
Annotating and Detecting Medical Events in Clinical Notes

Prescott Klassen, Fei Xia, and Meliha Yetisgen
University of Washington

PO Box 352425, Seattle, WA 98195, USA
{klassp, fxia, melihay}@uw.edu

Abstract
Early detection and treatment of diseases that onset after a patient is admitted to a hospital, such as pneumonia, is critical to
improving and reducing costs in healthcare. Previous studies (Tepper et al., 2013) showed that change-of-state events in clinical
notes could be important cues for phenotype detection. In this paper, we extend the annotation schema proposed in (Klassen et al.,
2014) to mark change-of-state events, diagnosis events, coordination, and negation. After we have completed the annotation, we
build NLP systems to automatically identify named entities and medical events, which yield an f-score of 94.7% and 91.8%, respectively.

Keywords: Annotation, Event Extraction, Named-entity recognition

1. Introduction
Clinical notes describe the progress of disease in great

level of detail. Although notes individually present a single
snapshot in time, the clinical narrative in each note often
makes explicit or implicit references to a previous note. To
capture this level of information is important for the de-
tection of phenotypes/diseases such as pneumonia. For in-
stance, in reports that do not explicitly mention that the pa-
tient has pneumonia, an important cue for pneumonia de-
tection is pneumonia-related symptoms and their change-
of-state through time, which is often encoded in sequential
ICU progress notes and chest x-ray reports. As an example,
the text snippet “No change in diffuse lung disease consis-
tent with edema. Patchy bilateral lung consolidation has
diminished. No new focal abnormalities” belongs to a chest
x-ray note of a patient who is labeled in the gold standard as
negative for pneumonia. Our pneumonia prediction system
mislabels the patient as positive for pneumonia, because the
system primarily used n-grams and UMLS concepts as fea-
tures and did not capture change-of-state information in the
feature representation (Tepper et al., 2013).

To address this problem, in our previous study (Klassen
et al., 2014), we proposed to annotate change-of-state
events in the text snippets with a tuple schema of five fields
〈location, attribute, value, change-of-state, reference〉. In
this paper, we discuss the extensions we have made to the
schema to add annotation of diagnosis events and to handle
coordination and negation of tuple fields. We then report on
the experimental results of the NLP systems we build to au-
tomatically identify change-of-state and diagnosis events.

2. Creating a Corpus for Phenotype
Detection

Early detection and treatment of ventilator associated
pneumonia (VAP) is important as it is the most com-
mon healthcare-associated infection in critically ill patients.
Even short-term delays in appropriate treatment for patients
with VAP are associated with high mortality rates, longer-
term mechanical ventilation, and excessive hospital costs.
Our research goal is to build NLP systems which assist
healthcare practitioners in identifying patients who are de-

veloping critical illnesses (e.g., VAP).

Figure 1: A sample chest x-ray report

2.1. PNA/CPIS Detection
In our previous study (Tepper et al., 2013), we created

an annotated corpus of 1344 chest x-rays from the UW Har-
borview Medical Center. Annotators read each report and
determined whether the patient had pneumonia (PNA) and
recorded a clinical pulmonary infection score (CPIS) (Zil-
berberg and Shorr, 2010). CPIS is used to predict which pa-
tients will benefit from the invasive, and preferably avoid-
able procedure to obtain pulmonary cultures. There are
three labels for CPIS: 1A (no infiltrate), 1B (diffuse infil-
trate or atelectasis), and 1C (local infiltrate). Similarly,
there are three labels for PNA: 2A (no suspicion of PNA),
2B (suspicion of PNA), and 2C (probable PNA). In addition
to labels for CPIS and PNA, we also asked the annotators
to highlight the text snippet in the chest x-rays that sup-
ports the labels that annotators choose for the x-rays. We
call these snippets rationale snippets (see (Yu et al., 2011)
for a similar approach). Figure 1 shows a sample x-ray
report and Line 9-11 is marked as a rationale snippet for
CPIS/PNA. Based on this corpus we built an NLP system
and achieved classification accuracy 87.1% for CPIS and
82.1% for PNA (Tepper et al., 2013).

Error analysis for both classification tasks revealed that
reducing classification errors required features that go be-
yond simple word ngrams, which motivated the annotation

3417



Figure 2: A snippet featuring the annotation of a change-of-state (cos) event

of change-of-state described below.

