interpretation. Interpretation
decomposes further into functional analysis (determining
domain-independent relations among cells) and semantic
interpretation. In common with this study, we consider only
the concerns that can be treated in a domain-agnostic man-
ner, i.e., all of the above concerns except semantic interpre-
tation.
Much of the work on table or structural analytics explic-
itly targets specific formats, with PDF (Liu et al., 2007;
Fang et al., ; Göbel et al., 2012; Klampfl et al., 2014) and
HTML (Wang and Hu, 2002; Astrakhantsev et al., 2013)
currently the most prominent and practically important for-
mats. Both of these formats facilitate table recognition in
particular ways, while posing certain technical challenges
that are orthogonal to the problem of structure recognition
as experienced by human readers. We note that most such
formats can be converted to plain text—and often are pro-
cessed in this fashion for the purpose of natural language
processing. We argue therefore that a plain text treatment
of the problem of structure analysis is both germane and
practical.
Of course, ours is not the first format-neutral treatment of
structure. Soderland (1999) introduces the notion of semi-
structured data, by which was meant human written com-
munication that is more condensed and telegraphic than
sentential prose, typically involving certain stereotypical
fields. The term “semi-structured” has since been applied
to a wide variety of phenomena, thereby losing some of
its usefulness. We do not address the processing of semi-
structured data so much as embedded structured data.
Our work is distinct from work that targets purely struc-
tured data, data that is not mixed with unstructured data.
A canonical domain is the bibliography, one that has gen-
erated a fair amount of technically relevant work (e.g.,
(Grenager et al., 2005; Poon and Domingos, 2007). Cortez
et al. (2010b; 2011) are notable in this regard, proposing an
approach using probabilistic finite automata and promising
completely unsupervised extraction. However, extraction
is an exercise in semantic interpretation, which imposes a
penalty in the form of domain-specificity. Cortez et al. as-
sume the existence of a library of purpose-built attribute de-
tectors and reference data sources that are used to establish
expectations about the constituency of extracted records.
These are assumptions that are often reasonable to make,
but they represent a barrier to deployment in new domains.

Finally, there is a fair amount of work on machine learn-
ing for table interpretation, work that assumes annotated
data and pursues both functional analysis (Ng et al., 1999;
Pinto et al., 2003; Fang et al., 2012) and semantic inter-
pretation (Viola and Narasimhan, 2005; Govindaraju et al.,
2013). Requirements for data annnotation, like the positing
of a domain ontology or reference data set, limit generality
and slow deployment to new domains. In constrast with
such work, we imagine an application that detects, seg-
ments, and performs a functional analysis in a supervised
fashion, relying on very light labeling to power semantic
interpretation.

3. The Corpus
To acquire a broad empirical sample of structuring con-
ventions, we collected a corpus of 227 documents down-
loaded from a variety of publicly accessible government
websites. These consisted of a mix of pure text files, PDFs,
and HTML pages. An assessment of the documents showed
a variety of structured data types interspersed with regular
text. For example, documents collected from the Bureau of
Labor consisted of paragraph sized text descriptions, fol-
lowed by lengthy tables, encoded in a variety of schemas.
Conversely, “most wanted” documents consisted almost en-
tirely of field-value pairs. Press releases consisted primar-
ily of freetext, with structured information in the form of
contact information in field-value pairs, and long list-like
enumerations of properties. Many of these subcollections
exhibited inconsistent adherence to any apparent structur-
ing conventions, with missing data, ambiguous delimiters,
etc. Following our use case, we retain the entire document,
including any surrounding sentential text.
For this work, we focused on structures that are relatively
dense in extractable information. We say that a partic-
ular region is structured if it conveys information extra-
linguistically (i.e., if subjecting it to a hypothetical perfect
NLP engine would lose information), and if that informa-
tion can be readily converted to propositional form. This
formulation excludes elements of structure that have what
we might call a navigational purpose (e.g., section head-
ings).
Given this definition, any attempt to access the informa-
tional content of such structures is confronted with a series
of technical challenges of increasing difficulty:

1. Detection. How do we distinguish structured frag-
ments from other material in a document?

2. External segmentation. Which structured fragments
in a document are properly part of the same structure?

3. Internal segmentation. What are the atomic elements
of a given stuctured regions (i.e., the “cells”)?

4. Functional analysis. How do these cells cohere hor-
izontally (i.e., as rows or records) and vertically (i.e.,
as columns or properties)?

