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Abstract
Given lexical-semantic resources in different languages, it is useful to establish cross-lingual correspondences, preferably with semantic
relation labels, between the concept nodes in these resources. This paper presents a framework for enabling a cross-lingual/node-
wise alignment of lexical-semantic resources, where cross-lingual correspondence candidates are first discovered and ranked, and then
classified by a succeeding module. Indeed, we propose that a two-tier classifier configuration is feasible for the second module: the
first classifier filters out possibly irrelevant correspondence candidates and the second classifier assigns a relatively fine-grained semantic
relation label to each of the surviving candidates. The results of Japanese-to-English alignment experiments using EDR Electronic
Dictionary and Princeton WordNet are described to exemplify the validity of the proposal.
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1. Introduction

Given the current situation where a variety of language re-
sources have been actively developed and disseminated, in-
tegrating these independently developed resources, prefer-
ably in a standardized format, has become an important is-
sue (Cimiano et al., 2013). In particular, aligning lexical-
semantic resources (henceforth, LSR) across languages in
the word-sense/lexical-concept level is highly demanded
for realizing cross-language semantic applications.
There are a few research projects in line with this re-
search direction: BabelNet (Navigli and Ponzetto, 2012)
maintains a wide-coverage multilingual semantic network,
whose construction relies on mapping of Wikipedia (a mul-
tilingual encyclopedia system, in a sense) entries to the cor-
responding WordNet (Miller and Fellbaum, 2007) (an En-
glish semantic lexicon) senses; Uby (Gurevych et al., 2012)
combines a variety of lexical resources for English and Ger-
man also in a word-sense level by applying a machine-
learned classifier.
Like these well-known projects, our primary research goal
is to establish a computational method to discover cross-
lingual correspondences in a word-sense/lexical-concept
level, given LSRs in different languages. However we
further explore a methodology for classifying discovered
cross-lingual correspondences with a broader range of se-
mantic relation types, not limited to synonymy. To pursue
this research direction, we apply a machine-learned classi-
fier as in Uby (Gurevych et al., 2012), but with a variety of
semantic relation types, including near-synonymy, hyper-
nymy, verb-argument, and so on.
This paper presents a whole system architecture for en-
abling node-wise alignmentof LSRs in different lan-
guages, where potential cross-lingual correspondences
are first discovered and ranked by applying an existing
method (Hayashi, 2013), and then classified by a succeed-
ing module. We particularly propose that a two-tiered clas-
sifiers configuration could be feasible for the second mod-
ule: the first classifier filters out possibly irrelevant corre-
spondences, and then the second classifier assigns a rel-

atively fine-grained semantic relation label to each of the
surviving correspondences.
To exemplify the proposal, we conducted a series of
Japanese-to-English alignment experiments that employ
EDR Electronic Dictionary (EDR; for Japanese)1 (Yokoi,
1995) and Princeton WordNet (PWN; for English). EDR
actually is a dictionary system, consisting of several types
of computational dictionaries. and we mainly utilize EDR
concept dictionary. Consult Appendix-A for more detailed
description of EDR.
Here, we remind that we only utilize information given in
Japanese for EDR, although this resource partly contains
bilingual (Japanese and English) information. Similarly,
we do not employ Japanese WordNet (Isahara et al., 2008),
as our purpose is to explore a computational method to dis-
cover relevant cross-lingual correspondences from arbitrary
LSRs.

2. Overall framework
2.1. The task: node-wise alignment of LSRs
Ontology matching, defined as a process for determin-
ing the alignment of a pair of given ontologies (Euzenat
and Shvaiko, 2007), is one of the key technologies for
enhancing the interoperability of existing knowledge re-
sources, including LSRs. The importance of this tech-
nology has increased particularly in the context of Linked
Open Data. Although, the ontology matching usually main-
tains structure-to-structure alignment, our work has prelim-
inarily focused on the task ofnode-wise alignment, which
could function as a fundamental building block for an entire
structural alignment.
Figure 1 illustrates the node-wise alignment task, where
one concept in the source LSR is chosen as a query (hence-
forth, a query concept), and the task is to discover a set
of related concept nodes (including synonymous concepts)
in the target LSR. Thus, as in ordinal information retrieval
tasks, the problem is to achieve a higher precision while