2.2. Annotating change of state
To annotate change-of-state (cos) event, we define a

cos event as a tuple 〈cos, attr, loc, val, ref〉 (an exam-
ple is given in Fig 2): loc is the anatomical location (e.g.,
right lung in Fig 2), attr is an attribute of the location that
the event is about (e.g., atelectasis), val is a possible value
for the attribute (e.g., minimal patchy), cos indicates the
change of state for the attribute value compared to some
previous reports (e.g., mildly improved), and ref is a link
to the report(s) that the change of state is compared to (e.g.,
since the prior study). Not all tuples will have values for all
five fields. A field can be unspecified and inferred from the
context of the surrounding snippet text or from the collec-
tion of snippets that have been extracted from the sequence
of a patient’s x-ray reports.

As a sentence can contain multiple events, we need to
group the fields of an event together. To achieve that, we
use directed, labeled arcs to link two fields. There are four
arc labels:

1. Label State connects a cos entity with an attr or a
loc entity

2. Label Location connects an attr entity with a loc

entity

3. Label Value connects an attr or loc entity with a
val entity

4. Label ReferencedBy connects a cos or an attr entity
with a ref entity

We define a total order between fields, cos ≺ attr≺
loc ≺ val ≺ ref and require that, in an arc A → B, A
must precede B according to the total order. As a result, the
annotation of an event is a directed acyclic graph (DAG),
as shown in Fig 2. For annotation, we use a lightweight,
web browser-based annotation tool called BRAT (Stenetorp
et al., 2012).1 In the next section, we describe a few ex-
tensions to the annotation schema, and Table 1 shows the
statistics of the corpus before and after the extensions.

3. Extending the Annotation Schema
We have made two main extensions to the annotation

schema, as explained in this section.

1http://brat.nlplab.org/

Before After
extensions extensions

X-ray reports 1344
Unique snippets 1008
Entity types 5 9
Arc label types 4 12
Entity tokens 7173 8474
Arc label tokens 4128 6329

Table 1: The corpus statistics before and after the exten-
sions to the annotation schema

Figure 3: Annotation of a diagnosis event

3.1. Adding diagnosis annotation
The snippets often include a diagnosis statement (e.g.,

likely right pleural effusion), typically indicating a possi-
ble or likely diagnosis of a previously mentioned change of
state. Because such a statement can be an important cue for
phenotype detection, we extend our annotation schema to
mark it with a new event type called diagnosis event. The
diagnosis event is very similar to a cos event except that the
cos field is replaced by a new field called dhead which is
the head of a diagnosis statement (e.g., likely in likely right
pleural effusion). In addition to dhead, the tuple for a di-
agnosis event may include the four fields (i.e., attr, loc,
val, and ref); an example is given in Fig 3. We also need
a new arc label, Diag, that connects dhead with attr.

3.2. Handling coordination and negation
Coordination and negation are common in snippets. In

Fig 4, the three attr fields are connected by conjunction
words or and and; the cos field change is negated by the
word No.

To annotate coordination, we mark the conjunction
(such as and, or, and but) as conj and words such as versus
and vs. as versus. We distinguish five types of coordina-
tion, as illustrated in Fig 5, and use arc labels such as com-
bine and exclude to indicate different relations between the
conjuncts. Distinguishing the type of coordination could be
important for phenotype detection; for instance, coordina-
tion with multiple Alternate arcs could indicate hedging in

3418



Figure 4: An example that includes both coordination and negation

a diagnosis event.

Figure 5: Five types of Coordination

Similarly, we use the arc label Negate to link a nega-
tion word (negation) with the word it negates. One nice
property of this annotation schema is that the structure for
an event is guaranteed to be a tree because each tuple field
has at most one parent and there are no loops due to the
total order between fields. Consequently, we can treat the
event detection task as a dependency parsing problem, as
discussed in Section 4.2.

In summary, the new annotation schema marks nine
entity types: six as fields in a change-of-state or a diag-
nosis event (cos, attr, loc, val, ref, and dhead), two
for coordination (conj and versus), and one for negation
(negation for negation words). The arc label set has 12
members: five for arcs connecting two event fields (State,
Location, Value, ReferencedBy, and Diag), six for arcs con-
necting a conjunction and a conjunct (Combine, Alternate,
Contrast, Exclude, For, and Against), and one for arcs con-
necting a negation word and a field (Negate). The numbers
of entities and arcs in our corpus are provided in Tables 2
and 3, respectively.