5. Semantic interpretation. What is the meaning of
the various properties (columns) and of their assem-
bly (i.e., how would we derive propositions from the
data)?
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One purpose of this study was to assemble and make avail-
able1 a corpus that would allow us to begin to answer these
questions empirically. Because the challenge as we have
defined it is substantial, our empirical work to date has not
touched on semantic interpretation.
We used Apache Tika2 to convert any natively non-text doc-
uments to text files. We then manually generated stand-off
annotations to capture the following kind of information:

• Structured regions. By policy, structured regions are
unbroken sequences of lines, beginning and ending at
line breaks.

• Cells, the putatively atomic elements out of which
structured regions are built.

• Groups of cells corresponding to the same property
(i.e., belonging to the same column, in the case of ta-
bles)

• Header cells, distinguished cells within a group in-
tended to reflect the type, rather than the value, of a
property.

Note that all of these annotations are subject to various
practical subtleties not always apparent on first examina-
tion, especially across different structuring conventions.
For example, although cells are expected to contain indi-
visible values, it can often be difficult to determine whether
a textual fragment is divisible. In the example listed above,
do we have one column containing a defendant’s full name,
or a column for each of the first and last name? Be-
cause the structure in question does not provide strong two-
dimensional signals to answer this question, it is more dif-
ficult to answer precisely than if presented in a standard
table.

4. Method
Our primary technical contribution in this paper is the de-
velopment of a novel approach to identifying structured in-
formation embedded within natural language texts. Our ap-
proach treats each occurrence of a structured region inde-
pendently, breaking the problem down into two parts. First,
we identify the location of each region within the corpus of
text documents. Second, for each region, we identify the
records, cells, and cell groupings associated with its ad hoc
structure.
Our presentation follows our two-part breakdown of the
problem. In section 4.1., we describe generic text pre-
processing that is a prerequisite to the implementation.
Then, in section 4.2. we present our approach to structured
region identification. The approach centers on the use of a
probabilistic text segmentation algorithm. Input to the algo-
rithm is a token-level representation of the text built from
spatial and token class features. As output, it produces a
segmentation of the text that groups contiguous lines into
either structured or unstructured segments. Finally, in sec-
tion 4.3., we present our approach to identifying each cell

1The annotated corpus is available at
http://www.ai.sri.com/ yeh/lrec-structure

2http://tika.apache.org

in the region, along with its field assignment (i.e., its ”col-
umn”). To do this, we assume that one record in the region
has been annotated manually. We then combine a distribu-
tional representation of tokens with a sequence alignment
algorithm to infer cell boundaries and field assignments for
the entire region.

4.1. Preprocessing
Tokenization is the first preprocessing step. The input text
is split into a sequence of contiguous substrings using the
regular expression ([A-Za-z]+|[0-9]+|(.)\1*).
The resulting tokens are either maximal sequences of al-
phabetic characters (e.g., [YouTube] or [com] ), maximal
sequences of digits (e.g., [05] ), or maximal repetitions of
any single non-alphanumeric character (e.g., [@@@] or [\n]
). All subsequent processing ignores individual characters,
instead considering these tokens as the atomic elements of
the text.
We then apply a battery of tagging algorithms, each of
which assigns a label to certain token sequences. Table 1
lists some of the taggers along with example labeled token
sequences, implemented primarily with fast regular expres-
sions. In addition to those shown, we also tag filenames,
hostnames, currency, decimal numbers, percentages, frac-
tions, phone numbers, paths, URLs, units, and xml tags.
Our approach favors recall over precision, and we use as
many taggers from as wide a range of domains as possible.
We also augment our tag inventory with parts of speech, as
extracted by a maximum entropy tagger (Toutanova et al.,
2003).

Tagger Example seq. Label
dates [01] [/] [01] [/] [14] DATE
surnames [Smith] SUR
given names [John] [ ] [Joseph] GIVEN
initials [J] [.] [ ] [J] [.] INIT
abbreviations [U] [.] [S] [.] ABRV
acronyms [AARP] ACRO
english words [this] ENG
emails [mj] [@] [cox] [.] [net] EMAIL
parts of speech [computer] NN
capitalization [CamelCase] CAMEL
named entities [Michael] [ ] [Smith] PERSON
char class [0123] NUMER

Table 1: A partial list of taggers used, along with example
identified token sequences.