1http://www2.nict.go.jp/out-promotion/
techtransfer/EDR/index.html
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Figure 1: Node-wise alignment of concepts in different
lexical-semantic resources. Dotted arrows represent poten-
tial semantic correspondences that should be classified and
labeled.

keeping a level of recall. In addition, each correspondence
(dotted arrows in Fig. 1) should be classified by the seman-
tic type, and labeled accordingly. Among the possible types
of semantic relation,synonymywould be of a particular im-
portance especially in a cross-language setting, even though
it could only dictatenear-synonyms(Hirst, 2009).

2.2. Proposed architecture
Figure 2 displays our proposed architecture for enabling
node-wise alignment of LSRs in different languages. First
cross-lingual correspondence candidates are discovered
and ranked by applying an existing method (Hayashi,
2013), and then filtered and classified by a succeeding mod-
ule (green box in Fig. 2).
In particular, this paper discusses feasible configuration of
the latter module. Although the filtering and the classifica-
tion could be simultaneously performed by a single classi-
fier, we propose that a two-tiered classifiers configuration
could be more adequate. That is, the first classifier filters
out presumably irrelevant correspondences, and then the
second classifier assigns a relatively fine-grained relation
label to each of the survived correspondence candidates.

3. Ranking candidate concepts
3.1. Cross-lingual semantic relatedness
A method to discoverconceptual matesin the LSRs for
other languages was proposed in (Hayashi, 2013), and this
method could be instantly incorporated into our proposed
architecture. The method, given a query concepts, pro-
duces a ranked list of candidate concepts (synsets) by com-
putingscore(s, t) that measures the cross-lingual semantic
relatedness betweens and a candidate conceptt. Here the
set of candidate concepts is first generated by exploiting
bilingual translation resources (Hayashi, 2012a).

score(s, t) ≡ (1− β)pscore(s, t) + βgscore(s, t) (1)

As defined in the formula,score(s, t) is computed as the
weighted sum ofpscore(s, t) (synonym-based relatedness)
and gscore(s, t) (gloss-based relatedness), where0.0 ≤
β ≤ 1.0 balances the blending of these elements.
The synonym-based relatednesspscore(s, t) dictates a
cross-lingual semantic relatedness based on synonymous
words (i.e., words that jointly specify a lexical con-
cept). This score is computed by employing bilingual re-

sources along with a sense-tagged corpus in the target lan-
guage (Hayashi, 2012a).
The gloss-based relatednessgscore(s, t), on the other
hand, measures a cross-lingual semantic relatedness
based on the textual similarity between the (extended)
glosses (Banerjee and Pedersen, 2003). As the languages of
comparing gloss texts are different, the extended gloss (in
Japanese) for the query concept is first machine-translated2

into the target language (English), and then a monolingual
textual similarity measure is applied.
The described configuration can be considered reasonable,
as textual glosses, in general, provide richer linguistic con-
texts and could be better machine-translated compared to
the set of synonym words given to a concept node.

3.2. Ranked list of candidate concepts
The results reported in (Hayashi, 2013) can be summarized
as follows: (1) Synonymous concepts were ranked first for
almost half (47.4%) of the test query concepts; (2) Some-
what related concepts (including other than synonymous
concepts) were discovered with a relatively good perfor-
mance: mean average precision (MAP) was 0.695; (3) The
optimum value ofβ was around 0.6, but rather robust in the
range of [0.4, 0.8].
Table 1 shows a part of the ranked list for an EDR query
concept (roughly meansbig power), exemplifying that a
ranked list is a mixture of synonymous concepts (flag=syn),
some related concepts (flag=rel), as well as irrelevant con-
cepts (flag=irrel ). This exactly motivates the presented
work. That is, we would like to filter out irrelevant cor-
respondences, and assign a label that signals the type of
semantic relation to each of the relevant correspondences.
Notice also that the parts-of-speech of candidate concepts
are not uniform in the ranked list. This is brought about by
the nature of EDR: an EDR concept does not explicitly load
part-of-speech information, exhibiting a yet another notable
difference between PWN and EDR.