4. Building an Event Detection System
Our updated annotation schema was applied by a single

annotator to all 1008 unique snippets in the rationale snip-
pet corpus. Then we use this corpus to train and evaluate an

Entity type # of entities P R F1
attr 2467 97.3 97.6 97.4
cos 1126 94.4 94.6 94.5

dhead 566 89.4 88.5 89.1
loc 2099 94.8 95.2 95.0
ref 196 89.7 88.2 89.0
val 1006 92.4 89.4 90.9

conj 711 93.9 94.8 94.4
versus 40 97.1 87.2 91.9

negation 263 96.1 96.8 96.5
Total/

Micro-avg 8474 94.8 94.6 94.7

Table 2: Performance of the Stanford Named Entity Rec-
ognizer. The first column lists the numbers of entities in
the gold standard. The last three columns show system per-
formance measured by precision (P), recall (R), and f-score
(F1) when evaluated with 5-fold cross validation.

event extraction system. We treat event extraction as a de-
pendency parsing task (McClosky et al., 2011), and the pro-
cess has two stages: first, it identifies named entities in the
text snippets with a named entity recognizer; second, it as-
signs labeled arcs between entities and forms event trees by
running a dependency parser. For both named-entity recog-
nition and dependency parsing, we train off-the-shelf tools
with our corpus, and evaluate them using 5-fold cross vali-
dation.

4.1. Named-entity recognition

For named-entity recognition, we use version 3.5.2 of
the CRF-based Stanford Named Entity Recognizer (NER)2

(Finkel et al., 2005), configured with the default settings3.
For evaluation, we use the evaluation methods integrated
into the Stanford NER package, and randomly divide our
corpus into five folds for cross-validation.

The last three columns in Table 2 summarize the results
of the NER experiments. For the most part, the system per-
formed well with an average f-score of 94.7 across all en-
tity types. The lowest performing entities, dhead and ref,
were the ones in the set that were most likely to contain
general and productive non-domain specific language, such
as terms of likelihood and possibility in the case of dhead,
and general descriptions of previous reports, conditions, or
patient state in the case of ref.

3419



Arc label System Gold P R F1
Diag 500 524 93.6 89.3 91.4

Location 1746 1816 95.7 92.0 93.8
ReferencedBy 157 166 98.7 93.4 96.0

State 995 1066 92.0 85.8 88.8
Value 984 986 97.7 97.5 97.6

Alternate 433 430 94.5 95.1 94.8
Against 38 38 86.8 86.8 86.8

Combine 883 984 88.3 79.3 83.6
Contrast 9 17 11.1 5.9 7.7
Exclude 6 11 100.0 54.6 70.6

For 40 39 85.0 87.2 86.1
Negate 253 252 97.6 98.0 97.8

Subtotal/
Micro-avg 6044 6329 94.0 89.7 91.8

ROOT 2022 1743 82.7 96.0 88.9
DEP 2578 2572 98.1 98.4 98.3

Total/
Micro-avg 10644 10644 92.8 92.8 92.8

Table 3: Performance of dependency parsing by arc type.
The first two columns show the numbers of dependency
arcs in the system output and the gold standard, respec-
tively. The last three columns show system performance
measured by Precision (P), Recall (R), and F-Score (F1)
when evaluated with 5-fold cross-validation.

4.2. Dependency parsing
The second stage of our event extraction process re-

lies on dependency parsing to extract event trees from la-
beled text spans. We convert our change-of-state and di-
agnosis event annotations from the BRAT standoff format
into the CoNLL format,4 which was originally created for
the CoNLL 2007 shared task on dependency parsing. For
the conversion, we make non-final words of an entity de-
pend on the final word in the entity with a dummy arc la-
bel DEP. Furthermore, the head of the entity at the root of
an event tree will depend on a dummy node with arc label
ROOT. For instance, given a sentence w1 w2 w3 w4 w5, let
us assume that w1 w2 and w4 w5 are two entities and the
first entity depends on the second entity with the label rel.
After the conversion, w1 will depend on w2 with a DEP
label, and the same is true for w4 and w5; w2 will depend
on w5 with label rel and w5 on a dummy word with label
ROOT; w3 is ignored since it is not part of any entity. To
train and evaluate the dependency parser, we use the named
entities from the gold standard.