Tags always label a contiguous sequence of tokens, which
we represent as an interval of token offsets. For example,
consider the token sequence [G] [.] [ ] [Washington] as
an example input text, with the first token [G] taking the
offset 0. Tagging this text would produce a set of overlap-
ping tags like those shown in Table 2. As implied, tokens
may be labeled with multiple tags.

4.2. Structured Region Identification
The next step is to separate structured from unstructured re-
gions, as illustrated in Figure 1. In this study, we considered
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Tag (〈LABEL, interval〉) Meaning
〈ALPHA, 0〉 alphabetic
〈OTHER, 1〉 non-alphanumeric
〈SPACE, 2〉 space
〈ALPHA, 3〉 alphabetic
〈ACAPS, 0〉 all caps
〈ICAPS, 3〉 initial caps
〈INIT, 0 .. 1〉 initials
〈ABRV, 0 .. 1〉 abbreviation
〈SURNAM, 3〉 surname
〈CITY, 3〉 city
〈PERS, 0 .. 3〉 person

Table 2: An example list of token sequence tags, each rep-
resented by a label and a token offset interval 〈LABEL,
interval〉.

entire lines as being structured or unstructured, a simplifi-
cation that sufficed for most documents, leaving sub-line
structure to future work.
For each tagged token produced by the previous step, we
record the associated set of spatial skip bigrams. These skip
bigrams encode both the horizontal and vertical character
offsets between a given anchor token and each of its target
neighbors, and their tag assignments. The intent here is
to simply capture how semantic categories of tokens are
spatially arranged with each other.
As we have found that structured regions tended to both
be contiguous and exhibit content and spatial regularities
that differ significantly from unstructured text, we identi-
fied them using a labeled variant of a maximum-likelihood
segmentation algorithm (Utiyama and Isahara, 2001). Our
decision to base our approach upon this particular segmen-
tation algorithm is rooted in a previous study that found it
produced the most accurate and unbiased results in text seg-
mentation (Niekrasz and Moore, 2010). For a given docu-
ment, we aim to identify a segmentation and labeling per
segment that maximizes the likelihood,

argmax
S,L

Pr(S,L|W ) =

m∏
i=1

Pr
(
W i|L, S

)
Pr (L) Pr (S)

Pr (W )

Here, S refers to a segmentation of the document and L
refers to the labeling of each of those segments as structured
or unstructured. S is a vector of integer pairs, each pair con-
sisting of a start and stop sentence index that describes the
segment. L is a corresponding vector that identifies each
segment as being structured or unstructured. W i repre-
sents the pool of spatial skip bigrams within the ith seg-
ment. The conditional Pr

(
W i|L, S

)
expresses the prob-

ability of observing the collection of spatial skip bigrams
within segment number i, as computed by treating the skip
bigrams as being mutually independent and dependent only
upon the segment label. In this model, labelings are treated
as being i.i.d.
While prior work treated Pr(S) as a penalty on segment
size, we found that a uniform Pr(S) yielded better perfor-
mance. Our corpus includes a number of documents that

have very large segments, drawing into question the valid-
ity of any fixed expectations about segment size.

4.3. Segmentation and Functional Analysis
The next step is to decompose structured regions into their
primitive constituents (cells) and to determine the func-
tional relations over these cells. Our process, for a given
structured region, is illustrated in Figure 2. Using the set of
overlapping tags for a given token in the region, we gener-
ated lattices describing that token’s context. We then apply
information theoretic co-clustering (Dhillon et al., 2003)
to generate a distributed representation of these contexts,
which are used to compute a similarity measure between
tokens. We then solicit supervision in the form of a sin-
gle seed sequence Ak,l = (ak, ak+1, ..., ak+l) where each
ai ∈ F represents the assignment of a token xi to a mem-
ber of the set of possible record fields F (e.g., “surname”,
“zipcode”, or even “field 3”). The token similarity measure
is used by a soft sequence aligner to match candidate tokens
cm in the rest of the structured region with the seed tokens
ak. Candidate tokens are then assigned the record fields of
their seed tokens.