4. Classifying semantic relations
4.1. Overall approach
We adopt a supervised learning approach. That is, we train
a classifier, given hand-annotated training data. To do this,
first we choose a set of query concepts from the source LSR
(in this work, EDR), and then collect the ranked lists of
candidate concepts in the target LSR (PWN): the method
described in the previous section is applied for this purpose.
Each cross-lingual correspondence candidate in the ranked
lists is next hand-classified as one of the semantic relation
types defined in an inventory (section 4.2). The annotated
ranked lists are then fed into a machine learning (ML) algo-
rithm, which employs a set of presumably effective features
(section 4.3). The resulting classifier is finally evaluated by
employing standard evaluation measures (section 4.4).

4.2. Annotating cross-lingual correspondences
Table 2 summarizes our inventory of semantic relation
types, which is referred in the creation of training data. Al-
though we initially designed a more fine-grained inventory

2We utilized Web-based translation services provided by the
Language Grid (http://langrid.org/ ).
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Figure 2: Proposed architecture.

r Synset ID Synonymous words Gloss flag

1 13945102-n power; office holding an office means being in power rel
2 11453016-n power the rate of doing work;measured in watts (= joules/second) irrel
3 05190804-n power; powerfulness possession of controlling influence rel
4 05616246-n ability; power possession of the qualities ... rel

required to do something or get something done
5 08177592-n superpower;great power; a state powerful enough to influence events throughout the worldsyn

major power; world power
6 01181559-v power supply the force or power for the functioning of irrel
7 05030680-n mightiness; might; power physical strength irrel
8 10461424-n power; force one possessing or exercising power or influence or authority rel

Table 1: A part of the ranked list of candidate PWN synsets for the query EDR concept with ID:0fb994 (represented by a
Japanese word ”大国”, also translated as ”world power; powerful country”).

Type Explanation

synonym s andt share an almost identical meaning
near-synonym s andt share a similar meaning
broader-term t denotes a broader meaning thans
narrower-term t denotes a narrower meaning thans
argument t can be one of the arguments ofs
causality s can cause a situation denoted byt
stative t denotes a stative derivation oft
miscellaneous s andt somehow related

(including antonyms)
irrelevant t has nothing to do withs

Table 2: Inventory of semantic relation types.

by referring to the semantic relation types developed by the
EuroWordNet project (Vossen, 1998), we have ended up
with the current one, where modest simplification was ap-
plied3. Notice thatbroader-termincludes hypernyms and
holonyms, whilenarrower-term includes hyponyms and
meronyms/partnyms. Also notice thatirrelevant is intro-
duced as a special semantic relation types.

4.3. Features for machine learning
Features for representing a correspondence candidate can
be divided into two feature groups: (1) features for a
source/target concept node, and (2) features for a source-

3Our annotators were largely puzzled with the initial inventory.
In particular, the distinction between hyponymy with meronymy
was not only hard for them but sometimes impossible to do,
suggesting that the task of cross-lingual classification of seman-
tic/conceptual relations for independently developed LSRs in-
volves innate difficulties.

target node pair. We create a feature vector for each of
the correspondence candidates by concatenating the sub-
vectors for representing these feature groups.
Feature groups for a concept node are:

• Upper semantic classes: In order to signify the coarse
semantic nature of a concept, we assign the set of up-
per semantic classes as a feature of the concept. For
this purpose, the lexicographer files, 45 in total, were
adopted as the upper classes for PWN; 36 concepts,
placed relatively higher in the concept hierarchy, were
selected as the upper classes for EDR. We can easily
assign this type of semantic feature even for an EDR
concept by navigating the concept hierarchy. This type
of semantic feature is finally represented by a 45 (for
PWN) or a 36 (for EDR) dimensional binary vector.

• Part-of-speech: The part-of-speech of a concept is
also employed as a feature and represented by a 5-
dimensional binary vector. PWN explicitly provides
this information, but EDR does not. To overcome
this issue, we have assigned a possible set of parts-of-
speech to each of the EDR upper semantic concepts,
and we fake the POS information of an EDR query
concept by referring to this assignment.