Notice that a rationale snippet can contain multiple sen-
tences and a sentence can in turn contain multiple events.
In our snippet corpus, there are 1008 snippets, 1268 sen-
tences, and 1743 ROOT arcs (one for each event tree). For
parsing, we used the Malt Parser5(Nivre et al., 2007) ver-
sion 1.8.1, and ran experiments with default parser settings.
For evaluation, we used 5-fold cross validation and ran the

2http://nlp.stanford.edu/software/CRF-NER.shtml
3http://nlp.stanford.edu/software/crf-faq.shtml#a
4http://nextens.uvt.nl/depparse-wiki/DataFormat
5http://www.maltparser.org

Arcs included for evaluation LA UAS LAS
Without ROOT/DEP arcs 94.0 93.3 92.1
With ROOT/DEP arcs 92.8 92.3 91.6

Table 4: Performance of dependency parsing, measured
by labeled accuracy (LA), unlabeled attached score (UAS),
and labeled attachment score (LAS).

evaluation tool MaltEval6 (Nilsson and Nivre, 2008).
Table 3 shows the performance of the dependency

parser by arc type. The first two columns list the num-
bers of dependency arcs in the system output and in the
gold standard. The last three columns report parsing results
measured by labeled precision, recall, and f-score. The top
thirteen rows show the results for the twelve arc labels and
the micro-average. The next two rows are the results for
two dummy labels, ROOT and DEP, and finally the last
row is the micro-average for all fourteen arc labels. The
system performs well for all the labels except for Exclude
and Contrast due to lack of training data.

Table 4 measures parsing performance in labeled ac-
curacy (LA), which measures the correct dependency label,
unlabeled attachment score (UAS), which measures the cor-
rectly identified head, and labeled attachment score (LAS),
which measures the correctness of both the dependency la-
bel and the head. The first row excludes ROOT and DEP
arcs in evaluation and the second row includes those arcs.
The scores for the second row are lower mainly because
identifying ROOT arcs is harder as a sentence may contain
multiple event trees and each tree has a ROOT arc.

5. Conclusion and future work
Medical events in clinical notes are important cues

for phenotype detection. In this study, we extended our
change-of-state event annotation schema by adding an-
notation of diagnosis events, coordination, and negation.
We then transformed our event tuples into event trees,
which allowed us to treat event detection as a depen-
dency parsing task. We trained an off-the-shelf named
entity recognizer and a dependency parser on the an-
notated corpus, and the systems yielded an f-score of
94.7% and 91.8%, respectively. The corpus is available at
http://depts.washington.edu/bionlp/datasets.htm.

For future work, we will first examine the effect of
named entity recognition errors on the event extraction. We
will then add event-based features to improve the perfor-
mance of our phenotype detection system. Our ultimate
goal is to use event detection, phenotype detection, and
other NLP systems to monitor patients’ medical conditions
over time and prompt physicians with early warning, and
thus improve patient healthcare quality while reducing the
cost of healthcare.

References
Finkel, J. R., Grenager, T., and Manning, C. (2005). Incor-

porating non-local information into information extrac-

6http://www.maltparser.org/malteval.html

3420



tion systems by gibbs sampling. In Proceedings of the
43rd Annual Meeting on Association for Computational
Linguistics (ACL 2005), pages 363–370. Association for
Computational Linguistics.

Klassen, P., Xia, F., Vanderwende, L., and Yetisgen, M.
(2014). Annotating clinical events in text snippets for
phenotype detection. In Proceedings of LREC 2014,
Reykjavik, Iceland.

McClosky, D., Surdeanu, M., and Manning, C. D. (2011).
Event extraction as dependency parsing. In Proceed-
ings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technolo-
gies (ACL/HLT 2011), pages 1626–1635. Association for
Computational Linguistics.

Nilsson, J. and Nivre, J. (2008). Malteval: an evaluation
and visualization tool for dependency parsing. In Pro-
ceedings of LREC.

Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryigit, G.,
Kübler, S., Marinov, S., and Marsi, E. (2007). Malt-
parser: A language-independent system for data-driven
dependency parsing. Natural Language Engineering,
13(02):95–135.

Stenetorp, P., Pyysalo, S., Topić, G., Ohta, T.-k., Anani-
adou, S., and Tsujii, J. (2012). Brat: a web-based tool
for nlp-assisted text annotation. In Proceedings of the
Demonstrations Session at EACL 2012.

Tepper, M., Evans, H. L., Xia, F., and Yetisgen-Yildiz, M.
(2013). Modeling annotator rationales with application
to pneumonia classification. In Expanding the Bound-
aries of Health Informations Using AI Workshop of AAAI
2013.

Yu, S., Farooq, F., Krishnapuram, B., and Rao, B.-r. (2011).
Leveraging rich annotations to improve learning of med-
ical concepts from clinical free text. In ICML workshop
on Learning from Unstructured Clinical Text, Bellevue,
WA.

Zilberberg, M. D. and Shorr, A. F. (2010). Ventilator-
associated pneumonia: the clinical pulmonary infection
score as a surrogate for diagnostics and outcome. Clini-
cal Infectious Diseases, 51(Suppl 1):S131–S135.

3421