4.3.1. Tag Contextual Similarity
In order to establish a basis for computing soft sequence
alignments, we assembled “tag lattices,” the set of overlap-
ping tags to the left and right of a token, as a source of
information about a each token’s context. The tags used are
given in Table 2. Lattices are acyclic directed graphs where
each tag is represented as a node and two nodes are con-
nected by an edge if and only if they are contiguous in the
text with one another.
We then traverse the lattice and recorded all possible uni-
directional paths up to a specified maximum length (7 is
used as a default). We accumulated context statistics for
each token by considering all paths that start or end on a
tag in which the token is included. For example, the token
[.] from our example has (among others) the contexts (0,
OTHER), (0, INITIAL), (-1, ALLCAPS), and (+2, SURNAM).
Here, the numeral represents the length of the path and the
sign represents whether the contextual tag occurs at the end
or beginning of the path. The result is a co-ocurrence matrix
where rows represent tokens and columns represent unique
contexts, e.g. (+1, SURNAM).
Our soft sequence aligner required a measure of the sim-
ilarity between two arbitrary tokens, which itself may be
impacted by sparsity in the raw contextual features. To al-
leviate this, we induced a dense representation of these con-
texts by applying information theoretic co-clustering to the
token to tag context co-ocurrence matrix.
The co-clustering procedure is described as follows. Let
X = {x1, x2, ..., xL} represent the set of L tokens in
the text. And let Y = {y1, y2, ..., yNY

} represent the
set of NY = wNT unique context features, where NT

is the number of unique context feature labels T , and w
is the maximum path length used during lattice traversal.
The co-occurrence matrix is thus a set of non-negative in-
tegers nxi,yj

for every pair of symbols (xi, yj) in X ×
Y . The output of co-clustering is two partitions X∗ =
{x∗1, x∗2, ..., x∗NX∗ } and Y ∗ = {y∗1 , y∗2 , ..., y∗NY ∗} of the
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The indictment follows a series of arrests on Dec. 7, 2005, 
in Oregon, Arizona, New York, and Virginia.                                                                                                                                                                    
                                                                                                                                                                                 
The indictment refers to attacks on 3 sites:                                                                                                                                     
                                                                                                                                                                                 
  Oct. 28, 1996, in Marion County, Ore.                                                                                                                                          
  Oct. 30, 1998, in Lane County, Ore.                                                                                                                                            
  July 21, 1997, in Deschutes County, Ore.                                                                                                                                       
                                                                                                                                                                                 
An indictment is not evidence of guilt.  The defendants 
named in this indictment are...
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Figure 1: For a given document (upper left), we label each token by its word class, drawn from a mix of part-of-speech
and word categories such as month indicators (lower left). For each token we encode its spatial skip bigrams, describing
both the content and spatial arrangement with its neighbors (lower right). Using these features, we label each line as being
governed by a structured schema, or as regular unstructured text (upper right).
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Tag Contexts ak ak+1
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Establish Tag Lattice
Co-cluster for 

token similarity
Use similarity to align tokens with 
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Figure 2: Overview of the alignment procedure. We first establish tag lattices, which capture the tag context for a given
token. We then generate the basis for a contextual similarity measure by co-clustering the token and context co-occurrence
matrix. This is then used to align tokens in the structured region with tokens in the annotated sequence.

sets X and Y . Co-clustering seeks to maximize the mu-
tual information between a X∗ and Y ∗ given constraints
NX∗ and NY ∗ , making it a sensible method for compress-
ing our context features while preserving as much informa-
tion as possible distinguishing the types of tokens. Namely,
it allows us to represent each token xi in the text as a
categorical distribution over NY ∗ clustered context fea-
tures pxi

= (nxi,y∗
1
, nxi,y∗

2
, ..., nxi,y∗

NY ∗
) where nxi,y∗

j
=∑

yj∈y∗
j
nxi,yj

. These vectors are the basis for measuring
token similarity as discussed in the next section.

Figure 3 shows the result of applying our tagging and co-
clustering steps to an example text. The colorization of the
tokens indicates their assignment to a particular token clus-
ter, which each token cluster x∗i being assigned a unique
color.