• Graph features: Two types of features computed from
the graph structure of an LSR are introduced to dictate
the relative importance of a concept node.

– Depth: hop count of the node from the root node
of the LSR.

– Node centralities (Mihalcea and Radev, 2011):
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betweenness centrality and load centrality pro-
vided by NetworkX4 Python module.

Features for a source-target node pair are further divided
into two types. It is natural to incorporate the scores
given by the method described in section 2.1. They are:
score(s, t) in the left hand side of the eauation (1), and
pscore(s, t) andgscore(s, t) in the right hand side. In ad-
dition to these scores, we tacked two types of gloss similar-
ity as described below.

Word embedding vector-based gloss similarity: We
have assigned a semantic vector for each of the gloss text,
and computed the cosine similarity. Remind that the gloss
text in the source language is translated into the target
language: in this case Japanese into English. The se-
mantic vector for a gloss text (both in English) is con-
structed by summing up5 the word embedding vectors for
each words in the gloss text. Each word vector is learned
from a relatively large text corpus6 by applying word2vec
method (Mikolov et al., 2013).

Alignment-based gloss similarity: Another gloss simi-
larity relies on the recently proposed monolingual sentence
alignment algorithm (Sultan et al., 2104), which achieves
a good level of accuracy due to the exploitation of depen-
dency syntax. We incorporate the word embedding-based
word similarity (with the threshold 0.65), instead of the pre-
fixed synonym dictionary utilized in the original version,
to admit word-level correspondences. Note that we utilize
multiple MT engines to translate a source gloss text, yield-
ing a set of translated gloss texts. Therefore the maximum
similarity achieved from one of the translated gloss texts
and the target gloss text is adopted as this alignment-based
gloss similarity.

4.4. ML algorithm and the evaluation measures
We train a classifier by adopting the Random
ForestR⃝ (Breiman, 2001) algorithm provided by scikit-
learn7 Python module. The Random Forest algorithm was
utilized, since it constantly gave us better results com-
pared to the Support Vector Machines in the preliminary
experiments. As our problem is a typical multi-class
classification, we evaluate the learned classifier with the
standard performance measures: accuracy, precision,
recall, and F1.

5. Experiments
5.1. Objectives
The objectives of the experiments are three-fold:

• To decide which classifier configuration is better: a
one-tier classifier configuration where a single classi-
fier also filters out irrelevant candidates, or the two-
tiered classifiers configuration as shown in Fig. 2;

4https://networkx.github.io/
5We have tried a few variety of mathematical operations but

the simple addition gave the best results.
6enwik9 corpus is available for download at:http://

mattmahoney.net/dc/text.html
7http://scikit-learn.org/

Type # of counts (%)

synonym 2,406 (11.4)
near-synonym 1,546 (7.3)
broader-term 1,242 (5.9)
narrower-term 1,094 (5.2)
argument 597 (2.8)
causality 340 (1.6)
stative 302 (1.4)
miscellaneous 119 (0.6)
irrelevant 13,393 (63.6)

Table 3: Distribution of semantic relation types.

• To compare among alternative systems of semantic re-
lation types: A system that results in a better classifi-
cation performance (with respect to some perspective)
should be explored;

• To investigate into the importance of a proposed fea-
ture group.

To accomplish these objectives, we collected the perfor-
mance measures on the ranked lists data (section 5.2), while
altering the system of semantic relation types (section 5.3).
With respect to the last objective, we have conducted so-
called ablation tests, which will be detailed afterwards (sec-
tion 6.3).

5.2. Data
5.2.1. Query concepts and the ranked lists
First we collected a set of ranked lists of at most 10 can-
didate PWN synsets generated for an EDR query concept.
To run the method described in (Hayashi, 2013), we se-
lected 2,300 EDR query concepts by roughly observing the
distribution of concepts in terms of a higher-level semantic
classification.
Among the 2,300 query concepts, the method yielded ef-
fective ranked list for 2,036 queries (effective rate: 87.2%).
Most of the ineffective queries were associated with some
domestic concepts and/or named entities.
Calculated from the annotation results (described in the
next subsection), the MAP measures for synonymous and
related concepts are 0.483 and 0.783 respectively. These
are slightly better figures than the ones reported in the orig-
inal literature.

5.2.2. Distribution of semantic types
A team of annotators went through the ranked lists, and as-
signed one of the semantic types chosen from the inventory
shown in Table 2. Although each of the ranked lists was
checked by only one annotator, the final results were ap-
proved through discussions by the annotator team.
Table 3 counts the distribution of the semantic relation
types given to the data, suggesting that filtering of irrele-
vant candidates is necessary, and further showing that the
distribution is skewed even without considering irrelevant
ones. Remind that the large portion of irrelevant candidates
does not necessarily mean that the employed method per-
formed only poorly, because we retained at most 10 candi-
date synsets for each query concept.
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Mnemonic of the system Description

binary irrel: {irrelevant},
rel: (other relation types)

fine syn:{synonym},
near-syn:{near-synonym},
brd: {broader-term},
nrw: {narrower-term},
irrel: {irrelevant},
misc: (other relation types)

middle syn:{synonym},
rel: {near-synonym,

broader-terms,
narrower-terms},

irrel: {irrelevant},
misc: (other relation types)

coarse syn:{synonym},
rel+: rel ∪ misc

Table 4: Alternatives of relation type system.

Mnemonic N A P R F1

binary 2 0.740 0.7566 0.8647 0.807
fine 6 0.655 0.678 0.972 0.799
middle 4 0.667 0.702 0.945 0.806
coarse 3 0.675 0.719 0.927 0.810

Table 5: Classification performances forirrelevantrelation.
(N represents the number of classes (types);Accuracy ap-
plies to all target types.)

5.3. Possible systems of semantic relation types
Although the final applicability of a system of semantic re-
lation types depends on its final application, the distribu-
tion (Table 3) suggests some modification to the inventory
(Table 2) should/could be made. To empirically investigate
this issue, we compare four semantic relation type systems
shown in Table 4. Notice that thebinary system is par-
ticularly introduced to assess the two system-architectural
alternatives discussed in section 5.1.

6. Results
The results presented in this section were collected from a
series of experiments, in which the Random Forest learning
algorithm was adopted.
We applied a standard 5-fold cross validation procedure:
therefore the reported figures were computed by averaging
over the results of the five trials. Also note that we con-
firmed the variations in the results, brought about by the
nature of the Random Forest, were very small.

6.1. Filtering irrelevant correspondences
Table 5 summarizes the classification performances, par-
ticularly focusing on the detection of irrelevant correspon-
dences. The important remark here is that the shown results
were obtained by the single classifier configuration, where
irrelevant is included in the set of target classes.
Although the bestF1 score was achieved with thecoarse
type system, thebinary type system could be considered
most adequate, because it moderately balances the preci-
sion (P ) and the recall (R), and yields the best accuracy

Mnemonic N A P R F1

fine 5 0.438 0.426 0.674 0.522
middle 3 0.651 0.539 0.292 0.378
coarse 2 0.712 0.572 0.219 0.316

Table 6: Classification performances forsynonymrelation.

Type P R F1

synonym 0.426 0.674 0.522
near-synonym 0.413 0.388 0.400
broader-term 0.341 0.223 0.270
narrower-term 0.271 0.111 0.158
miscellaneous 0.747 0.608 0.670

Table 7: Classification performances of thefine system
(without irrelevant correspondences).

(A) of 0.740, which insists that this configuration also gave
a better performance for relevant types.
Therefore, we would conclude that irrelevant correspon-
dences should be first filtered out, which means we should
adopt the two-tiered classifiers configuration that was dis-
played in Fig. 2.