4.3.2. Functional Analysis
Our procedure for aligning tokens with record fields is il-
lustrated in Figure 4. We first solicit a manually annotated
seed representing the field assignments for a single record
from the user. This is represented as a contiguous sequence
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Figure 3: An example of token clustering performed on a
text. Each token is assigned to a cluster. Each cluster is
represented by a unique color. Magenta and orange bars
indicate the first and last characters of each token.

of tokens from the structured region, with the field assign-
ments for each token represented as an integer. The field
values have no semantics other than to indicate which to-
kens belong to which field in the underlying schema.
We use the manually annotated seed record and apply se-
quence alignment and distributional similarity measures to
identify other occurrences of records in the text. This is
done by iterating a sliding window, of the same length l
as the annotated sequence, through the entire text token
by token. At each iteration m ∈ (1, 2, ..., L − l + 1)
(where L is the length of the text in tokens), the sequence
Cm,l = (pxm

, pxm+i
, ..., pxm+l

) of clustered context distri-
butions is aligned with the sequence Ck,l corresponding to
the annotated record.
Alignment is performed using the Needleman-Wunsch
sequence alignment algorithm (Needleman and Wunsch,
1970), where the score (penalty) for insertions and dele-
tions is defined as −1 and the score for paired elements is
defined as 1−D(pm,l, pk,l), where D(p, q) is the Hellinger
distance between distributions p and q. Alignment pro-
duces a set of pairs mapping each token in some subset of
tokens in one sequence to a subset of tokens in the other.
Tokens may remain unmapped, resulting in gaps. Pairings
must also be sequential, so they cannot cross.
At each iteration of the window, if the resulting alignment
score is positive, a field value is assigned from the anno-
tated sequence Ak,l to each of the tokens in the window
that are part of an alignment pair. This is represented graph-
ically in figure, by following the arrows from the top row to
the bottom row.
Since each window iteration overlaps with the previous
one, any single token may have multiple field values as-
signed to it. Therefore, we consider each of these assign-
ments as a “vote” and chose the majority vote as the final
field assignment for the token.

5. Evaluation and Results
Here we present the outcomes of the structured region de-
tection and alignment phases.

5.1. Structured Region Detection
We evaluated the performance of our structured segmen-
tation algorithm against several baselines. We measured
performance on this task, which amounts to labeling each

1 2 2 3 3 4 4 4 5 5 5 6Ak,l

Ck,l

2 2 3 3 4 4 4 5 5 6Cm,l

ak ak+1 ak+l

2 3 3 4 4 4 5 5 5Cm+1,l 6

Figure 4: Example alignment between annotated tokens to
candidate windows. The annotation maps field assignments
Ak,l to a sequence of tokens from the record, Ck,l. Two
windows over the tokens in the region are given by Cm,l

and Cm+1,l. Each token is aligned with the annotated se-
quence Ck,l according to the similarity score, and is given a
field assignment based off the match in Ck,l. Final assign-
ment is based on the majority vote. The alignment proce-
dure permits gaps, displayed as unaligned and unassigned
tokens.

Method Macro F1
OddsRatio, Unigram 0
OddsRatio, Bigram 0
OddsRatio, SkipBigram 0.6868
MaxLikelihoodSeg 0.8655
PixEntropyLabeler 0.602

Table 3: Region Detection, showing macro F1 for struc-
tured regions computed using five-fold cross validation.

line as either structured or unstructured, in terms of F1 over
structured regions. We employed five-fold cross validation
over our corpus to evaluate each method, with results listing
the macro F1 for detecting structured lines given in 3.
The methods compared were simple odds-ratio compar-
isons over unigrams and sequential bigrams of the tags,
odds-ratio using the skip-bgrams, a simple “pixel” entropy
measure, and the maximum likelihood segmentation strat-
egy. The odds-ratio methods trained a simple “bag of
words” model using the available training data, to score the
likelihood of the line being structured or unstructured. The
label itself was selected based upon the log-ratio of prob-
ability of the line being structured over unstructured. To
enforce a light-supervision policy, all training folds were
winnowed to just one percent of available data, selected at
random. The pixel entropy measure is a visually motivated
baseline that treated the line as binary pixel array, setting
non-whitespace characters as 1, and all else as 0. A thresh-
old for labeling was tuned over the pixel entropies in the
training data.
As shown in Table 3, maximum likelihood segmentation
over spatial skip bigrams dominates the baselines. We at-
tribute the failure of the baselines using tag unigrams and
bigrams to a paucity of training data enforced by the light-
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PMI Tag Distributional
Kappa 0.3902 0.5260 0.5787

Table 4: Alignment evaluation results, measuring macro
kappa of per-token field agreement across the evaluted re-
gions. Methods were the pointwise mutual information
baseline, aligning using the token tags, and aligning using
the distributed representation.

supervision regime.

5.2. Alignment Evaluation and Results
For a given structured region in our alignment experiments,
the seed sequence representing the user annotation is se-
lected at random from the ground truth label set, with the
remaining used for evaluation. The task is then to produce
field assignments that best match the gold field assignments
for that region, leveraging that seed sequence.
We experimented with three methods for generating hy-
potheses for a given region: the soft sequence aligner using
just the token tags, the previously described aligner with
similarity derived from the Hellinger distance over the dis-
tributed representations, and a non-aligning pointwise mu-
tual information baseline. The tag based aligner uses the
same alignment procedure as the distributional method, ex-
cept we use the token tags as a basis for similarity.
The pointwise mutual information method is a baseline
method that used a clustering over tag types to determine
token field assignments. We first performed a clustering
over the tag lattices, setting the number of clusters to be a
value larger than the number of possible field types. Each
token in the seed annotation was given a cluster label, and
then we mapped field values to each cluster label. The map-
ping that gave the best pointwise mutual information score
with the original field assignments in the seed was then ap-
plied to each of the remaining tokens in the region.
Evaluation was made by comparing the kappas of the per-
token field assignments against the gold assignments for
that region. Results listing the macro kappas across evalu-
ated structured regions are given for each method are given
in Table 4, with the best alignments resulting from use of
the distributional representation.

6. Discussion and Conclusions
In this paper we have described methods motivated by a
need for rapid, format-neutral, broad-domain harvesting of
information communicated in structured regions embed-
ded in unstructured documents. We have approached this
need empirically, assembling an annotated multi-source
corpus, and devising unsupervised and lightly supervised
algorithms for structured region detection and parsing. The
methods we have presented impose very modest computa-
tional requirements, relying on a small library of efficiently
executable token “taggers.”
Observed algorithm accuracies leave some room for im-
provement. In particular, the macro-kappa of 0.6 that we
measured in our functional analysis experiments bears fur-
ther study. An obvious route to improvement is to loosen
the rather stringent limitation of one labeled row that we

imposed, and to study how performance increases with
more training examples. Although we view a reliance on
more supervision as an impediment to broad-scale use,
there are use cases in which the labor investment might be
warranted.
In particular, we treated every structured region as being
independent of all others, when in reality structuring con-
ventions are often repeated within documents and across
collections. Thus, effort devoted to getting a single table
right could be rewarded by accurate analysis across a whole
collection. We leave multi-region and multi-document ex-
tensions of the algorithms presented here to future work.
We have adopted a one-size-fits-all approach to the recogni-
tion and parsing of structured regions, but in fact our solu-
tions may require different parameterizations or variants for
different structuring idioms. For example, we have largely
represented these regions as sequences of lines, a represen-
tation in which the functional relations among cells depends
on their position in a horizontal sequence, but is such a
representation appropriate for structures resembling email
headers? Presumably not, leading us to suppose that elab-
orations of our annotation in which distinct idioms are dis-
tinguished would be relevant. It may be, for example, that
our sub-optimal performance in functional analysis arises
from a mixing of conventions, hiding strong performance
on certain idioms.
Another area of improvement would be integration of the
kind of spatial-semantic information covered by spatial
skip bigrams into the extraction step. Although we have
found the this kind of information useful for identifying
structured regions, how to properly apply it in an extrac-
tion system remains an open question.
Our work appears against a backdrop of related work
that relies on reference data and a library of semanti-
cally suggestive features as a surrogate for human super-
vision (Cortez et al., 2010a). Obviously, the existence of
such data and features greatly facilitates the exploitation of
embedded structures. We have assumed that such informa-
tion is absent in our study, but a potentially powerful middle
way could lie in induction of reference tables directly from
data (Agichtein and Ganti, 2004).
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