6.2. Comparison of semantic relation type
systems

Although the ”binary filter” works at a reasonable perfor-
mance level (F1 is around 0.8 with balancedP andR), it
is still far from perfect. Nevertheless, here we assume that
(a future version of) the filter perfectly performs, and com-
pare the alternatives of the semantic relation type systems
classified in Table 4, particularly in terms of the classifica-
tion performances of synonymous correspondences.
Table 6 compares the classification performances ofsyn-
onymrelation, where only the non-irrelevant data are fed
into the machine learning process. Notice that thebinary
system disappears here by definition, and the number of
classes is decreased by one in all systems.
It is natural to observe theA increases as the number of
target types (classes) decreases. Interestingly, however, the
F1 measure forsynonymrelation is rather better with the
fine system (F1 = 0.522) than that with other semantic
type systems. This may due to: if we collapsedissimilar
classes into a single class or a few classes, the total classifi-
cation performance might degrade, suggesting that we have
to adopt an appropriate semantic relation type system.
Table 7 further breaks down the classification performances
of the fine system for each classes, showing that the re-
sults forsynonymandnear-synonymare somewhat promis-
ing, but broader-termand narrower-termare hopelessly
difficult to discriminate. This may partly reflect the dis-
tribution of the semantic relation types in the data shown in
Table 3. Nevertheless, these difficult classes may indirectly
contribute to the classification ofsynonymrelation, as well
as that ofnear-synonymrelation probably.
In summary, the results presented so far would justify our
proposal on the system-architectural issue. That is, the
two-tiered classifiers configuration could be more feasible
for classifying cross-lingual correspondence candidates be-
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Mnemonic A P R F1

full 0.438 0.426 0.674 0.522
-scores 0.412 0.3939 0.626 0.483
-sem 0.428 0.422 0.655 0.514
-align-sim 0.436 0.422 0.657 0.513
-w2v-sim 0.437 0.421 0.674 0.518

Table 8: Ablation test results (withoutirrelevantcorrespon-
dences).

tween different LSRs. However further experimentations
with a larger data set would be necessary to make this more
concrete.

6.3. Importance of a feature group
We conducted a series of ablation tests in order to explicitly
investigate the importance of each feature group. Table 8
displays the results with thefine system on the data with-
out irrelevant candidates, where each mnemonic dictates
one of the following ablation conditions. Larger degrade
in the performance measure means that the associated fea-
ture group was effective hence important.

• full: without any ablations (for comparison).

• -score: without scores in the candidate ranking (score,
pscore, andgscore).

• -sem: without the upper semantic classes feature.

• -align-sim: without the alignment-based gloss similar-
ity.

• -w2v-sim: without word embedding vector-based
gloss similarity.

As expected, the score features play the most prominent
role, being consistent with the results of the candidate rank-
ing module, where MRR for thesynonymrelation was rel-
atively high as around 0.5. Each of the remaining three
feature groups also plays a role, but it should be noted that
the word2vec-based gloss similarity was not very effective,
probably suggesting that it captures more vague semantic
relatednesses rather than semantic similarities.
For a comparison purpose, Table 9 shows corresponding
performance figures obtained from the data including ir-
relevant correspondences. Like the previously shown re-
sults, the score feature group contributed most. Unlike the
previous results however, the word2vec-based gloss sim-
ilarity was confirmed to be effective in the classification,
showing that semantic relatedness captured by this fea-
ture could contribute to distinguishing irrelevant correspon-
dences from relevant ones.

7. Concluding remarks
This paper empirically showed that a two-tiered classifiers
configuration is feasible for classifying cross-lingual cor-
respondences between concept nodes in different lexical-
semantic resources. The resulting performance measures
revealed that the task itself is quite challenging, presum-
ably due to innate differences in thesemantic rangesof con-
cepts in the languages. Often the information explicitly or

Mnemonic A P R F1

full 0.655 0.459 0.309 0.370
-scores 0.639 0.390 0.221 0.282
-sem 0.654 0.436 0.319 0.369
-align-sim 0.653 0.458 0.277 0.345
-w2v-sim 0.650 0.467 0.272 0.344

Table 9: Ablation test results (withirrelevant correspon-
dences).

implicitly provided by each concept in a lexical-semantic
resource are not suffice to distinguish between them from
competing candidate concept in the other resources. This
means that we may need to explore a better inventory of
semantic relation type system as well.
Technically, we may have more rooms to improve.
We would be able to incorporate more effective con-
straints/preferences from the structure of each LSRs. Be-
sides, recent progresses in distributed/distributional seman-
tic representations (Weeds et al., 2014; Bollegala et al.,
2015; Rothe and Shütze, 2015) could help improve the set
of features utilized in the machine learning process.
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Jérôme Euzenat and Pavel Shvaiko. 2007.Ontology
Matching, Springer.

Iryna Gurevych, Judith Eckle-Kohler, Silvana Hartmannm,
Michael Matuschek, Christian M. Meyer, and Chris-
tian Wirth. 2012. UBY - a large-scale unified lexical-
semantic resource based on LMF.Proc. of the 13th Con-
ference of the European Chapter of the Association for
Computational Linguistics (EACL 2012), pp.580–590.

Yoshihiko Hayashi. 2012a. Computing cross-lingual syn-
onym set similarity by using Princeton annotated gloss
corpus.Proc. of 6th International Global WordNet Con-
ference (GWA2012), pp.131–141.

Yoshihiko Hayashi, Savas Ali Bora, Monica Monachini,
Claudia Soria, Nicoletta Calzolari. 2012b. LMF-aware

2612



Web services for accessing semantic lexicons.Language
Resources and Evaluation, 46(2), pp.253–364.

Yoshihiko Hayashi. 2013. Blending two kinds of semantic
relatedness for cross-language matching of lexical con-
cepts.Proc. of 10th International Conference on Termi-
nology and Artificial Intelligence (TIA2013), pp.35–42.

Graeme Hirst. 2009. Ontology and the lexicon. In Steffen
Staab and Rudi Studer (Eds.)Handbook of Ontologies,
pp.269–292. Springer.

Hitoshi Isahara, Francis Bond, Kiyotaka Uchimoto, Masao
Utiyama and Kyoko Kanzaki. 2008. Development of
Japanese WordNet.Proc. of the Sixth International
Conference on Language Resources and Evaluation
(LREC2008).

Rada Mihalcea and Dragomir Radev. 2011.Graph-
based Natural Language Processing and Information
Retrieval. Cambridge University Press.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado,
and Jeffrey Dean. 2013. Distributed representations of
words and phrases and their compositionality.Advances
in Neural Information Processing Systems 26, pp.3111–
3119.

George Miller, and Christiane Fellbaum. 2007. Wordnet.
then and now.Language Resources and Evaluation 41,
209–214.

Roberto Navigli, and Simone Paolo Ponzettoo. 2012. Ba-
belNet: The automatic construction, evaluation and ap-
plication of a wide-coverage multilingual semantic net-
work. Artificial Intelligence, 193, 217–250.

Sascha Rothe and Hinrich Shütze. 2015. AutoExtend:
Extending word embeddings to embeddings for synsets
and lexemes.Proc. of the 53rd Annual Meeting of the
Association for Computational Linguistics (ACL 2015),
pp.1793–1803.

Md Arafat Sultan, Steven Bethard, and Tamara Sumner.
2014. Back to basics for monolingual alignment: Ex-
ploiting word similarity and contextual evidence.Trans-
actions of the Association for Computational Linguistics,
Vol.2, p.219–230.

Piek Vossen (Eds.) 1998.EuroWordNet. Kluwer Aca-
demic Publishers.

Julie Weeds, Daud Clarke, Jeremy Reffin, David Weir, and
Bill Keller. 2014. Learning to distinguish hypernyms
and co-hyponyms.Proc. of the 25th International Con-
ference on Computational Linguistics (COLING 2014),
pp.2249–2259.

Toshio Yokoi. 1995. The EDR electronic dictionary.Com-
munications of the ACM 38(11), 42–44.

Appendix-A. Information structure of the
EDR Electronic Dictionary

The EDR electronic dictionary, unlike Princeton WordNet,
is not a lexical database based on relational lexical seman-
tics: Rather, it can be seen as a knowledge base enriched by
linguistic information given in both Japanese and English.
Another big difference lies in the consideration of parts
of speech in the conceptual organization: as well known,
PWN maintains POS-dependent lexical semantic networks,
while EDR bears only a POS-independent network.

Despite these differences, the information structure of EDR
can be modeled in the same way as that of PWN (Hayashi,
2012b): the set of words associated with a common con-
cept identifier in one or more of the sub-dictionaries can be
modeled as a kind of synset. In addition, EDR defines a
set of types of conceptual relations linking one concept to
another, which are structurally the same as in PWN.
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